JPS6367518B2 - - Google Patents

Info

Publication number
JPS6367518B2
JPS6367518B2 JP57182789A JP18278982A JPS6367518B2 JP S6367518 B2 JPS6367518 B2 JP S6367518B2 JP 57182789 A JP57182789 A JP 57182789A JP 18278982 A JP18278982 A JP 18278982A JP S6367518 B2 JPS6367518 B2 JP S6367518B2
Authority
JP
Japan
Prior art keywords
temperature
coal
low
lignite
oxidation treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57182789A
Other languages
Japanese (ja)
Other versions
JPS5974189A (en
Inventor
Katsuzo Kubota
Masayuki Nakai
Shigeyoshi Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP18278982A priority Critical patent/JPS5974189A/en
Priority to AU19907/83A priority patent/AU552638B2/en
Priority to CA000438554A priority patent/CA1227639A/en
Publication of JPS5974189A publication Critical patent/JPS5974189A/en
Priority to US06/747,652 priority patent/US4645513A/en
Publication of JPS6367518B2 publication Critical patent/JPS6367518B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低品位炭の安定化方法に関し、詳しく
は泥炭、褐炭、亜瀝青炭などの低品位炭の含水率
を低減させると共に活性を低下させて自然発火の
防止を図る低品位炭の安定化方法に関する。 褐炭などの低品位炭は含水率が高いため、その
輸送が不経済であるばかりでなく、活性が強いた
め輸送中や貯蔵中などに自然発火を起こし易い等
の理由で、その利用範囲は山元近傍に限られてい
る。 このような事情に鑑み、これら低品位炭の脱水
および自然発火の防止に関する研究が行なわれ、
種々の提案がなされている。たとえば、脱水法と
しては蒸発法、機械的脱水法などが知られて
おり、また自然発火防止法としては空気遮断法
(水中貯炭、石炭表面コーテイング、貯炭表面被
覆、圧縮貯炭、不活性ガスシールなど)、冷却
法、微粉炭の除去、ブリケツト化などの対策
が行なわれている。 しかしながら、これらの方法は十分な効果が得
られなかつたり、操作が煩雑であつたりして必ず
しも満足すべき方法ではなかつた。 本発明の目的は、比較的簡便な操作によつて低
品位炭の脱水と自然発火防止とを同時に行なう低
品位炭の安定化方法を提供することである。 本発明は低品位炭を実質的に含水率0重量%と
なるまで不活性雰囲気中で100〜350℃の温度で加
熱処理し、次いで100〜200℃の温度および酸素濃
度1〜10容量%の酸素と窒素の混合ガスを用いて
30分〜5時間酸化処理することを特徴とする脱水
と自然発火防止とを同時に行なう低品位炭の安定
化方法である。 石炭の中では泥炭が最も自然発火しやすく、以
下褐炭、亜瀝青炭、瀝青炭の順であることが知ら
れている。また、泥炭、褐炭、亜瀝青炭、瀝青炭
などの低品位炭は含水率が高いため、輸送効率が
悪いものである。したがつて、本発明ではこれら
低品位炭を対象としてその安定化を図るものであ
る。 本発明を実施するにあたり、予め低品位炭を天
日乾燥などにより乾燥して含水率を15〜20重量%
まで低減させることが望ましい。 低品位炭の加熱処理は100〜350℃の温度で窒素
ガスなどの不活性ガス中で行ない、実質的に含水
率が0%となる迄行なう。処理時間は低品位炭の
種類、加熱温度などを考慮して決定するが、通常
は10分から3時間行なう。この加熱処理によつて
水蒸気や可燃性ガスが除かれ原炭に比し耐自然発
火性が改善されるが、加熱処理の温度が350℃を
越えると、炭酸ガス発生温度が低くなり、十分な
効果が得られない。 加熱処理後、所望により低品位炭の成形を行な
う。成形は加熱処理した低品位炭を加熱、圧縮す
るだけでよく、必要により湿潤タール、ピツチな
どをバインダーとして用いることができる。 次に行なう酸化処理は低品位炭の耐自然発火性
を改善することを目的としており、100〜200℃の
温度で行なうとすぐれた効果が得られる。100℃
未満では、目的が十分に達成できず、200℃を越
えると、石炭の酸化が過剰となり自然発火しやす
くなると共に、処理中の石炭が焼成するおそれが
ある。酸化処理は酸素濃度1〜10容量%、好まし
くは4〜10容量%の酸素と窒素の混合ガスを用い
て30分〜5時間、好ましくは2〜3時間行なう。 本発明の方法を適用した低品位炭は含水率が著
滅しており、しかも原炭や豪州ブリケツトと比較
してすぐれた耐自然発火性を有している。また、
燃料として用いた場合、発熱量が高く燃料用炭と
して好適な性状を有している。 次に、本発明の実施例を示す。 実施例 1〜5 気乾したヤルーン褐炭(粒径5mm以下に粉砕し
たもので含水率15重量%)2Kgを充填塔に仕込
み、予熱した窒素ガスを2/min.で充填塔に
流通させて褐炭を乾燥し(含水率0重量%)、引
き続き第1表に示す所定温度に到達後、3時間加
熱処理した。その後、室温まで降温させた褐炭を
取り出し密閉容器に保存した。この褐炭の含水率
は0重量%であつた。 なお、褐炭等の含水率はJIS M8811およびJIS
M8812に準拠し、試料を107℃で1時間加熱乾燥
した時のその減量の、試料に対する百分率(次式
で表わされる。)を含水率とした。 含水率(重量%)=乾燥減量(g)/試料重量(g
)×100 加熱処理した上記褐炭200gを充填塔に仕込み、
酸素濃度を6容量%に調整した窒素と酸素との混
合ガスを予熱し、500ml/min.で充填塔に流通さ
せ、第1表に示す所定温度に到達後、3時間酸化
処理を行なつた。その後、室温まで下げ褐炭を取
り出して密閉容器に保存した。 上記褐炭を粉砕、分級して粒径0.15〜0.5mmの
区分と粒径0.15mm以下の区分に分け、前者につい
てCO2ガス発生温度を測定して耐自然発火性を評
価した。また、後者について元素分析値、工業分
析値および発熱量を測定した。結果を第1表およ
び第2表に示す。なお、1容量%CO2発生温度の
測定方法は次のように行なつた。50gの成形炭を
JIS K−2818に示される「石油製品の燃焼性硫黄
の分析」に用いられる吸収管(内径約50mmのガラ
ス容器)に充填する。ガス吹込み口より、純酸素
ガスを毎分30ml流しながら、オイルバス中で毎分
0.7℃の昇温速度で昇温し、出口ガスを15分間隔
でガスクロによりガスの組成分析を行なう。 オイルバス温度とCO2の容量%濃度をグラフに
プロツトし、CO2の濃度が1容量%を示す時のオ
イルバス温度を内挿で求め、これを1容量%CO2
発生温度と呼ぶ。なお、CO2の濃度が1容量%を
超えると、燃焼による発熱の為、容器内の成形炭
の温度がオイルバス温度よりも高くなりはじめる
為、この温度を耐自然発光性の指標とした。 比較例 1〜5 酸化処理を省いたこと以外は実施例1〜5と同
様に行なつた。結果を第1表および第2表に示
す。
The present invention relates to a method for stabilizing low-rank coal, and more specifically, a method for stabilizing low-rank coal that reduces the moisture content of low-rank coal such as peat, lignite, and sub-bituminous coal and reduces its activity to prevent spontaneous combustion. Regarding. Low-grade coal such as lignite has a high moisture content, which makes it uneconomical to transport.It is also highly active and tends to spontaneously ignite during transportation and storage. Limited to nearby areas. In view of these circumstances, research has been conducted on dehydration of these low-rank coals and prevention of spontaneous combustion.
Various proposals have been made. For example, evaporation methods and mechanical dehydration methods are known as dehydration methods, and air blocking methods (underwater coal storage, coal surface coating, coal storage surface coating, compressed coal storage, inert gas sealing, etc.) are known as methods to prevent spontaneous combustion. ), cooling methods, removal of pulverized coal, and briquetting. However, these methods are not always satisfactory because they do not provide sufficient effects or require complicated operations. An object of the present invention is to provide a method for stabilizing low-rank coal that simultaneously dehydrates the low-rank coal and prevents spontaneous combustion through relatively simple operations. In the present invention, low-rank coal is heat-treated in an inert atmosphere at a temperature of 100 to 350°C until the moisture content becomes substantially 0% by weight, and then at a temperature of 100 to 200°C and an oxygen concentration of 1 to 10% by volume. Using a mixed gas of oxygen and nitrogen
This is a method for stabilizing low-rank coal that simultaneously performs dehydration and prevention of spontaneous combustion, characterized by oxidation treatment for 30 minutes to 5 hours. It is known that among coals, peat is the most likely to spontaneously ignite, followed by lignite, subbituminous coal, and bituminous coal. In addition, low-grade coal such as peat, lignite, sub-bituminous coal, and bituminous coal has a high moisture content and therefore has poor transportation efficiency. Therefore, the present invention aims to stabilize these low-rank coals. In carrying out the present invention, low-grade coal is dried in advance by sun drying etc. to a moisture content of 15 to 20% by weight.
It is desirable to reduce it to The heat treatment of low-rank coal is carried out at a temperature of 100 to 350°C in an inert gas such as nitrogen gas until the water content becomes substantially 0%. The treatment time is determined by taking into consideration the type of low-rank coal, heating temperature, etc., but is usually 10 minutes to 3 hours. This heat treatment removes water vapor and combustible gases and improves spontaneous ignition resistance compared to raw coal, but if the heat treatment temperature exceeds 350°C, the temperature at which carbon dioxide gas is generated becomes low, and sufficient No effect is obtained. After the heat treatment, the low-rank coal is formed if desired. For shaping, it is sufficient to heat and compress heat-treated low-grade coal, and if necessary, wet tar, pitch, etc. can be used as a binder. The next oxidation treatment is aimed at improving the spontaneous ignition resistance of the low-rank coal, and excellent effects can be obtained if it is performed at a temperature of 100 to 200°C. 100℃
If the temperature is less than 200°C, the purpose cannot be fully achieved, and if the temperature exceeds 200°C, the oxidation of the coal becomes excessive, making it easy to spontaneously ignite, and the coal being treated may be burned. The oxidation treatment is carried out for 30 minutes to 5 hours, preferably for 2 to 3 hours using a mixed gas of oxygen and nitrogen having an oxygen concentration of 1 to 10% by volume, preferably 4 to 10% by volume. The low-rank coal to which the method of the present invention is applied has a significantly reduced moisture content and has superior spontaneous ignition resistance compared to raw coal and Australian briquettes. Also,
When used as fuel, it has a high calorific value and has properties suitable as fuel coal. Next, examples of the present invention will be shown. Examples 1 to 5 2 kg of air-dried Yarun lignite (pulverized to a particle size of 5 mm or less, moisture content 15% by weight) was charged into a packed tower, and preheated nitrogen gas was passed through the packed tower at a rate of 2/min to produce lignite. was dried (moisture content: 0% by weight), and then heat-treated for 3 hours after reaching the predetermined temperature shown in Table 1. Thereafter, the brown coal was cooled to room temperature and was taken out and stored in an airtight container. The moisture content of this lignite was 0% by weight. In addition, the moisture content of lignite, etc. is based on JIS M8811 and JIS
In accordance with M8812, the moisture content was defined as the percentage of weight loss (expressed by the following formula) relative to the sample when the sample was heated and dried at 107°C for 1 hour. Moisture content (wt%) = loss on drying (g) / sample weight (g
) x 100 200g of the above heat-treated lignite was charged into a packed tower,
A mixed gas of nitrogen and oxygen with an oxygen concentration adjusted to 6% by volume was preheated and passed through a packed column at 500 ml/min. After reaching the specified temperature shown in Table 1, oxidation treatment was performed for 3 hours. . Thereafter, the temperature was lowered to room temperature, and the lignite was taken out and stored in an airtight container. The lignite was pulverized and classified into particles with a particle size of 0.15 to 0.5 mm and particles with a particle size of 0.15 mm or less, and the spontaneous ignition resistance of the former was evaluated by measuring the CO 2 gas generation temperature. Furthermore, elemental analysis values, industrial analysis values, and calorific values were measured for the latter. The results are shown in Tables 1 and 2. The 1 volume % CO 2 generation temperature was measured as follows. 50g of charcoal
Fill an absorption tube (glass container with an inner diameter of about 50 mm) used for "analysis of combustible sulfur in petroleum products" as specified in JIS K-2818. per minute in an oil bath while flowing 30ml of pure oxygen gas per minute from the gas inlet.
The temperature was raised at a rate of 0.7°C, and the composition of the gas at the outlet was analyzed by gas chromatography at 15 minute intervals. Plot the oil bath temperature and CO 2 volume % concentration on a graph, find the oil bath temperature when the CO 2 concentration shows 1 volume % by interpolation, and calculate this as 1 volume % CO 2
It is called the generation temperature. Note that when the concentration of CO 2 exceeds 1% by volume, the temperature of the briquette coal in the container begins to rise above the oil bath temperature due to heat generation due to combustion, so this temperature was used as an index of spontaneous luminescence resistance. Comparative Examples 1 to 5 The same procedures as Examples 1 to 5 were carried out except that the oxidation treatment was omitted. The results are shown in Tables 1 and 2.

【表】【table】

【表】【table】

【表】 実施例 6〜10 この例では酸化処理時間の及ぼす影響について
調べた。すなわち加熱処理温度を200℃、酸化処
理温度を150℃、酸素濃度を6容量%とし、酸化
処理時間を変化させたこと以外は実施例1と同様
に処理した。結果を第3表に示す。
[Table] Examples 6 to 10 In this example, the influence of oxidation treatment time was investigated. That is, the same treatment as in Example 1 was performed except that the heat treatment temperature was 200°C, the oxidation treatment temperature was 150°C, the oxygen concentration was 6% by volume, and the oxidation treatment time was changed. The results are shown in Table 3.

【表】 実施例 11〜15 この例では酸化処理を行なう際の酸素濃度の及
ぼす影響について調べるため、加熱処理温度を
300℃、酸化処理温度を150℃とし、酸素濃度を変
化させたこと以外は実施例1と同様に処理した。
結果を第4表に示す。
[Table] Examples 11 to 15 In this example, in order to investigate the influence of oxygen concentration during oxidation treatment, the heat treatment temperature was changed.
The treatment was carried out in the same manner as in Example 1, except that the oxidation treatment temperature was 300°C, the oxidation treatment temperature was 150°C, and the oxygen concentration was changed.
The results are shown in Table 4.

【表】 実施例 16〜20 この例では酸化処理温度の及ぼす影響について
調べた。すなわち加熱処理温度を300℃、酸素濃
度を6容量%とし、酸化処理温度を変化させたこ
と以外は実施例1と同様に処理した。結果を第5
表に示す。
[Table] Examples 16 to 20 In this example, the influence of oxidation treatment temperature was investigated. That is, the treatment was carried out in the same manner as in Example 1, except that the heat treatment temperature was 300° C., the oxygen concentration was 6% by volume, and the oxidation treatment temperature was changed. 5th result
Shown in the table.

【表】 比較例 6、7 原炭(ヤルーン褐炭)を50℃にて減圧乾燥した
もの(比較例6、含水率0重量%)および豪州ブ
リケツト(比較例7)であつて粒径0.15〜0.5mm
の区分についてCO2ガス発生温度を測定した。結
果を第6表に示す。なお、豪州ブリケツトは、豪
州に産するヤルーン炭を水分約15重量%まで乾燥
後、50mm角程度に圧縮成型した固形燃料である。 比較例 8、9 加熱処理温度を400℃とし、酸化処理を行なわ
なかつたこと以外は実施例1と同様に処理したも
の(比較例8)および加熱処理温度を400℃、酸
化処理温度を150℃としたこと以外は実施例1と
同様に処理したもの(比較例9)についてCO2
ス発生温度を測定した。結果を第6表に示す。
[Table] Comparative Examples 6 and 7 Raw coal (Yarrun lignite) dried under reduced pressure at 50°C (Comparative Example 6, moisture content 0% by weight) and Australian briquettes (Comparative Example 7) with particle size of 0.15 to 0.5 mm
The CO 2 gas generation temperature was measured for the following categories. The results are shown in Table 6. Australian briquettes are a solid fuel made by drying Australian Yalloon coal to a moisture content of approximately 15% by weight, and then compressing it into approximately 50mm square pieces. Comparative Examples 8 and 9 Products treated in the same manner as in Example 1 except that the heat treatment temperature was 400°C and no oxidation treatment (Comparative Example 8), and the heat treatment temperature was 400°C and the oxidation treatment temperature was 150°C. The CO 2 gas generation temperature was measured for the sample (Comparative Example 9) which was treated in the same manner as in Example 1 except for the following. The results are shown in Table 6.

【表】【table】

Claims (1)

【特許請求の範囲】 1 低品位炭を実質的に含水率0重量%となるま
で不活性雰囲気中で100〜350℃の温度で加熱処理
し、次いで100〜200℃の温度および酸素濃度1〜
10容量%の酸素と窒素の混合ガスを用いて30分〜
5時間酸化処理することを特徴とする脱水と自然
発火防止とを同時に行なう低品位炭の安定化方
法。 2 低品位炭が褐炭である特許請求の範囲第1項
記載の方法。
[Claims] 1. Low-rank coal is heat treated in an inert atmosphere at a temperature of 100 to 350°C until the water content becomes substantially 0% by weight, and then heated at a temperature of 100 to 200°C and an oxygen concentration of 1 to 350°C.
30 minutes using a mixed gas of 10% oxygen and nitrogen by volume
A method for stabilizing low-rank coal that simultaneously performs dehydration and prevention of spontaneous combustion, characterized by oxidation treatment for 5 hours. 2. The method according to claim 1, wherein the low-rank coal is lignite.
JP18278982A 1982-10-20 1982-10-20 Stabilization of coal Granted JPS5974189A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18278982A JPS5974189A (en) 1982-10-20 1982-10-20 Stabilization of coal
AU19907/83A AU552638B2 (en) 1982-10-20 1983-10-05 Process for modification of coal
CA000438554A CA1227639A (en) 1982-10-20 1983-10-06 Process for modification of coal
US06/747,652 US4645513A (en) 1982-10-20 1985-06-21 Process for modification of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18278982A JPS5974189A (en) 1982-10-20 1982-10-20 Stabilization of coal

Publications (2)

Publication Number Publication Date
JPS5974189A JPS5974189A (en) 1984-04-26
JPS6367518B2 true JPS6367518B2 (en) 1988-12-26

Family

ID=16124443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18278982A Granted JPS5974189A (en) 1982-10-20 1982-10-20 Stabilization of coal

Country Status (1)

Country Link
JP (1) JPS5974189A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111529A (en) * 2009-11-26 2011-06-09 Kobe Steel Ltd Ignition-resistant coal and method for producing the same
WO2011074279A1 (en) * 2009-12-18 2011-06-23 三菱重工業株式会社 Coal reforming equipment
WO2011118049A1 (en) * 2010-03-24 2011-09-29 三菱重工業株式会社 Apparatus for producing upgraded coal
WO2013125476A1 (en) * 2012-02-24 2013-08-29 三菱重工業株式会社 Modified coal production equipment
CN104379708A (en) * 2012-12-14 2015-02-25 三菱重工业株式会社 Coal deactivation processing device and equipment for producing modified coal using same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250393A (en) * 1985-08-28 1987-03-05 Mitsubishi Heavy Ind Ltd Heat treatment of coal
JP4416747B2 (en) * 2006-03-17 2010-02-17 メタウォーター株式会社 Carbide storage method
JP4397379B2 (en) * 2006-03-17 2010-01-13 メタウォーター株式会社 Carbide storage method and carbide storage device
JP5412418B2 (en) 2010-12-17 2014-02-12 三菱重工業株式会社 Coal inactivation processing equipment
JP5456073B2 (en) 2012-01-06 2014-03-26 三菱重工業株式会社 Coal deactivation processing equipment
JP5511855B2 (en) * 2012-01-06 2014-06-04 三菱重工業株式会社 Coal deactivation treatment method
JP5971652B2 (en) 2012-10-09 2016-08-17 三菱重工業株式会社 Coal deactivation processing equipment
JP6070181B2 (en) * 2012-12-27 2017-02-01 新日鐵住金株式会社 Method and apparatus for evaluating pyrogenicity of low-grade coal
JP6018516B2 (en) * 2013-02-07 2016-11-02 株式会社神戸製鋼所 Aging apparatus for reducing spontaneous heat generation of modified low-grade coal, and operation method thereof
JP5536247B1 (en) 2013-03-04 2014-07-02 三菱重工業株式会社 Coal deactivation processing equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670094A (en) * 1979-11-09 1981-06-11 Mitsubishi Heavy Ind Ltd Heat-treating method of coal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670094A (en) * 1979-11-09 1981-06-11 Mitsubishi Heavy Ind Ltd Heat-treating method of coal

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111529A (en) * 2009-11-26 2011-06-09 Kobe Steel Ltd Ignition-resistant coal and method for producing the same
WO2011074279A1 (en) * 2009-12-18 2011-06-23 三菱重工業株式会社 Coal reforming equipment
WO2011118049A1 (en) * 2010-03-24 2011-09-29 三菱重工業株式会社 Apparatus for producing upgraded coal
JP2011201947A (en) * 2010-03-24 2011-10-13 Mitsubishi Heavy Ind Ltd Apparatus for producing reformed coal
AU2010349150B2 (en) * 2010-03-24 2013-12-05 Mitsubishi Heavy Industries, Ltd. Apparatus for producing upgraded coal
US8608910B2 (en) 2010-03-24 2013-12-17 Mitsubishi Heavy Industries, Ltd. Coal reforming apparatus
WO2013125476A1 (en) * 2012-02-24 2013-08-29 三菱重工業株式会社 Modified coal production equipment
JP2013173832A (en) * 2012-02-24 2013-09-05 Mitsubishi Heavy Ind Ltd Modified coal production equipment
CN104053756A (en) * 2012-02-24 2014-09-17 三菱重工业株式会社 Modified coal production equipment
CN104053756B (en) * 2012-02-24 2016-04-20 三菱重工业株式会社 Modified coal producing apparatus
CN104379708A (en) * 2012-12-14 2015-02-25 三菱重工业株式会社 Coal deactivation processing device and equipment for producing modified coal using same
US9528065B2 (en) 2012-12-14 2016-12-27 Mitsubishi Heavy Industries, Ltd. Coal deactivation processing device and equipment for producing modified coal using same

Also Published As

Publication number Publication date
JPS5974189A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
US4645513A (en) Process for modification of coal
US4052168A (en) Process for upgrading lignitic-type coal as a fuel
JPS6367518B2 (en)
MX2011012286A (en) Method and plant for the thermal treatment of organic matter in order to produce charcoal or char.
JP3760228B2 (en) Manufacturing method of high calorific value carbide
CA1202179A (en) Method of coal upgrading
JP6402235B1 (en) Method for producing modified coal
JPS6362559B2 (en)
US5292708A (en) Method of producing activated carbon from pit-wet lignite
KR101269391B1 (en) Pulverized fuel and method for production of the same
KR860002068B1 (en) Process for modification of coal
JPS6332839B2 (en)
Guan et al. Lignite thermal upgrading and its effect on surface properties
CN112705163A (en) Multi-metal in-situ doped desulfurizer based on low-coalification-degree inferior coal and preparation method thereof
JPH09241014A (en) Production of activated carbon
US2874037A (en) Process for stabilizing pyrophoric iron
WO2023012773A1 (en) Carbon material and production method therefor
GB946358A (en) Barbecue briquettes and method of making the same
JPH07166180A (en) Reforming process of low quality coal
US4108731A (en) Coke production
JP2011111529A (en) Ignition-resistant coal and method for producing the same
SU1765169A1 (en) Method of producing brown coal briquettes
JPS6250393A (en) Heat treatment of coal
Ciofu Activated carbon (charcoal) obtaining & application
WO2023129090A2 (en) Method for using biomass in coking coal blend