JPS6362559B2 - - Google Patents

Info

Publication number
JPS6362559B2
JPS6362559B2 JP17320683A JP17320683A JPS6362559B2 JP S6362559 B2 JPS6362559 B2 JP S6362559B2 JP 17320683 A JP17320683 A JP 17320683A JP 17320683 A JP17320683 A JP 17320683A JP S6362559 B2 JPS6362559 B2 JP S6362559B2
Authority
JP
Japan
Prior art keywords
coal
low
weight
temperature
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17320683A
Other languages
Japanese (ja)
Other versions
JPS6065097A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17320683A priority Critical patent/JPS6065097A/en
Priority to KR1019840000693A priority patent/KR860002068B1/en
Publication of JPS6065097A publication Critical patent/JPS6065097A/en
Publication of JPS6362559B2 publication Critical patent/JPS6362559B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低品位炭の改質方法に関し、詳しくは
泥炭、褐炭、亜瀝青炭などの低品位炭の耐水性お
よび水中浸漬後の圧漬強度を向上させると共に、
含水率を低減させ、かつ活性を低下させて自然発
火の防止を図り、輸送性、貯蔵性を向上させる低
品位炭の改質方法に関する。 褐炭などの低品位炭は含水率が高いため、その
輸送が不経済であるばかりでなく、活性が強いた
め輸送中や貯蔵中などに自然発火を起こし易い等
の理由で、その利用範囲は山元近傍に限られてい
る。 このような事情に鑑み、これら低品位炭の脱水
および自然発火の防止に関する研究が行なわれ、
種々の提案がなされている。たとえば、脱水法と
しては蒸発法、機械的脱水法などが知られて
おり、また自然発火防止法としては空気遮断法
(水中貯炭、石炭表面コーテイング、貯炭表面被
覆、圧縮貯炭、不活性ガスシールなど)、冷却
法、微粉炭の除去、プリケツト化などの対策
が行なわれている。具体的には乾燥後水蒸気存在
下で加熱処理し、大気圧下で加熱成形して練炭と
する方法(特開昭56―104996号公報)、乾燥後急
速加熱し、次いで急速冷却する方法(特開昭56―
149494号公報)などがある。 しかしながら、これらの方法は十分な効果が得
られなかつたり、操作が煩雑であつたりして必ず
しも満足すべき方法ではなかつた。 そこで本発明者らは既に高温下に圧縮成形する
方法(特公昭62―47479号公報)、乾燥後原料炭を
酸化処理して自然発火を防止する方法(特開昭59
―74189号公報)を提案している。さらに続けて
本発明者らは石炭を実質的に含水率0重量%にな
るまで乾燥し、次いで成形温度まで急速加熱し、
高圧下で圧縮成形し、成形物を酸化処理する方法
(特開昭59―161491号公報)を提案している。 本発明者らは、さらに低品位炭の改質方法につ
いて改良を重ねた結果、上記酸化処理後にスチー
ム処理を行なうことにより、成形炭の耐水性およ
び水中浸漬後の圧漬強度を一層向上させることが
できることを見出し、本発明を完成するに到つ
た。 すなわち、本発明は低品位炭を85〜150℃で実
質的に含水率0重量%になるまで乾燥後、200〜
400℃の成形温度まで10分以内で急速加熱し、こ
の温度において直ちに1〜5t/cm2の圧力で圧縮成
形し、得られた成形物を100〜200℃で酸素濃度1
〜21容量%の空気あるいは酸素と窒素の混合ガス
を用いて酸化処理し、次いで80〜150℃の飽和水
蒸気中でスチーム処理することを特徴とする低品
位炭の改質方法を提供するものである。 石炭の中では泥炭が最も自然発火しやすく、以
下褐炭、亜瀝青炭、瀝青炭の順であることが知ら
ている。また、泥炭、褐炭、亜瀝青炭、瀝青炭な
どの低品位炭は含水率が高いため、輸送効率が悪
いものである。したがつて、本発明ではこれらの
低品位炭を対象としてその改質を行なうものであ
る。 本発明を実施するにあたつて、原料炭は予め粉
砕して粒状としておくことが望ましく、特に粒径
を3mm以下としておくことが好ましい。また、低
品位炭は天日乾燥などにより乾燥して含水率を15
〜20重量%まで低減させておくことが望ましい。 低品位炭の乾燥は85〜150℃の温度で加熱する
ことにより行ない、好ましくは窒素ガス等の不活
性ガス中で、実質的に含水率が0重量%となるま
で行なう。乾燥時間は低品位炭の種類、加熱温度
などを考慮して決定する。この乾燥により低品位
炭中の水分の大部分が除かれ、さらに可燃性ガス
の一部も除去される。 乾燥した低品位炭は、次に10分以内、好ましく
は5〜7分で200〜400℃の温度まで急速に加熱す
る。このような急速加熱を行なうのは、高温で長
時間処理することによる成形性の低下を防止する
ためである。 急速加熱後、200〜400℃の温度において1〜
5t/cm2、好ましくは2〜3t/cm2の圧力にて瞬時に
圧縮成形する。また、通常は圧縮成形する場合、
外部よりピツチ等のバインダーを加えることが必
要であるが、本発明においては自己副生タールを
バインダーとする為、外部バインダーを必要とし
ない。なお、一般に成形温度が高いほど耐水性が
向上する傾向がある。 続いて、高温圧縮成形された石炭の酸化処理を
行なう。この操作は耐自然発火性を改善すること
を目的としており、100〜200℃の温度で行なうと
すぐれた効果が得られる。酸化処理は酸素濃度1
〜21容量%、好ましくは4〜10容量%で30分〜5
時間、好ましくは2〜3時間行なう。酸化処理は
空気を用いて行なうこともできるが、望ましくは
酸素と窒素を所定割合に混合した混合ガスを使用
する。 上記酸化処理後、スチーム処理を行なう。スチ
ーム処理は80〜150℃、好ましくは90℃の飽和湿
度中で2〜8時間行なう。なお、成形炭に対して
酸化処理とスチーム処理を同時に施しても差支え
ない。このスチームによる表面処理により、成形
炭の表面が疎水化され、成形炭に耐水性をもたせ
ることができる。 本発明の方法を適用した石炭は100時間水中に
浸漬した後の圧漬強度が100Kg/cm以上と耐水性
が高く、雨ざらしになつても形がくずれず、しか
も水中浸漬後の圧漬強度も高く、取扱いや貯蔵が
容易である。本発明の方法を適用した石炭は含水
率が著減しており、しかも原炭や豪州ブリケツト
と比較してすぐれた耐自然発火性、耐発塵性を有
しており、粉砕してもこの性質を十分に維持し得
る。また、上記の如く圧漬強度が大きく、しかも
かさ密度も通常1.1g/cm3と大きいため、輸送効率
もきわめて高いものである。さらに燃料として用
いた場合、発熱量が高く燃料用炭として好適な性
状を有している。 次に、本発明の実施例を示す。 実施例 1〜6 豪州ヤルーン炭250gを3mm以下に粉砕し、窒
素ガス雰囲気中で含水率0重量%となるまで120
℃で乾燥した。乾燥には、約3時間要した。その
後、その乾燥炭(性状を第1表に示す。)8gを内
径25mmφの金型中に入れ、第2表に示す時間内に
所定の成形温度まで急速加熱し、次いで3t/cm2
圧縮圧で瞬時に成形を行ない、直径25mm、厚み
1.4mmの成形炭を成形した。しかる後、成形炭
200gを充填塔に仕込み、500ml/分の流量の酸素
濃度6容量%の酸素―窒素混合ガス中で150℃の
温度で3時間酸化処理を行なつた。酸化処理後、
成形炭を90℃飽和湿度中でスチーム処理した。こ
のスチーム処理は、100℃の温浴でフラスコ内の
蒸留水を90℃に加熱し、フラスコ中を水蒸気で飽
和させ、この飽和水蒸気中に成形炭を放置するこ
とにより行なつた。結果を第2表に示す。なお、
実施例2、3、5および6については水中に100
時間浸漬して耐水性の評価を行なつた。 比較例 1〜6 実施例1〜6において、酸化処理、スチーム処
理のいずれか一方もしくは両方の処理を行なわな
かつたこと以外は実施例1〜6と同様に行なつ
た。結果を第2表に示す。なお、比較例2、3、
5および6については水中に100時間浸漬して耐
水性の評価を行なつた。 第1表 a) 工業分析としての乾燥炭の分析値(ドライ
ベース) 灰分: 1.2重量% 揮発分:50.9重量% 固定炭素:47.9重量% b) 元素分析(ドライアツシユフリー) 炭素:64.0重量% 水素: 4.5重量% 窒素: 1.0重量% 酸素:30.3重量% 硫黄: 0.2重量%
The present invention relates to a method for reforming low-rank coal, and more specifically, improves the water resistance and compaction strength of low-rank coal such as peat, lignite, and sub-bituminous coal after immersion in water, and
The present invention relates to a method for reforming low-rank coal that reduces moisture content and activity, prevents spontaneous combustion, and improves transportability and storability. Low-grade coal such as lignite has a high moisture content, which makes it uneconomical to transport.It is also highly active and tends to spontaneously ignite during transportation and storage. Limited to nearby areas. In view of these circumstances, research has been conducted on dehydration of these low-rank coals and prevention of spontaneous combustion.
Various proposals have been made. For example, evaporation methods and mechanical dehydration methods are known as dehydration methods, and air blocking methods (underwater coal storage, coal surface coating, coal storage surface coating, compressed coal storage, inert gas sealing, etc.) are known as methods to prevent spontaneous combustion. ), cooling methods, removal of pulverized coal, and precketing. Specifically, methods include a method in which drying is then heat-treated in the presence of steam, and heat-molded under atmospheric pressure to form briquettes (Japanese Patent Application Laid-Open No. 104996/1983); 1977-
149494). However, these methods are not always satisfactory because they do not provide sufficient effects or require complicated operations. Therefore, the present inventors have already developed a method of compression molding under high temperature (Japanese Patent Publication No. 62-47479), and a method of oxidizing coking coal after drying to prevent spontaneous combustion (Japanese Patent Publication No. 59/1989).
- Publication No. 74189). Further, the present inventors dried the coal until the moisture content was substantially 0% by weight, then rapidly heated it to the forming temperature,
We have proposed a method of compression molding under high pressure and oxidizing the molded product (Japanese Patent Application Laid-open No. 161491/1983). As a result of further improvements in the method for reforming low-rank coal, the present inventors have found that by performing steam treatment after the above-mentioned oxidation treatment, the water resistance of the briquette coal and the pressing strength after immersion in water are further improved. The inventors have discovered that this can be done, and have completed the present invention. That is, in the present invention, after drying low-rank coal at 85 to 150°C until the water content becomes substantially 0% by weight,
Rapid heating to a molding temperature of 400℃ within 10 minutes, compression molding at this temperature immediately at a pressure of 1 to 5 t/ cm2 , and the resulting molded product at 100 to 200℃ with an oxygen concentration of 1
The present invention provides a method for reforming low-rank coal, which is characterized by oxidation treatment using ~21% by volume of air or a mixed gas of oxygen and nitrogen, and then steam treatment in saturated steam at 80 to 150°C. be. It is known that among coals, peat is the most likely to spontaneously ignite, followed by lignite, subbituminous coal, and bituminous coal. In addition, low-grade coal such as peat, lignite, sub-bituminous coal, and bituminous coal has a high moisture content and therefore has poor transportation efficiency. Therefore, in the present invention, these low-rank coals are targeted for modification. In carrying out the present invention, it is desirable that the raw coal be pulverized in advance into granules, and it is particularly preferable that the particle size is 3 mm or less. In addition, low-grade coal is dried in the sun to reduce its moisture content to 15%.
It is desirable to reduce the amount to ~20% by weight. Drying of the low-rank coal is carried out by heating at a temperature of 85 to 150°C, preferably in an inert gas such as nitrogen gas, until the water content becomes substantially 0% by weight. The drying time is determined by considering the type of low-grade coal, heating temperature, etc. This drying removes most of the moisture in the low-rank coal and also removes some of the combustible gases. The dried low rank coal is then rapidly heated to a temperature of 200-400°C within 10 minutes, preferably 5-7 minutes. The reason for performing such rapid heating is to prevent deterioration in moldability due to long-term treatment at high temperatures. After rapid heating, at a temperature of 200 to 400℃
Compression molding is performed instantly at a pressure of 5t/cm 2 , preferably 2 to 3t/cm 2 . In addition, when compression molding is usually performed,
Although it is necessary to add a binder such as pitch from the outside, the present invention does not require an external binder because the self-by-product tar is used as the binder. In general, the higher the molding temperature, the better the water resistance tends to be. Subsequently, the high-temperature compression molded coal is oxidized. This operation is aimed at improving spontaneous ignition resistance, and excellent effects are obtained when carried out at temperatures of 100-200°C. Oxidation treatment has an oxygen concentration of 1
~21% by volume, preferably 4-10% by volume for 30 minutes ~5
The heating time is preferably 2 to 3 hours. Although the oxidation treatment can be performed using air, it is preferable to use a mixed gas containing oxygen and nitrogen in a predetermined ratio. After the above oxidation treatment, a steam treatment is performed. The steam treatment is carried out at 80 to 150°C, preferably at 90°C and at saturated humidity for 2 to 8 hours. Note that the oxidation treatment and the steam treatment may be applied to the briquette coal at the same time. By this surface treatment with steam, the surface of the briquette charcoal is made hydrophobic, and the briquette charcoal can be made water resistant. Coal produced using the method of the present invention has high water resistance, with a pressure strength of 100 kg/cm or more after being immersed in water for 100 hours, and does not lose its shape even when exposed to the rain. It is expensive and easy to handle and store. Coal produced using the method of the present invention has a significantly reduced moisture content, and has superior spontaneous ignition and dust generation resistance compared to raw coal and Australian briquettes. properties can be sufficiently maintained. Furthermore, as mentioned above, it has a high pressing strength and a bulk density of usually 1.1 g/cm 3 , so its transport efficiency is extremely high. Furthermore, when used as fuel, it has a high calorific value and has properties suitable as fuel coal. Next, examples of the present invention will be shown. Examples 1 to 6 250 g of Australian Yarun coal was crushed to 3 mm or less, and pulverized in a nitrogen gas atmosphere for 120 g until the water content reached 0% by weight.
Dry at °C. Drying took approximately 3 hours. Thereafter, 8g of the dried charcoal (properties are shown in Table 1) was placed in a mold with an inner diameter of 25mmφ, rapidly heated to the specified molding temperature within the time shown in Table 2, and then compressed to 3t/ cm2. Instantly molded using pressure, diameter 25mm, thickness
A 1.4 mm briquette was formed. After that, molded charcoal
200 g was charged into a packed column, and oxidation treatment was performed at a temperature of 150° C. for 3 hours in an oxygen-nitrogen mixed gas having an oxygen concentration of 6% by volume at a flow rate of 500 ml/min. After oxidation treatment,
The briquettes were steam-treated at 90°C and saturated humidity. This steam treatment was carried out by heating the distilled water in the flask to 90°C in a 100°C hot bath, saturating the flask with steam, and leaving the briquettes in this saturated steam. The results are shown in Table 2. In addition,
100 in water for Examples 2, 3, 5 and 6.
Water resistance was evaluated by immersion for a period of time. Comparative Examples 1 to 6 Examples 1 to 6 were carried out in the same manner as in Examples 1 to 6, except that one or both of the oxidation treatment and the steam treatment was not performed. The results are shown in Table 2. In addition, Comparative Examples 2, 3,
Samples No. 5 and No. 6 were immersed in water for 100 hours to evaluate their water resistance. Table 1 a) Analysis values of dry coal as industrial analysis (dry base) Ash content: 1.2% by weight Volatile content: 50.9% by weight Fixed carbon: 47.9% by weight b) Elemental analysis (dry ash free) Carbon: 64.0% by weight Hydrogen : 4.5% by weight Nitrogen: 1.0% by weight Oxygen: 30.3% by weight Sulfur: 0.2% by weight

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 低品位炭を85〜150℃で実質的に含水率0重
量%になるまで乾燥後、200〜400℃の成形温度ま
で10分以内で急速加熱し、この温度において直ち
に1〜5t/cm2の圧力で圧縮成形し、得られた成形
物を100〜200℃で酸素濃度1〜21容量%の空気あ
るいは酸素と窒素の混合ガスを用いて酸化処理
し、次いで80〜150℃の飽和水蒸気中でスチーム
処理することを特徴とする低品位炭の改質方法。 2 低品位炭が褐炭である特許請求の範囲第1項
記載の方法。
[Claims] 1. After drying low-rank coal at 85 to 150°C until the moisture content becomes substantially 0% by weight, it is rapidly heated within 10 minutes to a forming temperature of 200 to 400°C, and at this temperature, immediately Compression molding is performed at a pressure of 1 to 5 t/ cm2 , and the resulting molded product is oxidized at 100 to 200°C using air or a mixed gas of oxygen and nitrogen with an oxygen concentration of 1 to 21% by volume, and then A method for reforming low-rank coal, characterized by steam treatment in saturated steam at 150°C. 2. The method according to claim 1, wherein the low-rank coal is lignite.
JP17320683A 1983-03-07 1983-09-21 Improvement of coal Granted JPS6065097A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17320683A JPS6065097A (en) 1983-09-21 1983-09-21 Improvement of coal
KR1019840000693A KR860002068B1 (en) 1983-03-07 1984-02-14 Process for modification of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17320683A JPS6065097A (en) 1983-09-21 1983-09-21 Improvement of coal

Publications (2)

Publication Number Publication Date
JPS6065097A JPS6065097A (en) 1985-04-13
JPS6362559B2 true JPS6362559B2 (en) 1988-12-02

Family

ID=15956077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17320683A Granted JPS6065097A (en) 1983-03-07 1983-09-21 Improvement of coal

Country Status (1)

Country Link
JP (1) JPS6065097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200135162A (en) 2019-05-23 2020-12-02 나부테스코 가부시키가이샤 Internal-pressure rise prevention structure of speed reducer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310785A (en) 1998-04-30 1999-11-09 Mitsubishi Heavy Ind Ltd Method and apparatus for coal improvement
JP5511855B2 (en) 2012-01-06 2014-06-04 三菱重工業株式会社 Coal deactivation treatment method
JP5456073B2 (en) 2012-01-06 2014-03-26 三菱重工業株式会社 Coal deactivation processing equipment
JP5536247B1 (en) 2013-03-04 2014-07-02 三菱重工業株式会社 Coal deactivation processing equipment
JP5976616B2 (en) * 2013-10-01 2016-08-23 株式会社神戸製鋼所 Method for producing modified coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200135162A (en) 2019-05-23 2020-12-02 나부테스코 가부시키가이샤 Internal-pressure rise prevention structure of speed reducer

Also Published As

Publication number Publication date
JPS6065097A (en) 1985-04-13

Similar Documents

Publication Publication Date Title
US4645513A (en) Process for modification of coal
US4052168A (en) Process for upgrading lignitic-type coal as a fuel
US4508539A (en) Process for improving low quality coal
US4111755A (en) Method of producing pelletized fixed sulfur fuel
JPS6367518B2 (en)
JPS6362559B2 (en)
JP6402235B1 (en) Method for producing modified coal
JPS6332839B2 (en)
WO2023012773A1 (en) Carbon material and production method therefor
KR860002068B1 (en) Process for modification of coal
JPH0513198B2 (en)
RU2119532C1 (en) Fuel briquet
GB946358A (en) Barbecue briquettes and method of making the same
US2819155A (en) Briquetting of solid combustibles
US4022668A (en) Process for the production of formed coke
JPH07166180A (en) Reforming process of low quality coal
JPH0115560B2 (en)
US4108731A (en) Coke production
EP0231360A1 (en) Inorganic clay-containing coal briquettes and methods for production thereof
SU1765169A1 (en) Method of producing brown coal briquettes
JP3663581B2 (en) Wood tar metamorphosis
JPS6034494B2 (en) Method for producing porous activated coke
Piskin et al. Thermal reactivities of some Turkish lignites
US1386473A (en) Fuel
Mishima et al. Steam gasification of oil coke catalyzed by alkali metal hydridotetracarbonylferrates: effects of alkali metal cations