JP2019052234A - Gasification furnace and method for gasifying organic material - Google Patents

Gasification furnace and method for gasifying organic material Download PDF

Info

Publication number
JP2019052234A
JP2019052234A JP2017176772A JP2017176772A JP2019052234A JP 2019052234 A JP2019052234 A JP 2019052234A JP 2017176772 A JP2017176772 A JP 2017176772A JP 2017176772 A JP2017176772 A JP 2017176772A JP 2019052234 A JP2019052234 A JP 2019052234A
Authority
JP
Japan
Prior art keywords
workpiece
air
combustion space
gasification
ashing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017176772A
Other languages
Japanese (ja)
Other versions
JP6967409B2 (en
Inventor
敏樹 小林
Toshiki Kobayashi
敏樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017176772A priority Critical patent/JP6967409B2/en
Publication of JP2019052234A publication Critical patent/JP2019052234A/en
Application granted granted Critical
Publication of JP6967409B2 publication Critical patent/JP6967409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide the gasification furnace and the method for gasifying the organic material, that have a simple and economical structure, and can prevent generation of clinkers, bridges and rat holes to enhance treatment efficiency of a processed product, are safe for work, and can realize low running costs.SOLUTION: The gasification furnace according to the present invention comprises a processed product charging chamber, and a gasification unit and an ashing unit having a combustion space for burning the processed product, wherein the combustion space is provided with a press member for pressing the processed product charged into the combustion space from a processed product charging chamber with an arbitrary pressure, the press member includes a press plate for pressing the processed product and a press plate support part for supporting the press plate, and the press plate is provided with a plurality of through open holes in a direction in which the processed product is pressed.SELECTED DRAWING: Figure 1

Description

本発明は、有機物のガス化や減容に使用されるガス化炉と、有機物のガス化の方法に関する。   The present invention relates to a gasification furnace used for gasification or volume reduction of organic matter, and a method for gasification of organic matter.

近年、廃棄物の熱処理システムの技術やバイオガスの応用に伴い有機物のガス化が注目されている。稼働中におけるガス化炉内では被処理物の形状にかかわらず、ガス化(減容)が進むにつれてガス化部や灰化部で被処理物同士がアーチ構造を形成して空間が出来る現象が起きやすい。このような現象をブリッジと称し、熱分解が一方方向に進んでモグラの巣のようなトンネル状の空間が形成される現象をラットホールと称している。このようなブリッジ現象やラットホール現象のホール(穴)径が大きいほど空間体積が大きいことから当部分では有炎燃焼が発生しやすくなる。その燃焼でさらにホールが拡大し、より空気が流入しやすくなるので更に有炎燃焼が拡大する悪循環に陥る。ガス化部における有炎燃焼はガス化を阻害し、灰化部内でのブリッジは高温燃焼によるクリンカーの生成や灰の排出が出来なくなる等、いずれにしても熱分解(部分燃焼)方式のガス化炉においては致命的な現象である。これらの現象を最小限に抑制することが求められている。   In recent years, gasification of organic substances has attracted attention with the technology of waste heat treatment system and the application of biogas. In the gasification furnace in operation, regardless of the shape of the object to be processed, there is a phenomenon in which the objects to be processed form an arch structure in the gasification part and the ashing part as the gasification (volume reduction) proceeds. Easy to get up. Such a phenomenon is called a bridge, and a phenomenon in which thermal decomposition proceeds in one direction and a tunnel-like space like a mole nest is formed is called a rathole. The larger the hole diameter of the bridge phenomenon or the rat hole phenomenon, the larger the space volume, so that flammable combustion is likely to occur in this part. The combustion further expands the holes, making it easier for air to flow in, resulting in a vicious circle in which flammable combustion is further expanded. Flammable combustion in the gasification section inhibits gasification, and the bridge in the ashing section cannot produce clinker or discharge ash due to high-temperature combustion. This is a fatal phenomenon in the furnace. There is a need to minimize these phenomena.

ブリッジやラットホールを破壊する発明は、種々提案されている。特許文献1及び2には、ホッパ内の粉粒体を回転する爪やスクリューブレードで攪拌することによってブリッジ等を破壊する装置が開示されている。また、特許文献3には、支持枠に取り付けた複数の長尺の突き崩し部材をエアシリンダなどによって凝集した粉粒体に差し込んでブリッジを突き崩す方式が記載されている。特許文献4には、ホッパのコーン部を布製にしてこの布製のコーン部を外部から押圧することによってブリッジを破壊する方式が提案されている。特許文献5には、ホッパのコーン状の剛性容器の内側に同じコーン状の軟性容器を設け、剛性容器と軟性容器との間に形成した気密空隙部に圧縮流体を供給して軟性容器を内側に膨らませてブリッジを破壊する装置が提案されている。さらに、特許文献6及び7には、振動器によってホッパを振動させることによって、ブリッジやラットホールを破壊する装置が提案されている。
しかし、特許文献1〜7に記載の装置や方式は、いずれもホッパ自体の構造が複雑であり、ホッパの交換となれば多額の投資が必要となる。
Various inventions for destroying bridges and ratholes have been proposed. Patent Documents 1 and 2 disclose an apparatus that breaks a bridge or the like by stirring powder particles in a hopper with a rotating claw or a screw blade. Patent Document 3 describes a method in which a plurality of long collapsing members attached to a support frame are inserted into an agglomerated granular material by an air cylinder or the like to collide the bridge. Patent Document 4 proposes a method of breaking the bridge by making the corn portion of the hopper into a cloth and pressing the cloth cone portion from the outside. In Patent Document 5, the same corn-shaped flexible container is provided inside the corn-shaped rigid container of the hopper, and the compressed fluid is supplied to the airtight gap formed between the rigid container and the flexible container to place the flexible container inside. Devices have been proposed that inflate to break the bridge. Furthermore, Patent Documents 6 and 7 propose a device that breaks a bridge or a rathole by vibrating a hopper with a vibrator.
However, any of the apparatuses and systems described in Patent Documents 1 to 7 has a complicated structure of the hopper itself, and if the hopper is replaced, a large investment is required.

特開2002−2873号公報JP 2002-2873 A 特開2000−53188号公報JP 2000-53188 A 特開平6−321291号公報JP-A-6-321291 実開平7−19193号公報Japanese Utility Model Publication No. 7-19193 特開2001−39489号公報JP 2001-39489 A 特開平7−76392号公報JP 7-76392 A 実開平9−301486号公報Japanese Utility Model Publication No. 9-301486 特開2007−72275号公報JP 2007-72275 A

本願発明者は、熱分解炉について特許文献8に係る発明を提案している。
すなわち、特許文献8に係る発明は、燃料投入部と燃焼部と灰排出部と落とし蓋とを備える熱分解炉であって、燃料投入部は、燃料受入口から投入される有機性廃棄物を収容する燃料貯留空間と、燃料貯留空間内に収容された有機性廃棄物を燃料部に投入するための燃料投入口と、燃料投入口を開閉することで燃料部に投入される有機性廃棄物の量を調整可能な投入バルブとを備え、燃焼部は、燃料投入口から投入される有機性廃棄物を収容する燃焼空間と、送風機から空気が供給される給気管、燃焼空間の雰囲気温度が稼働温度に達するまで給気管に供給された空気を加熱するヒータ、及びヒータにより加熱された空気を燃焼空間に給気する給気パイプを備える燃焼手段と、燃焼空間内で熱分解された有機性廃棄物を攪拌する攪拌機とを備え、さらに、落とし蓋は、燃焼空間に投入された有機性廃棄物を自重で押圧することで燃焼空間内の有機性廃棄物の体積を減容し、灰排出部は、燃焼空間内の有機性廃棄物の熱分解で生成された灰を、炉外に排出するための灰排出口と、複数の羽根がシャフトに放射状に固定されたロータを有し、当該ロータが回転することで、灰を、隣接する羽根の間に収容して、灰排出口に送るロータリーバルブを備えるものである。この発明において、低コストの熱分解炉を実現するものとした。
The inventor of the present application has proposed an invention according to Patent Document 8 regarding a pyrolysis furnace.
That is, the invention according to Patent Document 8 is a pyrolysis furnace provided with a fuel input unit, a combustion unit, an ash discharge unit, and a drop lid, and the fuel input unit receives organic waste input from a fuel inlet. The fuel storage space to be stored, the fuel input port for supplying the organic waste stored in the fuel storage space to the fuel unit, and the organic waste input to the fuel unit by opening and closing the fuel input port The combustion section has a combustion space for storing organic waste introduced from a fuel inlet, an air supply pipe to which air is supplied from a blower, and an atmospheric temperature of the combustion space. Combustion means comprising a heater for heating the air supplied to the air supply pipe until the operating temperature is reached, an air supply pipe for supplying the air heated by the heater to the combustion space, and organically decomposed organic matter in the combustion space Equipped with a stirrer for stirring waste Furthermore, the drop lid reduces the volume of organic waste in the combustion space by pressing the organic waste put into the combustion space with its own weight, and the ash discharge part is organic in the combustion space. There is an ash discharge port for discharging the ash generated by pyrolysis of waste to the outside of the furnace, and a rotor with a plurality of blades fixed radially to the shaft. The rotary valve is provided between adjacent blades and sent to the ash discharge port. In the present invention, a low-cost pyrolysis furnace is realized.

しかし、稼働検証の結果、ブリッジやラットホールを抑制(崩す)するには想定以上の大きな圧力が必要であることが判明した。すなわち、落し蓋の「自重」となれば、文字通り、落し蓋自身の重量による圧力で押し続けることになるが、その結果、図6(a)に示すとおり、被処理物(被ガス化物)に対する内部圧力が大きすぎ、適度な内部空間が無くなり、給気管61の給気口611〜616から供給される空気の通り道が確保されず、かえって熱分解(部分燃焼)の進行に支障をきたすことがわかった。   However, as a result of operation verification, it was found that a greater pressure than expected was required to suppress (break) the bridge and rathole. That is, if it becomes the “self-weight” of the drop lid, it will literally continue to be pressed by the pressure due to the weight of the drop lid itself. As a result, as shown in FIG. 6 (a), the internal pressure on the object to be treated (gasification object) Is too large, there is no appropriate internal space, the passage of the air supplied from the air supply ports 611 to 616 of the air supply pipe 61 is not secured, and on the contrary, it is found that the progress of thermal decomposition (partial combustion) is hindered. .

また、押圧部がフラットな面を採用すると被処理物との接触面付近は熱分解の進行が行われにくいことから熱分解自体の進行を停止するときがあることが判明した。これは、図6(b)に示すとおり、押圧面がフラットであると、被処理物の内部に適度な空間があったとしても、給気管61の給気口611〜616から供給される空気の通り道が押圧面に阻まれ、密着状態による極端な酸欠状態が起こると考えられる。そもそも熱分解処理とは、低酸素濃度による部分燃焼の継続であり、被処理物に適度な内部空間が必要である。このことから押圧部の被処理物の接触面はフラットな面ではなく、面に複数の貫通孔が必要で、例えば複数の貫通孔の配置を格子状にした結果、被処理物の接触面付近も熱分解が進行することが判明した。
さらに、ラットホールやブリッジを抑制するほどの圧力をかけた後、適度な内部空間を維持できる程度に減圧した結果、被処理物の熱分解の進行に有意であることも判明した。
Further, it has been found that when the pressing portion adopts a flat surface, the thermal decomposition does not easily proceed in the vicinity of the contact surface with the object to be processed. As shown in FIG. 6B, this means that if the pressing surface is flat, the air supplied from the air supply ports 611 to 616 of the air supply pipe 61 even if there is an appropriate space inside the workpiece. It is considered that the path is blocked by the pressing surface and an extreme lack of oxygen occurs due to the close contact state. In the first place, the thermal decomposition treatment is continuation of partial combustion due to a low oxygen concentration, and an appropriate internal space is required for the object to be treated. For this reason, the contact surface of the object to be processed of the pressing portion is not a flat surface, and a plurality of through holes are necessary on the surface. It was also found that thermal decomposition proceeds.
Furthermore, after applying pressure enough to suppress ratholes and bridges, the pressure was reduced to such an extent that a moderate internal space can be maintained, and it was also found that this was significant in the progress of thermal decomposition of the workpiece.

またさらに、稼働中における被処理物の再投入時は安全対策として被処理物貯留空間の投入蓋を開ける前に処理物貯留空間を外気等で掃気作業を行う必要がある。すなわち、被処理物の投入後、投入蓋を閉じシャッタを開けて投入ボックス内の被処理物をガス化室に投入する構造にすると、シャッタを開くと、燃焼空間と投入ボックスに仕切りが無い状態になり、処理物貯留空間はガス化室の一部になり燃焼空間の可燃ガスが流入している。シャッタは閉じていても被処理物貯留空間には可燃ガスが残留している可能性からこの状態で投入蓋を開けると作業員の安全に問題がある。次に被処理物を処理物貯留空間に投入し投入蓋を閉じた時点では被処理物貯留空間は新鮮な空気(酸素量が多い)が充満しているので、低酸素濃度ガス(排ガス等)に入れ替えた後シャッタを開けなければ爆発の危険性が存在する。   Furthermore, when the workpiece is recharged during operation, it is necessary to scavenge the workpiece storage space with outside air or the like before opening the charging lid of the workpiece storage space as a safety measure. In other words, after the workpiece is charged, the charging lid is closed and the shutter is opened so that the workpiece in the charging box is charged into the gasification chamber. When the shutter is opened, there is no partition between the combustion space and the charging box. Thus, the treated product storage space becomes a part of the gasification chamber, and the combustible gas in the combustion space flows in. Even if the shutter is closed, there is a possibility that combustible gas may remain in the processing object storage space. If the charging lid is opened in this state, there is a problem in safety of workers. Next, when the workpiece is put into the workpiece storage space and the closing lid is closed, the workpiece storage space is filled with fresh air (a large amount of oxygen), so low oxygen concentration gas (exhaust gas, etc.) There is a danger of explosion if the shutter is not opened after the replacement.

そこで、本発明は、簡易で経済性に富む構造で、かつ、ブリッジやラットホールの発生を防止して作業上爆発の危険がなく安全で、ガス化効率(減容効率)が高いガス化炉を提供することを目的とする。   Therefore, the present invention is a gasification furnace that has a simple and economical structure, prevents the occurrence of bridges and ratholes, has no danger of explosion in work, and is safe and has high gasification efficiency (volume reduction efficiency). The purpose is to provide.

本発明に係るガス化炉は、被処理物の投入室と被処理物を燃焼させる燃焼空間を有するガス化部及び灰化部とを備え、燃焼空間には、被処理物投入室から燃焼空間に投入された被処理物を任意の圧力で押圧する押圧部材を備え、押圧部材は、被処理物を押圧する押圧プレートと、該押圧プレートを支持する押圧プレート支持部とからなり、押圧プレートは被処理物を押圧する方向に複数の貫通孔が設けられていることを特徴とする。なお、複数の貫通孔が、格子状又はハニカム状に配列されるようにすると、投入した被処理物の全体に送気が可能となり、熱分解が進行する。   A gasification furnace according to the present invention includes an input chamber for an object to be processed and a gasification section and an ashing section having a combustion space for burning the object to be processed, and the combustion space includes a combustion space from the object input chamber. A pressing member that presses the workpiece to be processed with an arbitrary pressure, and the pressing member includes a pressing plate that presses the workpiece and a pressing plate support that supports the pressing plate. A plurality of through holes are provided in the direction in which the workpiece is pressed. Note that if the plurality of through holes are arranged in a lattice shape or a honeycomb shape, air can be supplied to the entire workpiece to be processed, and thermal decomposition proceeds.

また、本発明に係るガス化炉の燃焼空間と被処理物投入室とは隣接し、隣接面には所定の状態で各室をチャンバ化する開閉自在のシャッタが設けられ、被処理物投入室は、該室内の掃気のために、室内の空気を排出させる排気管と、外気及び低酸素濃度ガス(排ガス等)を供給する給気管とを備え、さらに投入された被処理物を燃焼空間に押し出す押出部材を備えることを特徴とする。   In addition, the combustion space of the gasification furnace and the workpiece input chamber according to the present invention are adjacent to each other, and an openable / closable shutter is provided on the adjacent surface to chamber each chamber in a predetermined state. Is equipped with an exhaust pipe for exhausting indoor air and an air supply pipe for supplying outside air and a low oxygen concentration gas (exhaust gas, etc.) for scavenging the room, An extrusion member to be extruded is provided.

ガス化炉は、複数の給気口を有し、この複数の吸気口は、ガス化炉の平面視における炉壁に沿って囲い形で配設され、燃焼空間の複数領域に調整された空気量が供給可能に、より好適には、空気をガス化炉の複数領域に分散して供給すると、よりガス化を促進しガス化(減容)効率を上げることができる。
灰化部については、複数の枝管がシャフトに放射状に固定された管状ロータを備え、複数の枝管に適量の空気が供給されるようにすると、燃焼した炭化物が灰化部の広い範囲で表面燃焼(おき燃焼)が活性化し、表面燃焼がガス化部に影響し、より被処理物の熱分解の促進につながる。
The gasification furnace has a plurality of air supply ports, and the plurality of air intake ports are arranged in a surrounding shape along the furnace wall in a plan view of the gasification furnace, and are adjusted to a plurality of regions of the combustion space. More preferably, when air is distributed and supplied to a plurality of regions of the gasification furnace, gasification can be further promoted and gasification (volume reduction) efficiency can be improved.
As for the ashing section, if a plurality of branch pipes are provided with a tubular rotor that is radially fixed to the shaft, and an appropriate amount of air is supplied to the plurality of branch pipes, the burned carbides are spread over a wide range of the ashing section. Surface combustion (extra-combustion) is activated, and surface combustion affects the gasification part, leading to further thermal decomposition of the workpiece.

さらに、本発明に係る有機物のガス化の方法は、被処理物投入室と、被処理物を燃焼させるガス化部と灰化部を有する燃焼空間とを備えるガス化炉において、燃焼空間と被処理物投入室とが隣接し、隣接面には所定の状態で各室をチャンバ化する開閉自在のシャッタが設けられ、シャッタを閉鎖した状態で、被処理物投入室の室内の空気の入れ替えをし、シャッタを開放した状態のとき、投入された被処理物を押出部材で燃焼空間内に押し出して、被処理物を燃焼させることを特徴とする。
また、本発明に係る有機物のガス化の方法は、ガス化部及び灰化部を有する燃焼空間は複数の給気口を有し、複数の吸気口は、ガス化炉の平面視における炉壁に沿って囲い形で配設され、燃焼空間の複数領域に調整された空気量が供給可能であり、空気をガス化炉の複数領域に分散して供給することによりガス化を促進し減容効率を上げることを特徴とする。
さらに、本発明に係る有機物のガス化の方法は、前述の管状ロータに固定された複数の枝管に適量の空気が供給され当該ロータが回転することで、灰化部内の表面燃焼を活性化し、灰化部内の炭化物の灰化促進と共に灰の脱炭素化の促進による灰の微細化を実現することを特徴とする。
Furthermore, the method of gasifying organic matter according to the present invention includes a combustion space and a subject in a gasification furnace comprising a workpiece input chamber, and a combustion space having a gasification part and an ashing part for burning the object to be treated. The processing object input chamber is adjacent to each other, and an openable / closable shutter is provided on the adjacent surface to chamber each chamber in a predetermined state. With the shutter closed, the air in the processing object input chamber is replaced. When the shutter is opened, the thrown object to be processed is pushed out into the combustion space by the pushing member to burn the object to be processed.
Further, in the organic gasification method according to the present invention, the combustion space having the gasification section and the ashing section has a plurality of air supply ports, and the plurality of air intake ports are the furnace walls in a plan view of the gasification furnace. It is possible to supply a regulated amount of air to multiple areas of the combustion space, and promote gasification and reduce volume by distributing and supplying air to multiple areas of the gasification furnace. It is characterized by increasing efficiency.
Further, the organic material gasification method according to the present invention activates surface combustion in the ashing section by supplying an appropriate amount of air to the plurality of branch pipes fixed to the tubular rotor and rotating the rotor. Further, the present invention is characterized in that ash refinement is realized by promoting ashing of carbides in the ashing part and promoting decarbonization of ash.

被処理物投入室と燃焼空間のガス化部と灰化部とを備えるガス化炉において、前記燃焼空間と被処理物投入室とは隣接し、隣接面には所定の状態で各室をチャンバ化する開閉自在のシャッタが設けられており、シャッタを閉鎖した状態で、被処理物投入室の室内の空気の入れ替えをし、シャッタを開放した状態のとき、投入された被処理物を押出部材で燃焼空間に押し出して、被処理物を燃焼させることができるため、爆発の危険性を回避できて作業者にとっても環境にも安全性が確保される。   In a gasification furnace comprising a workpiece input chamber, a combustion space gasification section, and an ashing section, the combustion space and the workpiece input chamber are adjacent to each other, and each chamber is chambered in a predetermined state on an adjacent surface. An openable / closable shutter is provided, and the air in the processing object input chamber is replaced with the shutter closed, and when the shutter is opened, the input processed object is pushed out by the extrusion member. Thus, the object to be processed can be burned by being pushed out into the combustion space, so that the danger of explosion can be avoided and safety for the operator and the environment is ensured.

また、灰化部は、複数の枝管がシャフトに放射状に固定された管状ロータを備え、複数の枝管や管状ロータに穿たれた複数の給気口に適量の空気が供給され当該ロータが回転することで、炭素含有量の多い灰の脱炭素及び灰の微細化の促進を図ることができる。さらに、灰の微細化は灰の減容であるので残渣の減容になり、最終処分場の負担の軽減に反映される。
さらに、押圧プレートの被処理物の接触面はフラットな面ではなく、面に複数の貫通孔を設けると、被処理物の接触面付近も熱分解が進行し、さらに、ラットホールやブリッジを抑制するほどの圧力をかけた後、適度な内部空間を維持できる程度に減圧すると、被処理物の熱分解の進行に効果がある。
The ashing unit includes a tubular rotor in which a plurality of branch pipes are radially fixed to a shaft, and an appropriate amount of air is supplied to a plurality of air supply ports formed in the plurality of branch pipes and the tubular rotor. By rotating, it is possible to promote decarbonization and refinement of ash having a high carbon content. Furthermore, ash refinement is a volume reduction of ash, which reduces the volume of residue and is reflected in reducing the burden on the final disposal site.
Furthermore, the contact surface of the object to be processed on the pressing plate is not a flat surface. If a plurality of through holes are provided in the surface, thermal decomposition also proceeds near the contact surface of the object to be processed, and further, rat holes and bridges are suppressed. After applying sufficient pressure, reducing the pressure to such an extent that an appropriate internal space can be maintained has an effect on the progress of thermal decomposition of the workpiece.

本発明に係るガス化炉の基本構成を示す概念図である。It is a conceptual diagram which shows the basic composition of the gasification furnace which concerns on this invention. 互いに隣接する被処理物投入室3と燃焼空間のガス化部1との配置と構造を示し、被処理物Iが被処理物投入室3に投入されて燃焼空間10に押し出される様子を示す図である。The figure which shows arrangement | positioning and structure of the to-be-processed object input chamber 3 and the gasification part 1 of a combustion space which adjoin each other, and shows a mode that the to-be-processed object I is injected into the to-be-processed object input chamber 3, and is extruded to the combustion space 10. It is. 被処理物投入室のパージの様子を模式的に示す図である。It is a figure which shows typically the mode of the purge of a to-be-processed object input chamber. 押圧部材の構造と、被処理物への押圧状態を模式的に示す図である。It is a figure which shows typically the structure of a press member, and the press state to a to-be-processed object. 散気管を兼ねた撹拌装置と、散気と撹拌の様子を模式的に示す図である。It is a figure which shows typically the aspect of the stirring apparatus which served as the diffuser tube, and an aeration and stirring. 従来の押圧部材の構造上の問題を模式的に示す図である。It is a figure which shows typically the problem on the structure of the conventional press member.

以下、本発明の実施例を図面に基づき詳細に説明する。各図において、同一部分には同一番号を付し、重複する説明は省略する。また、図面は、本発明を理解するために誇張して表現している場合もあり、必ずしも縮尺どおり精緻に表したものではないことに留意されたい。なお、本発明は下記に示される実施例に限られるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same number is attached | subjected to the same part, and the overlapping description is abbreviate | omitted. It should also be noted that the drawings may be exaggerated to understand the present invention and are not necessarily shown to scale. In addition, this invention is not limited to the Example shown below.

実施例1の図面を参照して詳細に説明する。図1は、本発明のガス化炉100の基本構成を示す概念図である。   This will be described in detail with reference to the drawings of the first embodiment. FIG. 1 is a conceptual diagram showing a basic configuration of a gasification furnace 100 of the present invention.

まず、本発明のガス化炉100の基本構成を説明する。図1を参照すると、ガス化炉100は、概して、被処理物をガス化及び灰化させる燃焼空間10を有するガス化部1及び灰化部2と、被処理物投入室3とを備える。実施例1において、ガス化部1は筒状体の燃焼空間の中央部に位置し、灰化部2は下部に位置している。ガス化炉は燃焼空間(ガス化部・灰化部)10と被処理物投入室3の所定の側面で隣接し、隣接面には所定の状態で各室をチャンバ化する開閉自在のシャッタ40が設けられている。   First, the basic configuration of the gasification furnace 100 of the present invention will be described. Referring to FIG. 1, a gasification furnace 100 generally includes a gasification unit 1 and an ashing unit 2 having a combustion space 10 for gasifying and ashing a workpiece, and a workpiece input chamber 3. In Example 1, the gasification part 1 is located in the center part of the combustion space of a cylindrical body, and the ashing part 2 is located in the lower part. The gasification furnace is adjacent to the combustion space (gasification section / ashing section) 10 on a predetermined side surface of the workpiece input chamber 3, and the open / close shutter 40 that chambers each chamber in a predetermined state on the adjacent surface. Is provided.

燃焼空間10にはガス化部1に対して、押圧プレート支持部131とこの押圧プレート支持部131で上下動する押圧プレート130とからなる押圧部材13を備える。押圧部材13は、被処理物投入室3から燃焼空間10に投入された被処理物を任意の圧力で押圧するよう、エアシリンダによって作動される。なお、後述するとおり、押圧プレート130は、被処理物を押圧する方向に複数の貫通孔が設けられている。   The combustion space 10 includes a pressing member 13 including a pressing plate support 131 and a pressing plate 130 that moves up and down by the pressing plate support 131 with respect to the gasification unit 1. The pressing member 13 is actuated by an air cylinder so as to press the object to be processed, which is input from the object input chamber 3 into the combustion space 10 with an arbitrary pressure. As will be described later, the pressing plate 130 is provided with a plurality of through holes in the direction in which the workpiece is pressed.

燃焼空間10は、被処理物Iを熱分解してガスを生成するガス化部1と、炭化物を灰にする灰化部2と、送風機Fから空気を供給する給気管11と、給気された空気を加熱するヒータH及び加熱された空気を燃焼空間10内に給気する給気管11(図4において後述する)からなる給気機構と、被処理物Iを熱分解する過程で発生するガスを燃焼器(図示していない)に送るガス管14とを備える。なお、給気管11はガス化炉100の平面視における炉壁に沿った囲い形にし、給気パイプ11の給気孔111〜116から熱風を内部に向かって噴出するとよい。ただし、熱風は着火用であり稼働中は常温でよい。
なお、燃焼空間10への空気の供給の制御は重要である。用途によって供給量が多少異なるが、供給量の判断基準としては、燃焼空間10から排出される可燃ガスの酸素濃度とガスの温度及び炉内のガス化部(熱分反応層)の温度を参考にすることができる。すなわち、供給される空気量の増減から得られるデーターを基に経験値からプログラミングするとよい。
The combustion space 10 is supplied with a gasification unit 1 that thermally decomposes the workpiece I to generate gas, an ashing unit 2 that converts carbide into ash, and an air supply pipe 11 that supplies air from the blower F. It is generated in the process of thermally decomposing the workpiece I and a supply mechanism comprising a heater H for heating the heated air and an air supply pipe 11 (described later in FIG. 4) for supplying the heated air into the combustion space 10. And a gas pipe 14 for sending gas to a combustor (not shown). The air supply pipe 11 is preferably formed in an enclosure shape along the furnace wall in a plan view of the gasification furnace 100, and hot air is ejected from the air supply holes 111 to 116 of the air supply pipe 11 toward the inside. However, the hot air is for ignition and may be at room temperature during operation.
Note that control of the supply of air to the combustion space 10 is important. Although the supply amount varies slightly depending on the application, the criteria for determining the supply amount are the oxygen concentration of the combustible gas discharged from the combustion space 10 and the temperature of the gas, and the temperature of the gasification section (thermal reaction layer) in the furnace. Can be. That is, it is good to program from experience values based on the data obtained from the increase / decrease in the amount of supplied air.

燃焼空間10のガス化部1において、加熱により得られた発生ガスの部分燃焼を行なう。部分燃焼により、トルエン、ナフタレンなどの芳香族や高級パラフィン、高級オレフィン、高級ナフテン等からなるタールが分解され水素、一酸化炭素、メタン等を含む可燃性ガスを得ることができる。可燃性ガスの組成は被処理物の組成により異なるが一般的には一酸化炭素を主とした炭化水素系との混合ガスである。   In the gasification part 1 of the combustion space 10, partial combustion of the generated gas obtained by heating is performed. By partial combustion, tars composed of aromatics such as toluene and naphthalene, higher paraffins, higher olefins, higher naphthenes, and the like are decomposed to obtain a combustible gas containing hydrogen, carbon monoxide, methane, and the like. The composition of the combustible gas varies depending on the composition of the object to be treated, but is generally a mixed gas with a hydrocarbon system mainly composed of carbon monoxide.

図に示していないが、ガス化炉100で発生したガスが供給される燃焼器は、内部に別の熱源を備え、ガス化炉100のガス管14からのガスを受け入れ、これらを自己燃焼させる。   Although not shown in the figure, the combustor to which the gas generated in the gasification furnace 100 is supplied has another heat source inside, receives the gas from the gas pipe 14 of the gasification furnace 100, and self-combusts them. .

灰化部2は、被処理物Iが灰化されて生成された灰の脱炭素及び微細化のための撹拌管本体51と、灰の排出口(図示していない)とを備える。灰の排出口には灰排出用スクリューコンベア60が設けられている。   The ashing unit 2 includes a stirring tube main body 51 for decarbonizing and refining the ash generated by ashing the workpiece I, and an ash outlet (not shown). An ash discharge screw conveyor 60 is provided at the ash discharge port.

被処理物投入室3は、その頂部に被処理物Iを投入する被処理物投入口31と、被処理物投入口31を開閉する被処理物投入蓋32と、被処理物Iを収容する被処理物貯留空間30と、被処理物Iを燃焼空間10に押し出す押出部材35を備える。また、被処理物投入室3は、該室内の空気を入れ替えるために、室内の空気を排出させる排気管33と、外気及び低酸素濃度の空気を供給する給気管34とを備える。   The workpiece input chamber 3 accommodates a workpiece input port 31 for loading the workpiece I at the top, a workpiece input lid 32 for opening and closing the workpiece input port 31, and the workpiece I. A workpiece storage space 30 and a push member 35 that pushes the workpiece I into the combustion space 10 are provided. In addition, the workpiece input chamber 3 includes an exhaust pipe 33 for exhausting the indoor air and an air supply pipe 34 for supplying outside air and air with a low oxygen concentration in order to replace the indoor air.

図2を参照する。図2は、互いに隣接する被処理物投入室3と燃焼空間(ガス化部・灰化部)10との配置と構造を示し、被処理物Iが被処理物投入室3に投入されて燃焼空間10に押し出される様子を示す図である。前述したとおり、被処理物投入室3は、その頂部に被処理物Iを投入する被処理物投入口31と、被処理物投入口31を開閉する被処理物投入蓋32と、被処理物Iを収容する被処理物貯留空間30と、被処理物Iを燃焼空間(ガス化部・灰化部)10に押し出す押出部材35を備える。そして、燃焼空間10と被処理物投入室3とは燃焼空間の所定の側面で隣接し、隣接面には所定の状態で各室をチャンバ化する開閉自在のシャッタ40が設けられている。
図2(a)は、シャッタ40が閉鎖され、被処理物貯留空間30が空の状態を示している。図2(b)において、被処理物投入蓋32が開けられ、被処理物投入口31が開口し、被処理物Iを被処理物貯留空間30に投入される様子を示している。所望の被処理物Iを投入したら、被処理物投入蓋32を閉じて、被処理物投入口31を閉鎖した状態が図2(c)に示している。この状態で、シャッタ40がエアシリンダによって上方に作動し、燃焼空間10と被処理物投入室3との仕切りが無くなる(図2(d))。この状態で、押出部材35が作動し、被処理物Iをガス化室1の燃焼空間10に押し出し(図2(e))、被処理物Iは燃焼空間10に収容される。その後、押出部材35は元の位置に戻る(図2(f))。
Please refer to FIG. FIG. 2 shows the arrangement and structure of the workpiece input chamber 3 and the combustion space (gasification section / ashing section) 10 adjacent to each other, and the workpiece I is input into the workpiece input chamber 3 and combusted. FIG. 3 is a diagram showing a state where the space 10 is pushed out. As described above, the workpiece input chamber 3 includes the workpiece input port 31 for loading the workpiece I at the top, the workpiece input lid 32 for opening and closing the workpiece input port 31, and the workpiece. A processing object storage space 30 for storing I and an extrusion member 35 for extruding the processing object I to the combustion space (gasification unit / ashing unit) 10 are provided. The combustion space 10 and the workpiece input chamber 3 are adjacent to each other on a predetermined side surface of the combustion space, and an openable / closable shutter 40 is provided on the adjacent surface to chamber each chamber in a predetermined state.
FIG. 2A shows a state in which the shutter 40 is closed and the workpiece storage space 30 is empty. FIG. 2B shows a state where the workpiece input lid 32 is opened, the workpiece input port 31 is opened, and the workpiece I is charged into the workpiece storage space 30. FIG. 2C shows a state in which, after the desired workpiece I is charged, the workpiece input lid 32 is closed and the workpiece input port 31 is closed. In this state, the shutter 40 is operated upward by the air cylinder, and the partition between the combustion space 10 and the workpiece input chamber 3 is eliminated (FIG. 2D). In this state, the pushing member 35 operates to push the workpiece I into the combustion space 10 of the gasification chamber 1 (FIG. 2 (e)), and the workpiece I is accommodated in the combustion space 10. Thereafter, the pushing member 35 returns to the original position (FIG. 2 (f)).

図2(a)〜(f)に示したとおり、被処理物Iの投入後、被処理物投入蓋32を閉じシャッタ40を開けて被処理物投入部3内の被処理物Iを燃焼空間10に投入する構造にすると、シャッタ40を開いたとき、燃焼空間10と被処理物投入部3に仕切りが無い状態になり、被処理物投入部3の空間は燃焼空間10の一部になることが理解できるであろう。被処理物投入部3は、構造上、被処理物の投入時に外気が流入することからその内部には新鮮な空気(酸素量が多い)が充満している。この状態でシャッタ40を開けば爆発の危険性が存在する。
そこで、被処理物投入部3内部の空気の入替え(パージ)が必要であり、図3にパージの仕組みを模式的に示している。なお、前述したとおり、被処理物投入室3は、該室内の空気を入れ替えるために、室内の空気を排出させる排気管33と外気及び低酸素濃度空気を供給する給気管34とを備える。
As shown in FIGS. 2A to 2F, after the workpiece I is charged, the workpiece charging lid 32 is closed and the shutter 40 is opened to move the workpiece I in the workpiece charging section 3 to the combustion space. When the shutter 40 is opened, there is no partition between the combustion space 10 and the workpiece input portion 3, and the space of the workpiece input portion 3 becomes a part of the combustion space 10. You will understand that. The workpiece input unit 3 is structurally filled with fresh air (a large amount of oxygen) because outside air flows in when the workpiece is input. If the shutter 40 is opened in this state, there is a risk of explosion.
Therefore, it is necessary to replace (purge) the air inside the workpiece input unit 3, and FIG. 3 schematically shows the purge mechanism. As described above, the workpiece input chamber 3 includes the exhaust pipe 33 for exhausting the indoor air and the air supply pipe 34 for supplying outside air and low oxygen concentration air in order to exchange the indoor air.

図3(a)は、図2(f)に示す状態と同じである。図3(a)は稼働中にシャッタ40が開いた状態になれば燃焼空間(ガス化部・灰化部)10に生成された一酸化炭素等の可燃ガスを含む空気が、被処理物投入部3内に流入する。
シャッタ40が閉じると、被処理物投入部3内には一酸化炭素等の可燃ガスが充満した状態となる((図3(b))ので、被処理物の再投入時等での被処理物投入蓋を開ける作業前には排気管33を介して燃焼空間10に一酸化炭素等の可燃ガスを含む空気を放出する一方、外気を給気管34を介して被処理物投入部3内に給気する(図3(c))。つまり、被処理物投入部3内が外気で満たされた状態(図3(c))で、被処理物投入蓋32を開いて、被処理物Iを投入する(図3(d))。この状態で被処理物投入蓋32を開いても、一酸化炭素等の可燃ガスは大気に流出せず、作業者に安全である。
次に、被処理物投入口31を閉じ、排気管33を介してガス化室1に外気を放出する一方、低酸素濃度空気(排ガス)を給気管34を介して被処理物投入部3内に給気する(図3(e))。このとき、爆発に留意しながら、ゆっくり時間をかけて、外気をガス化炉の燃焼空間1に送ることに留意されたい。
そして、最後に、押出部材35が作動し、被処理物Iを燃焼空間10に押し出し(図3(f))、被処理物Iは燃焼空間10に収容され、熱分解される。
こうして、被処理物Iの再投入時に、被処理物投入部3において、パージが繰り返される。
FIG. 3A is the same as the state shown in FIG. FIG. 3 (a) shows that if the shutter 40 is opened during operation, air containing a combustible gas such as carbon monoxide generated in the combustion space (gasification section / ashing section) 10 is input to the object to be processed. It flows into the part 3.
When the shutter 40 is closed, the workpiece input unit 3 is filled with a combustible gas such as carbon monoxide ((FIG. 3B). Before opening the material input lid, air containing a combustible gas such as carbon monoxide is discharged into the combustion space 10 through the exhaust pipe 33, while outside air is discharged into the workpiece input unit 3 through the air supply pipe 34. In other words, the workpiece input lid 32 is opened in a state where the inside of the workpiece input unit 3 is filled with the outside air (FIG. 3C), and the workpiece I (FIG. 3D) Even if the workpiece input lid 32 is opened in this state, the combustible gas such as carbon monoxide does not flow out to the atmosphere, and is safe for the operator.
Next, the workpiece input port 31 is closed and the outside air is discharged into the gasification chamber 1 through the exhaust pipe 33, while the low oxygen concentration air (exhaust gas) is supplied into the workpiece input unit 3 through the air supply pipe 34. (Fig. 3 (e)). At this time, it should be noted that the outside air is sent to the combustion space 1 of the gasification furnace over time while paying attention to the explosion.
Finally, the pushing member 35 operates to push the workpiece I into the combustion space 10 (FIG. 3 (f)), and the workpiece I is accommodated in the combustion space 10 and thermally decomposed.
In this way, the purge is repeated in the workpiece input unit 3 when the workpiece I is charged again.

図4を参照する。図4は、押圧部材13の構造と、被処理物Iへの押圧状態を模式的に示す図である。押圧部材13は、概して、被処理物Iを押圧する押圧プレート130と、押圧プレート130を支持する押圧プレート支持部131とからなる。押圧プレート130は、板体に複数の貫通孔を備える構造体であってもよいし、格子状の枠体としてもよい。なお、複数の貫通孔が、格子状又はハニカム状に配列されるようにすると、投入した被処理物の全体に送気が可能となり、熱分解が進行する。   Please refer to FIG. FIG. 4 is a diagram schematically showing the structure of the pressing member 13 and the pressed state of the workpiece I. The pressing member 13 generally includes a pressing plate 130 that presses the workpiece I and a pressing plate support portion 131 that supports the pressing plate 130. The pressing plate 130 may be a structure including a plurality of through holes in the plate body, or may be a lattice-shaped frame body. Note that if the plurality of through holes are arranged in a lattice shape or a honeycomb shape, air can be supplied to the entire workpiece to be processed, and thermal decomposition proceeds.

押圧プレート130は、ガス化炉100の筒状体の天井から、エアシリンダにより押圧プレート支持部131を介して上下動する。図4(a)において、押圧プレート130を被処理物Iに対して、ラットホールやブリッジを抑制するほどの圧力をかける。その後、適度な内部空間を維持できる程度に減圧する。そうすると、押圧プレート130を板体に複数の貫通孔を備える構造体にすると、給気管11の給気孔111〜116から給気される空気が、被処理物Iの内部空間全体に送気することができ(図4(b))、非処理物の熱分解の進行に有意である。
なお、ガス化部1内の被処理物Iの体積の減容に応じての再投入時期を知る必要があるが、押圧プレート130が一定の位置まで降下するとスイッチ等のセンサが働き、被処理物Iの再投入モードになるようにするとよい。
The pressing plate 130 moves up and down from the ceiling of the cylindrical body of the gasification furnace 100 via the pressing plate support 131 by an air cylinder. In FIG. 4 (a), the pressure plate 130 is applied to the workpiece I so as to suppress the rat hole and the bridge. Thereafter, the pressure is reduced to such an extent that an appropriate internal space can be maintained. Then, when the pressing plate 130 is a structure having a plurality of through holes in the plate body, air supplied from the air supply holes 111 to 116 of the air supply pipe 11 is supplied to the entire internal space of the workpiece I. (FIG. 4B), which is significant in the progress of thermal decomposition of the untreated product.
In addition, it is necessary to know the re-input timing according to the volume reduction of the workpiece I in the gasification unit 1, but when the pressing plate 130 is lowered to a certain position, a sensor such as a switch works and the workpiece is processed. It is good to make it the re-input mode of the thing I.

燃焼空間への給気機構は、送風機Fから空気を供給する給気管11と、着火用ガスバーナーHのバーナー用送風機(図示していない)からの空気及び灰化部にある散気管を兼ねた撹拌管本体51と枝管52からなる。尚、着火用ガスバーナーは着火時のみで通常は常温の空気を給気する。実施例1において、給気管11はガス化炉100の平面視における炉壁に沿って囲い形配設されるようにするとよい。その先端及び側面に小径の孔を穿って形成された給気孔111、112、113、114、115、116を備えている。給気孔の数は限定されず、所望の数の孔を穿つことができる。孔の位置はパイプの斜め下方にするとよい。   The air supply mechanism to the combustion space also serves as the air supply pipe 11 for supplying air from the blower F and the air from the burner blower (not shown) of the ignition gas burner H and the diffuser pipe in the ashing section. It consists of a stirring tube body 51 and a branch tube 52. Note that the ignition gas burner only supplies air at normal temperature only at the time of ignition. In the first embodiment, the supply pipe 11 may be disposed in a surrounding manner along the furnace wall in a plan view of the gasification furnace 100. Air supply holes 111, 112, 113, 114, 115, 116 formed by drilling small-diameter holes at the tip and side surfaces thereof are provided. The number of air supply holes is not limited, and a desired number of holes can be formed. The position of the hole should be obliquely below the pipe.

図5を参照する。図5は、散気管を兼ねた撹拌装置と、散気と撹拌の様子を模式的に示す図である。図4に示すとおり、燃焼空間10のガス化部1内で熱分解が進行して、被処理物Iが炭化し、未炭化層と熱分解層(ガス化部において熱分解された層)が形成されている。すなわち、未炭化層にある被処理物Iは炭化し、押圧プレート130の押圧で炭化物が崩れ減容することになる。   Please refer to FIG. FIG. 5 is a diagram schematically showing a stirring device that also serves as an air diffuser and the state of air diffusion and stirring. As shown in FIG. 4, thermal decomposition proceeds in the gasification part 1 of the combustion space 10, the workpiece I is carbonized, and an uncarbonized layer and a thermal decomposition layer (layer thermally decomposed in the gasification part) are formed. Is formed. That is, the workpiece I in the uncarbonized layer is carbonized, and the carbide is collapsed and reduced in volume by the pressing of the pressing plate 130.

前述したとおり、被処理物Iは熱分解により炭化し、さらに灰化へと進行するが、灰化の促進、灰の脱炭素による微細化を図るために、攪拌部材50を稼働させる。攪拌部材50は、撹拌管本体51と枝管52とからなる。撹拌管本体51は管側面に小径の孔を穿って形成された給気孔511、512、513、514を備えている。給気孔の数は限定されず、所望の数の孔を穿つことができる。また、枝管52の先端も開口しており、空気を給気することができる。
攪拌管本体50を回転させることにより、灰化部2を攪拌して低炭素灰化と減容を促進し、ラットホールやブリッジの発生を防ぐことができる。
また、攪拌管本体51を回転させながら、撹拌管本管51の給気孔511、512、513、514や、枝管52の先端から適量の空気が供給されるようにすると、燃焼した炭化物(被処理物)は灰化部の広い範囲で表面燃焼(おき燃焼)が活性化し、表面燃焼熱が熱分解層に影響し、より廃棄物の熱分解の促進につながる。給気管や撹拌管本体の給気孔の目詰まり防止とブリッジ対策のため定期的にエアーパルスを行うとよい。
As described above, the workpiece I is carbonized by thermal decomposition and further proceeds to ashing, but the stirring member 50 is operated in order to promote ashing and to refine the ash by decarbonization. The stirring member 50 includes a stirring tube body 51 and a branch tube 52. The stirring tube main body 51 includes air supply holes 511, 512, 513, and 514 formed by drilling small-diameter holes on the side of the tube. The number of air supply holes is not limited, and a desired number of holes can be formed. Further, the tip of the branch pipe 52 is also opened, so that air can be supplied.
By rotating the stirring tube main body 50, the ashing part 2 can be stirred to promote low carbon ashing and volume reduction, and the generation of rat holes and bridges can be prevented.
In addition, if an appropriate amount of air is supplied from the air supply holes 511, 512, 513, and 514 of the stirrer main pipe 51 and the tip of the branch pipe 52 while rotating the stirrer main body 51, the burned carbide (covered object) In the treated product), surface combustion (external combustion) is activated in a wide range of the ashing part, and the surface combustion heat affects the thermal decomposition layer, which leads to further promotion of thermal decomposition of waste. It is advisable to periodically perform air pulses to prevent clogging of the air supply holes of the air supply pipe and the stirring pipe main body and to prevent bridging.

なお、灰排出用スクリューコンベア60が回転することで、灰は、灰排出口を介して排出される。
前述したとおり、燃焼空間10内のガス化部1で被処理物Iは熱分解で炭化し下部の灰化(おき燃焼)層で灰になるが、稼働の進行とともに灰分が増加し定期的に灰の排出作業が必要となる。排出時期の設定は、押圧部材13の押圧プレート130が一定の稼働時間が経過しても所定の位置まで降下しない時点でスイッチ等のセンサが働き、灰の排出モードになり一定量の灰が排出される(タイマー作動)ようにするとよい。
The ash is discharged through the ash discharge port when the ash discharge screw conveyor 60 rotates.
As described above, the object to be processed I is carbonized by pyrolysis in the gasification unit 1 in the combustion space 10 and becomes ash in the lower ashing (or alternate combustion) layer, but the ash content increases periodically as the operation progresses. Ashes must be discharged. The discharge timing is set by a sensor such as a switch that operates when the pressing plate 130 of the pressing member 13 does not descend to a predetermined position even if a certain operating time has elapsed, and enters a ash discharging mode to discharge a certain amount of ash. (Timer operation) is recommended.

以上の動作を繰り返し、未炭化層の体積を維持することで、安定した処理(減容)の連続稼働を行なうことが出来る。   By repeating the above operation and maintaining the volume of the uncarbonized layer, stable operation (volume reduction) can be continuously performed.

以上、本発明に係るガス化炉における好ましい実施形態を説明してきたが、本発明の技術的範囲を逸脱することなく種々の変更が可能であることは理解されるであろう。   Although the preferred embodiments of the gasification furnace according to the present invention have been described above, it will be understood that various modifications can be made without departing from the technical scope of the present invention.

本発明のガス化炉を廃棄物の熱処理システムは元より、燃料ガス発生装置の一部に利用すれば、既存のボイラーのバーナーとして活用できるので、例えば、浴場・ホテル・民宿・福祉施設・養護介護施設における給湯・暖房、温室・ビニールハウス等の農林業施設における給湯・暖房、養豚・養鶏舎等の畜産施設における給湯・暖房、一般の工場等における給湯・暖房、さらに冬季積雪・降雪地域における融雪設備にも利用することができる。また、熱交換器との組み合わせで、発電・乾燥等にも利用できる等広範囲な産業分野において利用することができる。なお、利用目的により本明細書に採用した「被処理物」のワードが廃棄物の熱処理システムでは「被処理物」であり発電や熱利用においては「燃料」となろう。   The gasification furnace of the present invention can be used as a burner for an existing boiler if it is used as a part of a fuel gas generator as a waste heat treatment system. For example, baths, hotels, guest houses, welfare facilities, nursing homes Hot water supply and heating in nursing facilities, hot water supply and heating in agricultural and forestry facilities such as greenhouses and greenhouses, hot water supply and heating in livestock facilities such as pig farms and poultry houses, hot water supply and heating in general factories, and in winter snow and snowfall areas It can also be used for snow melting facilities. Further, in combination with a heat exchanger, it can be used in a wide range of industrial fields such as power generation and drying. Depending on the purpose of use, the word “processed object” adopted in this specification will be “processed object” in the waste heat treatment system and “fuel” in power generation and heat utilization.

100 ガス化炉
1 ガス化部
10 燃焼空間(ガス化部と灰化部)
11 給気管
111〜116 給気孔
13 押圧部材
130 押圧プレート
131 押圧プレート支持部
14 ガス管
2 灰化部
3 被処理物投入部
30 被処理減容物貯留空間
31 被処理減容物投入口
32 被処理減容物投入蓋(投入蓋)
33 排気管
34 給気管
35 押出部材
40 シャッタ
50 撹拌部材
51 撹拌管本体
52 枝管
511〜514 給気孔
60 灰排出用スクリューコンベア
F 送風機
H 着火用ガスバーナー
I 被処理物
G LPガスボンベ
S エアシリンダ
100 Gasifier
1 Gasification Department
10 Combustion space (gasification part and ashing part)
11 Air supply pipes 111 to 116 Air supply holes
13 Pressing member 130 Pressing plate 131 Pressing plate support
14 Gas pipe
2 Ashing part
3 Workpiece input part
30 Untreated volume storage space
31 To-be-processed reduced material inlet
32 To-be-processed reduced material input lid (input lid)
33 Exhaust pipe
34 Air supply pipe
35 Extruded member
40 Shutter
50 Stirring member
51 Stirring tube body
52 Branch pipes 511 to 514
60 Screw conveyor for ash discharge
F Blower
H Gas burner for ignition
I Workpiece
G LP gas cylinder
S Air cylinder

Claims (8)

被処理物投入室と、被処理物を燃焼させるガス化部及び灰化部を有する燃焼空間とを備えるガス化炉であって、
前記燃焼空間は、前記被処理物投入室から前記燃焼空間に投入された廃棄物を任意の圧力で押圧する押圧部材を備え、
前記押圧部材は、前記被処理物を押圧する押圧プレートと、該押圧プレートを支持する押圧プレート支持部とからなり、前記押圧プレートは前記被処理物を押圧する方向に複数の貫通孔が設けられていることを特徴とするガス化炉。
A gasification furnace comprising a workpiece input chamber, and a combustion space having a gasification section and an ashing section for burning the workpiece,
The combustion space includes a pressing member that presses the waste that has been input into the combustion space from the workpiece input chamber with an arbitrary pressure,
The pressing member includes a pressing plate that presses the workpiece and a pressing plate support that supports the pressing plate, and the pressing plate is provided with a plurality of through holes in a direction of pressing the workpiece. A gasification furnace characterized by that.
前記複数の貫通孔が、格子状又はハニカム状に配列されていることを特徴とする請求項1に記載のガス化炉。   The gasifier according to claim 1, wherein the plurality of through holes are arranged in a lattice shape or a honeycomb shape. 前記燃焼空間は任意の側面で前記被処理物投入室と隣接し、隣接面には所定の状態で各室をチャンバ化する開閉自在のシャッタが設けられ、
前記被処理物投入室は、前記非処理物投入室内の空気を入れ替えるために、該室内の空気を排出させる排気管と、外気又は低酸素濃度ガスを供給する給気管とを備え、さらに前記投入された被処理物を前記燃焼空間に押し出す押出部材を備えることを特徴とする請求項1又は2に記載のガス化炉。
The combustion space is adjacent to the workpiece input chamber on an arbitrary side surface, and an openable / closable shutter is provided on the adjacent surface to chamber each chamber in a predetermined state.
The workpiece input chamber includes an exhaust pipe for exhausting the air in the non-processed material input chamber and an air supply pipe for supplying outside air or a low oxygen concentration gas in order to replace the air in the non-processed material input chamber. The gasification furnace according to claim 1, further comprising an extruding member that extrudes the processed object into the combustion space.
ガス化部及び灰化部を有する燃焼空間は複数の給気口を有し、前記複数の吸気口は、前記ガス化炉の平面視における炉壁に沿って囲い形で配設され、前記燃焼空間の複数領域に調整された空気量が供給可能であることを特徴とする請求項1ないし3のいずれか1項に記載のガス化炉。   The combustion space having the gasification section and the ashing section has a plurality of air supply ports, and the plurality of intake ports are disposed in a surrounding shape along a furnace wall in a plan view of the gasification furnace, and the combustion The gasification furnace according to any one of claims 1 to 3, wherein an adjusted amount of air can be supplied to a plurality of regions of the space. 前記灰化部は、複数の枝管がシャフトに放射状に固定された管状ロータを備え、前記複数の枝管に適量の空気が供給されることを特徴とする請求項1ないし5のいずれか1項に記載のガス化炉。   6. The ashing section includes a tubular rotor in which a plurality of branch pipes are radially fixed to a shaft, and an appropriate amount of air is supplied to the plurality of branch pipes. The gasifier described in the paragraph. 被処理物投入室と、被処理物を燃焼させるガス化部と灰化部を有する燃焼空間とを備えるガス化炉において、前記燃焼空間と前記被処理物投入室とは隣接し、隣接面には所定の状態で各室をチャンバ化する開閉自在のシャッタが設けられ、前記シャッタを閉鎖した状態で、前記被処理物投入室の室内の空気の入れ替えをし、前記シャッタを開放した状態のとき、前記投入された被処理物を前記押出部材で前記燃焼空間内に押し出して、前記被処理物を燃焼させることを特徴とする有機物のガス化の方法。   In a gasification furnace comprising a workpiece input chamber, and a combustion space having a gasification section for burning the workpiece and an ashing section, the combustion space and the workpiece input chamber are adjacent to each other on an adjacent surface. Is provided with an openable / closable shutter that chambers each chamber in a predetermined state. When the shutter is closed, the air in the chamber of the workpiece input chamber is replaced and the shutter is opened. A method of gasifying an organic substance, wherein the charged object to be processed is extruded into the combustion space by the pushing member and the object to be processed is combusted. 前記ガス化部及び灰化部を有する燃焼空間は複数の給気口を有し、前記複数の吸気口は、前記ガス化炉の平面視における炉壁に沿って囲い形で配設され、前記燃焼空間の複数領域に調整された空気量が供給可能であり、
前記空気を前記ガス化炉の前記複数領域に分散して供給することによりガス化を促進し減容効率を上げることを特徴とする請求項6に記載の有機物のガス化の方法。
The combustion space having the gasification part and the ashing part has a plurality of air inlets, and the plurality of air inlets are disposed in an enclosed shape along a furnace wall in a plan view of the gasification furnace, Adjusted air volume can be supplied to multiple areas of the combustion space,
The method of gasifying an organic substance according to claim 6, wherein the air is dispersed and supplied to the plurality of regions of the gasification furnace to promote gasification and increase the volume reduction efficiency.
前記灰化部は、複数の枝管がシャフトに放射状に固定された管状ロータを備えるものであって、前記複数の枝管に適量の空気が供給され当該ロータが回転することで、灰化部内の表面燃焼を活性化し、前記灰化部内の炭化物の灰化促進と共に灰の脱炭素化の促進による灰の微細化を実現することを特徴とする請求項6又は7に記載の有機物のガス化の方法。   The ashing unit includes a tubular rotor in which a plurality of branch pipes are radially fixed to a shaft, and an appropriate amount of air is supplied to the plurality of branch pipes so that the rotor rotates, so that 8. The gasification of organic matter according to claim 6 or 7, wherein the surface combustion of the ash is activated, and the ashing of the carbide in the ashing part is promoted and the ash is refined by promoting the decarbonization of the ash. the method of.
JP2017176772A 2017-09-14 2017-09-14 Gasification furnace and method of gasification of organic matter Active JP6967409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017176772A JP6967409B2 (en) 2017-09-14 2017-09-14 Gasification furnace and method of gasification of organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017176772A JP6967409B2 (en) 2017-09-14 2017-09-14 Gasification furnace and method of gasification of organic matter

Publications (2)

Publication Number Publication Date
JP2019052234A true JP2019052234A (en) 2019-04-04
JP6967409B2 JP6967409B2 (en) 2021-11-17

Family

ID=66014266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176772A Active JP6967409B2 (en) 2017-09-14 2017-09-14 Gasification furnace and method of gasification of organic matter

Country Status (1)

Country Link
JP (1) JP6967409B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230011619A (en) * 2021-07-14 2023-01-25 조중휴 Downdraft Gasifier
JP7315503B2 (en) 2020-03-16 2023-07-26 株式会社フジタ Gasifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315503B2 (en) 2020-03-16 2023-07-26 株式会社フジタ Gasifier
KR20230011619A (en) * 2021-07-14 2023-01-25 조중휴 Downdraft Gasifier
KR102558914B1 (en) * 2021-07-14 2023-07-21 조중휴 Downdraft Gasifier

Also Published As

Publication number Publication date
JP6967409B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
US7793601B2 (en) Side feed/centre ash dump system
JP5480814B2 (en) Carbonization apparatus and carbonization method
US6698365B2 (en) Apparatus for thermal treatment using superheated steam
KR100883952B1 (en) Gas generating system
US6189463B1 (en) Methods and apparatus for incinerating combustible waste material such as farm animal biomass
US11186502B2 (en) Treatment of fecal matter by smoldering and catalysis
JP2019052234A (en) Gasification furnace and method for gasifying organic material
JP2015224795A (en) Generator for fuel gas from organic materials and utilization of heat of same
JP4478441B2 (en) Production facilities for dry matter and carbonized manure
JP2007322099A (en) Dry distillation gasification combustion furnace
US20070289507A1 (en) System, method and apparatus for pyrolizing waste material
JP2007322098A (en) Combustion waste heat utilizing facility
JP2006220365A (en) Waste gasifying device
RU2670807C9 (en) Fire-tube boiler-carbonizer for processing into sorbent of granulated wastes of sorting of solid municipal waste
JP2021080357A (en) Batch type carbonization device
JP2004263193A (en) Thermal treatment equipment using superheated steam
JP2004060927A (en) Sludge incinerating method and incinerating equipment using fluidized incinerator
JP5553498B2 (en) Chicken manure fuel gas production equipment
CN205974423U (en) Biomass gasification facility
JP2005211719A (en) Organic matter treatment method and system therefor
RU199402U1 (en) DUAL MODE GAS GENERATOR
CN214193156U (en) Livestock and poultry manure self-sustaining gasification device
JP2017072275A (en) Thermal decomposition furnace
UA23621U (en) Appliance for obtaining heat energy at burning wastes of organic origin
CN115355511A (en) High-water-content solid waste continuous self-maintaining smoldering treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R150 Certificate of patent or registration of utility model

Ref document number: 6967409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150