JP4416747B2 - Carbide storage method - Google Patents

Carbide storage method Download PDF

Info

Publication number
JP4416747B2
JP4416747B2 JP2006073844A JP2006073844A JP4416747B2 JP 4416747 B2 JP4416747 B2 JP 4416747B2 JP 2006073844 A JP2006073844 A JP 2006073844A JP 2006073844 A JP2006073844 A JP 2006073844A JP 4416747 B2 JP4416747 B2 JP 4416747B2
Authority
JP
Japan
Prior art keywords
storage tank
carbide
carbides
gas
exothermic reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006073844A
Other languages
Japanese (ja)
Other versions
JP2007245040A (en
Inventor
正章 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2006073844A priority Critical patent/JP4416747B2/en
Publication of JP2007245040A publication Critical patent/JP2007245040A/en
Application granted granted Critical
Publication of JP4416747B2 publication Critical patent/JP4416747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、廃棄物を処理して得られる粉粒状の炭化物を貯留しながら、熱暴走させることなく、安全な状態にするための炭化物貯留方法に関するものである。 The present invention relates to a carbide storage method for achieving a safe state without causing thermal runaway while storing powdered carbide obtained by processing waste.

従来から、ごみ等の廃棄物を処理するにあたり、最終処分場(埋立地)の延命化を図るために、焼却やガス化溶融方法等により廃棄物の減量化が図られている。一方、最近では地球温暖化ガス(CO)の削減の要請から、ごみ等の廃棄物を焼却処理するのではなく、炭化炉で炭化処理して粉粒状の炭化物として回収し、有効利用を可能とする方法が提案されている。この炭化物は、例えば燃料としての石炭、コークス等の代替材や、金属の電気炉における溶湯表面の保温材等として利用できるため、更に省資源化に有効である。 Conventionally, when processing waste such as waste, in order to extend the life of the final disposal site (landfill), the amount of waste has been reduced by incineration, gasification and melting methods, and the like. On the other hand, recently, in response to a request for reduction of global warming gas (CO 2 ), waste such as waste is not incinerated, but carbonized in a carbonization furnace and recovered as granular carbide, enabling effective use A method has been proposed. This carbide can be used, for example, as an alternative material such as coal or coke as a fuel, or as a heat insulating material on the surface of a molten metal in a metal electric furnace, and thus is further effective for resource saving.

この粉粒状の炭化物は、遊離基・官能基等の反応性に富んだ基を多く含んでおり、低温酸化反応等により発熱する性質を持つ。従って、粉粒体の放熱量より発熱量の方が大きくなると、粉粒体が蓄熱し、この熱により粉粒体の低温酸化等の発熱反応がより促進され、ある一定の温度を超えると熱暴走して、最悪の場合発火し、火災に至る可能性がある。   This particulate carbide contains many reactive groups such as free radicals and functional groups, and has a property of generating heat due to a low-temperature oxidation reaction or the like. Therefore, when the calorific value is larger than the heat dissipation amount of the granular material, the granular material accumulates heat, and this heat further promotes an exothermic reaction such as low-temperature oxidation of the granular material, and heat exceeds when a certain temperature is exceeded. Runaway, in the worst case it could ignite and cause a fire.

炭化炉から回収された炭化物は、出荷するまで一旦サイロ等の貯留槽に貯留され(例えば3日間)、この貯留槽から貯留・運搬のため、小分けしてフレキシブルコンテナ等に収納される。貯留槽内で貯留される粉粒体は、フレキシブルコンテナ等に収納される時以外は貯留槽内を移動することがない。そのため、粉粒体が貯留槽内の一定の場所に留まって貯留され、蓄熱しやすくなる。粉粒体がある一定以上の温度に達した場合には、粉粒体は熱暴走し、最悪の場合発火・火災に至る可能性がある。粉粒体が発火して、燃焼状態になった場合には、貯留槽内部の酸素が不足し、CO(一酸化炭素)等の可燃性ガスが発生し、貯留槽が爆発する危険性がある。   The carbide recovered from the carbonization furnace is temporarily stored in a storage tank such as a silo until shipment (for example, for 3 days), and is stored in a flexible container or the like for storage and transportation from the storage tank. The granular material stored in the storage tank does not move in the storage tank except when stored in a flexible container or the like. Therefore, the granular material stays in a certain place in the storage tank and is stored, and heat is easily stored. When the granular material reaches a certain temperature or more, the granular material may run out of heat, and in the worst case, ignition or fire may occur. When the powder is ignited and becomes in a combustion state, there is a risk that oxygen in the storage tank will be insufficient, flammable gas such as CO (carbon monoxide) will be generated, and the storage tank will explode. .

上記問題を回避するために、貯留槽内部の温度上昇、又は可燃性ガスの検出により異常を検知した場合は、消火装置により、貯留槽内を不活性ガスの放出、水の散水等により消火するとともに、粉粒体を貯留槽から緊急排出するようにしているが、散水しながら排出された粉粒状の炭化物は、含水率が高くなり有姿発熱量(低位発熱量)が小さくなるため、燃料代替製品としての価値が著しく低下したものとなる。   In order to avoid the above problem, if an abnormality is detected by the temperature rise inside the storage tank or detection of flammable gas, the fire is extinguished by the release of inert gas, water sprinkling, etc. by the fire extinguishing device At the same time, the particulate matter is urgently discharged from the storage tank, but the particulate carbide discharged while sprinkling water increases the moisture content and reduces the solid calorific value (low calorific value). The value as a substitute product is significantly reduced.

一方で、上記問題を防止するために、貯留槽内部に流入する空気を遮断すると、粉粒体の低温酸化等の発熱反応が抑制され、更に粉粒体自身の重量により、粉粒体が貯留槽内で圧縮され、密な状態で貯留槽内に貯留されるので、低温酸化等の発熱反応が進行せず、フレキシブルコンテナ等に排出、収納する時に、粉粒体はまだ安定な状態となっていない。この結果、粉粒体を貯留槽からフレキシブルコンテナ等に小分けして収納するときに、粉粒体は空気と接触するため低温酸化等による発熱反応が起こり、最悪の場合には発火・火災に至るという問題があった。   On the other hand, if the air flowing into the storage tank is blocked in order to prevent the above problem, exothermic reactions such as low-temperature oxidation of the granular material are suppressed, and the granular material is stored by the weight of the granular material itself. Since it is compressed in the tank and stored in the storage tank in a dense state, exothermic reactions such as low-temperature oxidation do not proceed, and the powder particles are still stable when discharged and stored in a flexible container etc. Not. As a result, when the granular material is stored in small containers from a storage tank to a flexible container, the granular material comes into contact with air, so an exothermic reaction occurs due to low-temperature oxidation or the like, and in the worst case, ignition or fire occurs. There was a problem.

このため、フレキシブルコンテナ等で貯蔵、搬送中の粉粒体が、発火・火災を起こさないようにするために、初期の最も反応性に富む低温酸化等の発熱反応が進行し、比較的安定した状態になるまで、粉粒体をある程度の時間(例えば150時間)フレキシブルコンテナ等で貯蔵し、かつ貯蔵中は熱暴走しないように監視することが必要であった。従って、炭化物の貯留時において、貯留槽内で低温酸化が促進され、ある程度反応が落ち着いて安全性の高い炭化物として排出できる新たな貯留方法の開発が要望されていた。   For this reason, exothermic reactions such as low-temperature oxidation, which is the most reactive in the initial stage, have progressed relatively stably in order to prevent ignition of the powder and granular materials being stored and transported in flexible containers, etc. Until a state is reached, it is necessary to store the granular material in a flexible container or the like for a certain period of time (for example, 150 hours), and to monitor the storage so as not to cause thermal runaway during storage. Accordingly, there has been a demand for the development of a new storage method in which low-temperature oxidation is promoted in the storage tank and the reaction is settled to some extent and can be discharged as highly safe carbide during the storage of the carbide.

また、上記問題を解決するために、特許文献1に示すような炭化物生成施設が提案されている。この炭化物生成施設は、炭化物に脱酸素剤および脱酸素水溶液の少なくとも一方を供給し、脱気を行い袋内の酸素濃度を低減した状態で袋詰めをする施設である。しかしながら、この方法によって粉粒体の発熱を防止するには、大掛かりな設備が必要となり、また脱酸素剤や脱酸素水溶液が必要でありランニングコストが高くなるという問題がある。   Moreover, in order to solve the said problem, the carbide | carbonized_material production | generation facility as shown to patent document 1 is proposed. This carbide generation facility is a facility that supplies at least one of an oxygen scavenger and a deoxygenated aqueous solution to the carbide and performs bagging in a state where the oxygen concentration in the bag is reduced by deaeration. However, in order to prevent heat generation of the granular material by this method, there is a problem that a large-scale facility is required and an oxygen scavenger and an oxygen scavenger solution are required, resulting in high running costs.

特開2004−256122号公報JP 2004-256122 A

本発明は上記のような問題点を解決して、低温酸化反応等による発熱性を有する粉粒状の炭化物を、熱暴走させることなく、貯留しながら早期に安定化させ、燃料代替品としての価値を低下させないで、発火・火災を起こさないような安全性の高い状態となるようにするための炭化物貯留方法を提供することを目的として完成されたものである。 The present invention solves the above problems, stabilizes powdered carbides having exothermic properties due to low-temperature oxidation reaction, etc. at an early stage while storing them without causing thermal runaway, and has value as a fuel substitute. It is completed for the purpose of providing the carbide storage method for making it become a highly safe state which does not raise | generate, and does not cause ignition and a fire.

上記課題を解決するためになされた本発明は、その底部に排出時以外は閉塞している排出口を有する貯留槽内に、炭化炉で廃棄物を処理して得られた発熱性を有する粉粒状の炭化物を貯留し、前記貯留槽内に酸素供給源となり得る気体を供給して前記炭化物を撹拌することにより均一に前記炭化物の発熱反応を促進させた後に、酸素供給源となり得る気体の供給を停止して貯留することを特徴とするものである。 The present invention made in order to solve the above-mentioned problems is a powder having heat generation obtained by processing waste in a carbonization furnace in a storage tank having a discharge port closed at the bottom except when discharged. Supplying a gas that can serve as an oxygen supply source after storing granular carbides, supplying a gas that can serve as an oxygen supply source in the storage tank, and stirring the carbides uniformly to promote an exothermic reaction of the carbides. Is stopped and stored .

また、貯留槽内の炭化物を加熱して、炭化物の発熱反応を促進させることが好ましい。 Moreover, it is preferable to heat the carbide | carbonized_material in a storage tank and to promote the exothermic reaction of carbide | carbonized_material .

また、貯留槽内が150℃以上に達した場合には、貯留槽内炭化物を冷却して、当該炭化物の熱暴走を防止することが好ましい。 Further, when the storage tank has reached more than 0.99 ° C. cools the carbides in the storage tank, it is preferred to prevent thermal runaway of the carbides.

また、貯留槽内の温度情報に基づき、貯留槽内へ酸素供給源となり得る気体の供給量、貯留槽内の加熱量、貯留槽内の冷却量の1又は2以上を制御して、炭化物の発熱反応を制御することが好ましい。 Further, based on the temperature information in the storage tank, supply amount of gas that can be a source of oxygen to the storage tank, the heating amount in the reservoir, by controlling one or more of the cooling amount in the storage tank, a carbide It is preferable to control the exothermic reaction.

また、貯留槽内における炭化物の温度を50〜150℃の範囲内に温度制御して、炭化物の発熱反応を促進させることが好ましい。 Moreover, it is preferable to promote the exothermic reaction of the carbide by controlling the temperature of the carbide in the storage tank within a range of 50 to 150 ° C.

また、発熱反応は、低温酸化反応であることが好ましい。   The exothermic reaction is preferably a low temperature oxidation reaction.

また、酸素供給源となり得る気体を、貯留槽の底部から供給することが好ましい。 Moreover, it is preferable to supply the gas which can become an oxygen supply source from the bottom part of a storage tank.

また、酸素供給源となり得る気体は、空気であることが好ましい。   Moreover, it is preferable that the gas which can become an oxygen supply source is air.

その底部に排出時以外は閉塞している排出口を有する貯留槽内に、炭化炉で廃棄物を処理して得られた発熱性を有する粉粒状の炭化物を貯留し、前記貯留槽内に酸素供給源となり得る気体を供給して前記炭化物を撹拌することにより均一に前記炭化物の発熱反応を促進させた後に、酸素供給源となり得る気体の供給を停止して貯留することとしたので炭化物が貯留槽内一定の場所で留まり、蓄熱することによる発火・火災を防止し、また発火した場合の散水により、炭化物の燃料代替品としての価値を失うことを防止することができる。また、低温酸化等の発熱反応を促進させ、貯留しながら早期に安定化させるので、フレキシブルコンテナ等で炭化物が熱暴走しないように監視しながら長時間貯留する手間を省き、大掛かりな設備によらずに、ランニングコストが低く、炭化物を安全性の高い状態にすることが可能となる。 In the storage tank having a discharge port closed at the bottom except when discharged, exothermic powdered carbide obtained by treating the waste in the carbonization furnace is stored, and oxygen is stored in the storage tank. After supplying the gas that can be a supply source and stirring the carbide to uniformly promote the exothermic reaction of the carbide, the supply of the gas that can be an oxygen supply source is stopped and stored, so that the carbide It is possible to prevent ignition and fire due to staying at a certain place in the storage tank and storing heat, and to prevent loss of value as a fuel substitute for carbide by watering when ignited. Further, to promote the exothermic reaction such as low-temperature oxidation, since early stabilize while storing, eliminates the need for carbide in the flexible container or the like for storing long while monitoring to avoid thermal runaway, regardless of the large-scale equipment In addition, the running cost is low, and the carbide can be brought into a highly safe state.

また、貯留槽内の炭化物を加熱して、炭化物の低温酸化等の発熱反応を促進させることとすると、効率よく炭化物の低温酸化等の発熱反応を促進させて、炭化物を早期に安全性の高い状態にすることが可能となる。 Further, by heating the carbides in the storage tank, when possible to promote the exothermic reaction such as the low temperature oxidation of carbide efficiently to promote the exothermic reaction of the low-temperature oxidation of carbide, highly safe carbide early It becomes possible to make a state.

また、貯留槽内が150℃以上に達した場合には、貯留槽内炭化物を冷却して、当該炭化物の熱暴走を防止することとすると、安全に炭化物の低温酸化等の発熱反応を促進させることが可能となる。 Further, when the storage tank has reached more than 0.99 ° C. cools the carbides in the storage tank, when possible to prevent thermal runaway of the carbides, safely accelerate the exothermic reaction such as the low temperature oxidation of carbide It becomes possible to make it.

更に、炭化物の温度を測定する温度センサーと、この温度センサーで得られた温度情報に基づき、貯留槽内への気体供給量、炭化物の加熱量、炭化物の冷却量の1又は2以上を制御して、炭化物の低温酸化を制御することとすると、炭化物の熱暴走を防止しつつ、効率よく且つ安全に炭化物の低温酸化等の発熱反応を促進させて、炭化物を安全性の高い状態にすることが可能となる。 Further, a temperature sensor for measuring the temperature of the carbide, based on the temperature information obtained by the temperature sensor, the gas supply amount to the storage tank, the heating amount of carbides to control one or more cooling amount of carbide Te, when controlling the low temperature oxidation of the carbide, while preventing the thermal runaway of the carbides, efficiently and safely to accelerate the exothermic reaction such as the low temperature oxidation of the carbide, that highly secure conditions carbides Is possible.

更に、炭化物の温度を50〜150℃の範囲内に温度制御すると、炭化物の熱暴走を防止しつつ、更に効率よく且つ安全に炭化物の低温酸化等の発熱反応を促進させて、炭化物を安全性の高い状態にすることが可能となる。 Further, when the temperature control of the temperature of the carbide in the range of 50 to 150 ° C., while preventing thermal runaway of carbides, thereby more efficiently and safely facilitate the exothermic reaction, such as low-temperature oxidation of the carbide, safety carbide It is possible to achieve a high state.

更に、酸素供給源となり得る気体を、貯留槽の底部から供給すると、炭化物の低温酸化等の発熱反応をより効果良く促進させることが可能となる。 Furthermore, if a gas that can serve as an oxygen supply source is supplied from the bottom of the storage tank, an exothermic reaction such as low-temperature oxidation of carbide can be promoted more effectively.

本発明の炭化物貯留方法により、粉粒状の炭化物を比較的低温酸化等の発熱反応性に富んだ状態から、反応を促進させて安全性の高い状態とした場合には、炭化物の可燃分及び有姿発熱量の低下率は実績によると3%以内となり、燃料代替製品等としての製品価値は低下しない。 When the carbide storage method of the present invention is used to promote the reaction from a state of exothermic reactivity, such as relatively low-temperature oxidation, to a highly safe state, the powdered carbide has a combustible component and a presence of carbide. The rate of decrease in figure heating value is within 3% according to actual results, and the product value as a fuel substitute product does not decrease.

以下に、図面を参照しつつ本発明の好ましい実施の形態を示す。
図1は本発明の実施の形態を示す貯留装置の説明図である。1はサイロ等の貯留槽であり、その内部に炭化炉で廃棄物を処理して得られた粉粒状の炭化物を、一旦(例えば3日)貯留するためのものである。この貯留槽1の形状は、例えば略円筒形や略直方体形であり、容量は例えば20〜30m3である。2は供給装置であり、炭化炉から回収された粉粒状の炭化物を貯留槽1の内部に投入するものである。3はフレキシブルコンテナ4等に小分けして収納するための排出口であり、貯留槽1の底部に設けられている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of a storage device showing an embodiment of the present invention. Reference numeral 1 denotes a storage tank such as a silo for temporarily storing (for example, 3 days) a granular carbide obtained by processing waste in a carbonization furnace. The shape of the storage tank 1 is, for example, a substantially cylindrical shape or a substantially rectangular parallelepiped shape, and the capacity is, for example, 20 to 30 m 3 . Reference numeral 2 denotes a supply device for charging the granular carbide recovered from the carbonization furnace into the storage tank 1. Reference numeral 3 denotes an outlet for subdividing and storing the flexible container 4 or the like, and is provided at the bottom of the storage tank 1.

炭化物の低温酸化により、貯留槽1内の酸素が消費され、酸素濃度が低下すると、炭化物の低温酸化等の発熱反応が阻害される。そこで、本発明の発明者は、貯留槽1の内部に新鮮な空気等の酸素供給源となり得る気体を供給して、炭化物の低温酸化等の発熱反応を促進させるための気体供給装置5を設けることとした。 When the oxygen in the storage tank 1 is consumed by the low-temperature oxidation of the carbide and the oxygen concentration is lowered, an exothermic reaction such as low-temperature oxidation of the carbide is inhibited. Therefore, the inventor of the present invention provides a gas supply device 5 for supplying a gas that can be an oxygen supply source such as fresh air into the storage tank 1 to promote an exothermic reaction such as low-temperature oxidation of carbides. It was decided.

この気体供給装置5は例えば図1のように貯留槽1の外部に設けられていてもよいし、貯留槽1の内部に設けられていてもよい。この気体供給装置5により、気体供給管6から貯留槽1の内部に空気等の気体が供給される。この気体供給管6は例えば、略円管や略角型管であり貯留槽1の内部に臨ませるように取り付けられている。この気体供給管6は図1に示すように、例えば貯留槽1内に突出した構造のものである。この気体供給管6の先端は閉じられていてもよいが、開放されていてもよい。   The gas supply device 5 may be provided outside the storage tank 1 as shown in FIG. 1, for example, or may be provided inside the storage tank 1. A gas such as air is supplied from the gas supply pipe 6 into the storage tank 1 by the gas supply device 5. The gas supply pipe 6 is, for example, a substantially circular pipe or a substantially square pipe, and is attached so as to face the inside of the storage tank 1. As shown in FIG. 1, the gas supply pipe 6 has a structure protruding into the storage tank 1, for example. The tip of the gas supply pipe 6 may be closed or may be opened.

この気体供給管6の外表面から気体供給管6内部に貫く孔が、気体供給管6に複数、形成され、この孔から気体供給管6内部の空気等の気体が貯留槽1に供給される。この気体供給管6は、金属、樹脂、陶製、セラミック等の多孔質の材質からなるものとして、気体供給管6の内部の空気等の気体を多孔から貯留槽1内に供給することとしてもよい。   A plurality of holes penetrating from the outer surface of the gas supply pipe 6 into the gas supply pipe 6 are formed in the gas supply pipe 6, and a gas such as air inside the gas supply pipe 6 is supplied to the storage tank 1 from the hole. . The gas supply pipe 6 may be made of a porous material such as metal, resin, porcelain, ceramic, etc., and gas such as air inside the gas supply pipe 6 may be supplied into the storage tank 1 from the porous. .

この気体供給管6は、貯留槽1を貫通するように取り付けられていてもよい。貯留槽1を貫通するように取り付けられた場合には、貯留槽1と貫通した先の気体供給管6を気体供給装置5に接続させて、気体供給管6内部の空気等の気体の一部が循環するような構造としてもよい。また、気体供給管6をU字型として気体供給管6内部の空気の一部が循環するような構造としてもよい。この気体供給管6は1本に限られず、2本以上の気体供給管6が貯留槽1に設けられていてもよい。この気体供給管6は、炭化物の低温酸化等の発熱反応をより効果良く促進させるために、貯留槽1の底部付近に取り付けられていることが好ましい。 The gas supply pipe 6 may be attached so as to penetrate the storage tank 1. When it is attached so as to penetrate the storage tank 1, a part of the gas such as air inside the gas supply pipe 6 is connected by connecting the gas supply pipe 6 penetrating the storage tank 1 to the gas supply device 5. It is good also as a structure which circulates. The gas supply pipe 6 may be U-shaped so that a part of the air inside the gas supply pipe 6 circulates. The gas supply pipe 6 is not limited to one, and two or more gas supply pipes 6 may be provided in the storage tank 1. The gas supply pipe 6 is preferably attached near the bottom of the storage tank 1 in order to more effectively promote an exothermic reaction such as low-temperature oxidation of carbide .

貯留槽1内の炭化物の低温酸化等の発熱反応を促進させた後に、気体供給装置5を停止する。 After promoting an exothermic reaction such as low-temperature oxidation of the carbide in the storage tank 1, the gas supply device 5 is stopped .

なお、気体供給装置5から貯留槽1内部に供給される空気等の気体は、炭化物の低温酸化等の発熱反応を促進させるだけでなく、炭化物の蓄熱部を空気等の気体が流通するので、この蓄熱部を冷却する効果もある。 Note that the gas such as air supplied from the gas supply device 5 to the inside of the storage tank 1 not only promotes an exothermic reaction such as low-temperature oxidation of the carbide , but also gas such as air flows through the heat storage part of the carbide . There is also an effect of cooling the heat storage section.

また、別の実施の形態として、気体供給管6の代わりに、図2に示すように、貯留槽1内部の上方に向けて開口しているノズル21が複数、気体供給管22に連結されている構造として、貯留槽1内部に空気等の気体を供給することとしてもよい。   As another embodiment, instead of the gas supply pipe 6, as shown in FIG. 2, a plurality of nozzles 21 opening upward in the storage tank 1 are connected to the gas supply pipe 22. It is good also as supplying gas, such as air, into the storage tank 1 inside as a structure.

また、別の実施の形態として、図3に示すように、貯留槽1の底部に気体供給板31を貯留槽1の底部に設けた構造として、貯留槽1内部に空気等を供給することとしてもよい。なお、この気体供給板31はこの板を貫く孔が複数、形成されていてもよいが、気体供給板21を金属、樹脂、陶製、セラミック等の多孔質の材質としてもよい。   As another embodiment, as shown in FIG. 3, as a structure in which a gas supply plate 31 is provided at the bottom of the storage tank 1, air or the like is supplied into the storage tank 1. Also good. The gas supply plate 31 may be formed with a plurality of holes penetrating the plate, but the gas supply plate 21 may be made of a porous material such as metal, resin, ceramic, ceramic, or the like.

炭化物は、温度が上昇すると低温酸化等の発熱反応が促進される性質のものである。そこで、炭化物を加熱して低温酸化等の発熱反応を促進させるために、貯留槽1には加熱装置13が設けられていることが好ましい。この加熱装置13は例えば、電熱線等により、熱を発生させて加熱してもよいが、貯留槽1自身に発熱する機能、例えばジャケット部に加熱媒体を流通させる等の機能を持たせ、炭化物を貯留中に炭化物を加熱させてもよいし、気体供給装置5に加熱装置13を設けて、貯留槽1内に温風を供給して炭化物を加熱することとしてもよい。この加熱装置13により、貯留槽1内を、例えば50℃〜150℃に制御して、炭化物の低温酸化等の発熱反応を促進させることが好ましい。 Carbides are of a nature that promotes exothermic reactions such as low-temperature oxidation as the temperature rises. Therefore, in order to heat the carbide and promote an exothermic reaction such as low-temperature oxidation, the storage tank 1 is preferably provided with a heating device 13. For example, the heating device 13 may generate heat by heating wires or the like. However, the heating device 13 has a function of generating heat in the storage tank 1 itself, for example, a function of circulating a heating medium in the jacket portion, and carbide. During the storage, the carbide may be heated, or the gas supply device 5 may be provided with the heating device 13 to supply warm air into the storage tank 1 to heat the carbide . It is preferable to promote the exothermic reaction such as low-temperature oxidation of carbide by controlling the inside of the storage tank 1 to, for example, 50 ° C. to 150 ° C. with the heating device 13.

気体供給管6(22)、もしくは気体供給板31から空気等の気体を供給することにより、貯留槽1内の粉粒状の炭化物が撹拌される。この粉粒状の炭化物が撹拌されるので、均一に炭化物の低温酸化等の発熱反応を促進させることが可能となる。しかも、炭化物が貯留槽1内の一定の場所に留まることがなくなるので、蓄熱することなく、熱暴走による発火・火災を防止しつつ、炭化物の低温酸化等の発熱反応を促進することが可能となる。 By supplying a gas such as air from the gas supply pipe 6 (22) or the gas supply plate 31, the particulate carbide in the storage tank 1 is agitated. Since the powdered carbide is agitated, it is possible to uniformly promote an exothermic reaction such as low-temperature oxidation of the carbide . Moreover, since the carbide does not stay in a certain place in the storage tank 1, it is possible to promote an exothermic reaction such as low-temperature oxidation of the carbide while preventing thermal ignition and fire without storing heat. Become.

しかし、炭化物はある一定以上の温度になると、前述したように熱暴走し、発火・火災を起こしてしまう可能性がある。そこで、貯留槽1の内部の温度を制御するために、また炭化物の熱暴走が発生しそうな緊急時に炭化物を冷却するために、貯留槽1には冷却装置7が設けられていることが好ましい。貯留槽1内の温度が、例えば150℃を超えた場合、冷却装置7を作動させて貯留槽1内を冷却し、炭化物の低温酸化反応を抑制して熱暴走を防止する。この冷却装置7は例えば、図1〜図3に示すように、貯留槽1内に冷却管8を設け、この冷却管8内に冷却媒体を送給し、この冷却管8の内部を流通する冷却媒体により、貯留槽1の内部を冷却して炭化物を冷却するものである。冷却管8の内部を流通する冷却媒体は、例えば水であり、エチレングリコールやプロピレングリコール等の液体でもよく、空気等の気体であっても差し支えない。あるいは、気体供給装置5から供給される空気等の気体を冷却して炭化物を冷却することとしてもよい。 However, if the temperature of the carbide exceeds a certain level, as described above, there is a possibility that the thermal runaway may occur, causing ignition or fire. Therefore, in order to control the temperature inside the storage tank 1, and in order to cool the carbides when thermal runaway of the carbides is likely to occur emergency, it is preferable that the cooling device 7 is provided in the storage tank 1. When the temperature in the storage tank 1 exceeds, for example, 150 ° C., the cooling device 7 is operated to cool the storage tank 1 and the low temperature oxidation reaction of carbides is suppressed to prevent thermal runaway. For example, as shown in FIGS. 1 to 3, the cooling device 7 is provided with a cooling pipe 8 in the storage tank 1, a cooling medium is fed into the cooling pipe 8, and the inside of the cooling pipe 8 is circulated. The inside of the storage tank 1 is cooled by the cooling medium to cool the carbide . The cooling medium flowing through the inside of the cooling pipe 8 is, for example, water, may be a liquid such as ethylene glycol or propylene glycol, or may be a gas such as air. Alternatively, the carbide may be cooled by cooling a gas such as air supplied from the gas supply device 5.

炭化物の低温酸化等の発熱反応を促進させ、また炭化物が貯留槽1内で熱暴走することなく、且つ効率よく炭化物の低温酸化等の発熱反応を促進させるために、貯留槽1内部の気体供給量、加熱量もしくは冷却量を制御することが好ましい。そこで、例えば貯留槽1内の中心付近に貯留槽中心部温度センサー9、貯留槽1の底部に貯留槽底部温度センサー10、貯留槽1の上部に貯留槽上部温度センサー11を設け、これらの温度センサーから測定される温度情報に基づいて、気体供給装置5の気体供給量、加熱装置13の加熱量、冷却装置7の冷却量を制御する制御装置12が設けられていることが好ましい。 In order to promote an exothermic reaction such as low-temperature oxidation of carbide , and to efficiently promote an exothermic reaction such as low-temperature oxidation of carbide without causing the carbide to run out of heat in the storage tank 1, gas supply inside the storage tank 1 It is preferable to control the amount, heating amount or cooling amount. Therefore, for example, a storage tank center temperature sensor 9 is provided near the center of the storage tank 1, a storage tank bottom temperature sensor 10 is provided at the bottom of the storage tank 1, and a storage tank upper temperature sensor 11 is provided above the storage tank 1, and these temperatures are provided. It is preferable to provide a control device 12 that controls the gas supply amount of the gas supply device 5, the heating amount of the heating device 13, and the cooling amount of the cooling device 7 based on temperature information measured from the sensor.

貯留槽中心部温度センサー9、貯留槽底部温度センサー10、貯留槽上部温度センサー11のそれそれで測定された温度が、それぞれ規定の閾値(例えば150℃)を超えた場合、もしくはこれらの温度情報の組み合わせにより異常と判断された場合には、貯留槽1内の炭化物が熱暴走する危険があると制御装置12が判断する。 When the temperature measured by each of the storage tank center temperature sensor 9, the storage tank bottom temperature sensor 10, and the storage tank upper temperature sensor 11 exceeds a specified threshold value (for example, 150 ° C.), or When it is determined that the abnormality is caused by the combination, the control device 12 determines that the carbide in the storage tank 1 has a risk of thermal runaway.

前記判断に基づき、制御装置12は気体供給装置5を制御して、貯留槽1内に供給される空気の量を通常量よりも少なくするか、もしくは貯留槽1内への空気の供給を遮断して、炭化物の低温酸化等の発熱反応を抑制する。 Based on the determination, the control device 12 controls the gas supply device 5 so that the amount of air supplied into the storage tank 1 is less than the normal amount, or the supply of air into the storage tank 1 is shut off. Thus, exothermic reactions such as low-temperature oxidation of carbides are suppressed.

また、前記判断に基づき、制御装置12は加熱装置13を制御し、加熱装置13による炭化物の加熱量を通常時より弱めるか、もしくは炭化物の加熱を停止させて、炭化物の低温酸化等の発熱反応が促進されることを防止する。 Further, based on the above determination, the control device 12 controls the heating device 13 so that the heating amount of the carbide by the heating device 13 is weaker than usual, or the heating of the carbide is stopped to generate an exothermic reaction such as low-temperature oxidation of the carbide. To be promoted.

また、前記判断に基づき、制御装置12は冷却装置7を作動させて、炭化物を冷却し、炭化物の低温酸化等の発熱反応を抑制させる。 Further, based on the determination, the controller 12 actuates the cooling device 7, a carbide is cooled, thereby suppressing the exothermic reaction, such as low temperature oxidation of the carbide.

また、この制御装置12は前述したように炭化物の熱暴走を防止するだけでなく、気体供給装置5による貯留槽1内への気体供給量、加熱装置13による加熱量、冷却装置7による冷却量を制御して、貯留槽1内の温度を例えば50〜150℃の範囲内に温度制御することにより、炭化物の低温酸化等の発熱反応を制御し、炭化物を効率よく安全性の高い状態にすることが可能となる。 Further, as described above, the control device 12 not only prevents thermal runaway of the carbide , but also supplies the gas supplied into the storage tank 1 by the gas supply device 5, the heating amount by the heating device 13, and the cooling amount by the cooling device 7. by controlling the by temperature control in the range of the temperature, for example 50 to 150 ° C. in the storage tank 1 to control the exothermic reaction such as the low temperature oxidation of carbides, the carbides with high efficiency safety conditions It becomes possible.

以上に説明したように、本発明によれば大規模な装置を用いることなく、低温酸化反応等による発熱性を有する炭化物を早期に安定化させ、確実に炭化物の熱暴走による発火・火災を防止することができる。 As described above, according to the present invention, without using a large-scale apparatus, the heat-generating carbide due to low-temperature oxidation reaction or the like is stabilized at an early stage to surely prevent ignition / fire due to thermal runaway of the carbide. can do.

以上、現時点において、もっとも、実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う炭化物貯留方法もまた技術的範囲に包含されるものとして理解されなければならない。 Although the present invention has been described above in connection with the most practical and preferred embodiments at the present time, the present invention is not limited to the embodiments disclosed herein. However, the present invention can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and a carbide storage method involving such a change should also be understood as being included in the technical scope. I must.

本発明の実施の形態を示す説明図である。It is explanatory drawing which shows embodiment of this invention. 本発明の実施の形態を示す説明図である。It is explanatory drawing which shows embodiment of this invention. 本発明の実施の形態を示す説明図である。It is explanatory drawing which shows embodiment of this invention.

符号の説明Explanation of symbols

1 貯留槽
2 供給装置
3 排出口
4 フレキシブルコンテナ
5 気体供給装置
6 気体供給管
7 冷却装置
8 冷却管
9 貯留槽内温度センサー
10 貯留槽底部温度センサー
11 貯留槽上部温度センサー
12 制御装置
13 加熱装置
21 ノズル
22 気体供給管
31 気体供給板
DESCRIPTION OF SYMBOLS 1 Storage tank 2 Supply apparatus 3 Outlet 4 Flexible container 5 Gas supply apparatus 6 Gas supply pipe 7 Cooling apparatus 8 Cooling pipe 9 Reservoir temperature sensor 10 Reservoir bottom temperature sensor 11 Reservoir upper temperature sensor 12 Control apparatus 13 Heating apparatus 21 Nozzle 22 Gas supply pipe 31 Gas supply plate

Claims (8)

その底部に排出時以外は閉塞している排出口を有する貯留槽内に、炭化炉で廃棄物を処理して得られた発熱性を有する粉粒状の炭化物を貯留し、前記貯留槽内に酸素供給源となり得る気体を供給して前記炭化物を撹拌することにより均一に前記炭化物の発熱反応を促進させた後に、酸素供給源となり得る気体の供給を停止して貯留することを特徴とする炭化物貯留方法。  In the storage tank having a discharge port closed at the bottom except when discharged, exothermic powdered carbide obtained by treating the waste in the carbonization furnace is stored, and oxygen is stored in the storage tank. Supplying a gas that can be a supply source and stirring the carbide to uniformly promote an exothermic reaction of the carbide, and then stopping and storing the supply of the gas that can be an oxygen supply source Method. 貯留槽内の炭化物を加熱して、炭化物の発熱反応を促進させることを特徴とする請求項1又は2のいずれかに記載の炭化物貯留方法。 And heating the carbides in the storage tank, a carbide storage method according to claim 1 or 2, characterized in that to promote the exothermic reaction of carbides. 貯留槽内が150℃以上に達した場合には、貯留槽内炭化物を冷却して、当該炭化物の熱暴走を防止することを特徴とする請求項1又は請求項2のいずれかに記載の炭化物貯留方法。 When the storage tank has reached more than 0.99 ° C. cools the carbides in the storage tank, according to claim 1 or claim 2, characterized in that to prevent thermal runaway of the carbide Carbide storage method. 貯留槽内の温度情報に基づき、貯留槽内へ酸素供給源となり得る気体の供給量、貯留槽内の加熱量、貯留槽内の冷却量の1又は2以上を制御して、炭化物の発熱反応を制御することを特徴とする請求項1〜請求項3のいずれかに記載の炭化物貯留方法。 Based on the temperature information in the storage tank, one or more of the supply amount of gas that can be an oxygen supply source into the storage tank, the heating amount in the storage tank, and the cooling amount in the storage tank are controlled to generate an exothermic reaction of carbides . The carbide storage method according to any one of claims 1 to 3, wherein control is performed. 貯留槽内における炭化物の温度を50〜150℃の範囲内に温度制御して、炭化物の発熱反応を促進させることを特徴とする請求項1〜請求項4のいずれかに記載の炭化物貯留方法。 The temperature of the carbides in the reservoir under the control of the temperature within the range of 50 to 150 ° C., carbides storage method according to any one of claims 1 to 4, characterized in that to promote the exothermic reaction of carbides. 発熱反応は、低温酸化反応であることを特徴とする請求項1〜請求項5のいずれかに記載の炭化物貯留方法。 6. The carbide storage method according to claim 1, wherein the exothermic reaction is a low-temperature oxidation reaction. 酸素供給源となり得る気体を、貯留槽の底部から供給することを特徴とする請求項1〜請求項6のいずれかに記載の炭化物貯留方法。  The carbide storage method according to any one of claims 1 to 6, wherein a gas that can serve as an oxygen supply source is supplied from the bottom of the storage tank. 酸素供給源となり得る気体は、空気であることを特徴とする請求項1〜請求項7のいずれかに記載の炭化物貯留方法。 The carbide storage method according to claim 1, wherein the gas that can serve as an oxygen supply source is air.
JP2006073844A 2006-03-17 2006-03-17 Carbide storage method Active JP4416747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073844A JP4416747B2 (en) 2006-03-17 2006-03-17 Carbide storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073844A JP4416747B2 (en) 2006-03-17 2006-03-17 Carbide storage method

Publications (2)

Publication Number Publication Date
JP2007245040A JP2007245040A (en) 2007-09-27
JP4416747B2 true JP4416747B2 (en) 2010-02-17

Family

ID=38589888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073844A Active JP4416747B2 (en) 2006-03-17 2006-03-17 Carbide storage method

Country Status (1)

Country Link
JP (1) JP4416747B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050987B2 (en) * 2011-09-30 2016-12-21 メタウォーター株式会社 Carbide manufacturing method and carbide manufacturing system
KR101430590B1 (en) * 2012-03-21 2014-08-18 주식회사 드웰 Cooling system for watertank
CN104249871A (en) * 2014-09-04 2014-12-31 浙江华腾牧业有限公司 Molasses heat-insulating storage tank and molasses storage method thereof
CN105035573B (en) * 2015-07-15 2018-04-13 湖州荣德粮油有限公司 It is a kind of that there is the oil storage tank of heat exchange
CN112239029B (en) * 2020-11-18 2021-12-31 江苏美梵生物科技有限公司 Bio-based material is with equipment of storing of thermostatic control of being convenient for

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102758A (en) * 1978-01-30 1979-08-13 Kawasaki Heavy Ind Ltd Recycling system for charcoal storage tank
JPS5974189A (en) * 1982-10-20 1984-04-26 Idemitsu Kosan Co Ltd Stabilization of coal
JPS59227979A (en) * 1983-06-09 1984-12-21 アトランテイツク・リツチフイ−ルド・カンパニ− Manufacture of dry granular coal fuel with low spontaneous ignitability from granular low grade coal and device using same
JPH11310785A (en) * 1998-04-30 1999-11-09 Mitsubishi Heavy Ind Ltd Method and apparatus for coal improvement
JP2004256122A (en) * 2003-02-25 2004-09-16 Meidensha Corp Carbide package and carbide production facility

Also Published As

Publication number Publication date
JP2007245040A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4416747B2 (en) Carbide storage method
TWI429487B (en) Appartus for treating waste
CN104094059B (en) waste gasification melting furnace
JP5610561B2 (en) Tar decomposition method and tar decomposition apparatus
JP2008545840A (en) A system for converting carbonaceous feedstock to gas of specific composition
JP2008542481A (en) System for converting coal to gas of specific composition
JP2008285523A (en) Liquefaction apparatus for polymer-based waste
BR112015000912B1 (en) Method for initiating a melt bath-based casting process for a metalliferous material in a foundry container that defines a casting chamber and a melt metal production chamber
JP4825589B2 (en) Use of heat generated at biomass power generation facilities
JP5154094B2 (en) Combustion control method for gasification melting system and system
JP4397379B2 (en) Carbide storage method and carbide storage device
JP4745885B2 (en) Carbide manufacturing method and carbide manufacturing apparatus
JP2019052234A (en) Gasification furnace and method for gasifying organic material
CN212246891U (en) Vertical garbage disposal furnace and garbage disposal system
JP4464930B2 (en) Carbide thermal runaway prevention method
US20150107496A1 (en) Biomass gasifier system for power generation
JP2007271205A (en) Furnace situation monitoring/controlling method for melting furnace and its device
JP2016089079A (en) Apparatus for liquefying waste plastic into oil
CN212246914U (en) Vertical garbage disposal furnace and garbage disposal system
CN217210320U (en) Novel heat source generator using waste carbon-containing refractory material
JP2008095068A (en) Apparatus for manufacturing resin-based modifier
JP2010163499A (en) Method for operating entrained-bed gasification furnace
JP4625414B2 (en) Carbide storage method and carbide transport storage container
RU2501585C1 (en) Method of production of horizontal tanks for light-oil products for repair hot works
JP6901165B2 (en) Equilibrium approach reactor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091124

R150 Certificate of patent or registration of utility model

Ref document number: 4416747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250