JPS6366441B2 - - Google Patents

Info

Publication number
JPS6366441B2
JPS6366441B2 JP55144662A JP14466280A JPS6366441B2 JP S6366441 B2 JPS6366441 B2 JP S6366441B2 JP 55144662 A JP55144662 A JP 55144662A JP 14466280 A JP14466280 A JP 14466280A JP S6366441 B2 JPS6366441 B2 JP S6366441B2
Authority
JP
Japan
Prior art keywords
transistor
conductor
collector
output
land
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55144662A
Other languages
Japanese (ja)
Other versions
JPS5768057A (en
Inventor
Yoshio Konno
Naotaka Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55144662A priority Critical patent/JPS5768057A/en
Publication of JPS5768057A publication Critical patent/JPS5768057A/en
Publication of JPS6366441B2 publication Critical patent/JPS6366441B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多セル並列動作型のたとえば高周波高
出力トランジスタに設ける高周波トランジスタ内
部整合回路に関する。 一般に高周波高出力トランジスタの入出力イン
ピーダンスは極めて低く1Ω以下になる事があ
る。この様な低インピーダンスのトランジスタと
50Ω系などの伝送係とを整合させるには高いイン
ピーダンス変成比が要求される。また動作周波数
が高くなるにしたがい、トランジスタ外囲器の寄
生要素の影響が無視できなくなり、外囲器の外に
設けた整合回路では高インピーダンス変成比を実
現しながら実用的な帯域幅を得る事が困難となつ
てくる。このような欠点を克服するために提案さ
れたのがいわゆる内部整合技術であり、これは広
く実用されている。この内部整合技術は、外囲器
の内部に整合回路の一部を形成し、外囲器の寄生
要素の影響を軽減しながら外部整合回路によつて
必要なインピーダンス変成比と帯域幅を得る方法
である。 このような内部整合技術を用いたたとえばベー
ス接地の高周波トランジスタの等価回路を第1図
に示す。図において11はトランジスタで、12
〜14は該トランジスタの入出力端子であり、1
2はエミツタ、13はベース、14はコレクタで
ある。また15はインダクタ、16はキヤパシ
タ、17は外囲器の寄生要素である。また出力側
の内部整合回路はトランジスタ11のベース13
とコレクタ14との間に存在する容量18と並列
共振するインダクタ19を直流阻止コンデンサ2
0を介して設け、外囲器の出力端子でのインピー
ダンスがトランジスタ11の出力動作抵抗に近い
値になる様にする方法が一般的である。 また従来から実用されている高周波高出力トラ
ンジスタは、第2図に示すように放熱を良好にす
るためトランジスタの接合部を多数のセル21に
分割して発熱部分を分散し、しかも、この分割し
た各セル21が均一に動作するようにセル21を
直線上に並列配置できる細長いトランジスタペレ
ツト22を作り、MOS(金属酸化物)半導体構造
のキヤパシタ23やボンデイングワイヤ24又は
パターンニングされた導体25を使つたインダク
タを用いて外囲器内に内部整合回路を形成してい
る。なお、図中26はコレクタランドで、トラン
ジスタペレツト22のマウント部分であり、27
は接地導体部、28はエミツタ入力端子、29は
コレクタ出力端子である。また30は外囲器の基
板で、ベリリア(BeO)などの熱抵抗の低いセ
ラミツクで形成されている。さらに31は外囲器
の側壁で、アルミナ等の絶縁物で形成されてい
る。 さて第1図に示す出力側内部整合用インダクタ
19は、外囲器の寸法上の制限から第2図に示す
ように、コレクタランド26の両端と直流阻止用
コンデンサ(第1図20)に相当するMOSキヤ
パシタ23を介した接地導体部27との間にパタ
ーンニングされた導体25で作られる。このため
細長いトランジスタペレツト22の端部にあるセ
ルと中央部付近のセルとの間では整合状態が異な
つてしまう。これはコレクタランド26の両端間
のインダクタンスが整合用インダクタ19の値す
なわち導体25のインダクタ値に比べて無視でき
ないためである。この様な悪効果は、高出力化を
目的としてセルの数を増した場合あるいは、使用
周波数が高い場合にそれだけ顕著になる。従つ
て、前記第2図のような内部整合回路ではトラン
ジスタの高出力化、高周波化に限界があり、トラ
ンジスタの能力を向上することができなかつた。 本発明は上記の事情に鑑みてなされたもので、
多セル並列動作型高周波トランジスタの各セルの
動作状態をできるだけ均一化する事により、同一
のトランジスタ・ペレツトを用いても従来より高
出力、高効率の高周波トランジスタが実現可能な
高周波トランジスタ内部整合回路を提供するもの
である。 以下、本発明の一実施例を図面を参照して説明
する。前述したように、第2図におけるコレクタ
ランド26の両端間のインダクタンスを整合用イ
ンダクタ19の値に比べて充分小さくできれば各
セル21の動作状態を均一化することができる。
このようなコレクタランド26の両端間のインダ
クタンスを小さくする方法は、電磁気学の教える
所によれば、コレクタランド26の幅を広げるか
または基板30の厚みを薄くする事である。 因みに文献“Microstrip Lines for
Microwave Integrated Circuit”BSTJ 48.
P.1421.(1969)によれば、幅Wのマイクロストリ
ツプ線路が厚さH、比誘電率εsの基板上に形成さ
れている時、その線路の特性インピーダンスZo
と波長短縮率λ/λg(λ:自由空間波長、λg:線
路波長)は で与えられる。一方、この線路単位長さあたりの
インダクタンスとキヤパシタンスの値を△L、△
Cとおけば、
The present invention relates to a high-frequency transistor internal matching circuit provided in, for example, a high-frequency, high-output transistor of a multi-cell parallel operation type. Generally, the input/output impedance of high frequency, high output transistors is extremely low and may be less than 1Ω. Such low impedance transistors
A high impedance transformation ratio is required to match transmission components such as 50Ω systems. Furthermore, as the operating frequency increases, the influence of parasitic elements in the transistor envelope cannot be ignored, and it is difficult to obtain a practical bandwidth while achieving a high impedance transformation ratio with a matching circuit provided outside the envelope. becomes difficult. A so-called internal matching technique has been proposed to overcome these drawbacks, and this technique is widely used. This internal matching technique is a method of forming part of the matching network inside the envelope and obtaining the required impedance transformation ratio and bandwidth through the external matching network while reducing the effects of the package's parasitics. It is. FIG. 1 shows an equivalent circuit of, for example, a base-grounded high-frequency transistor using such an internal matching technique. In the figure, 11 is a transistor, 12
~14 are input/output terminals of the transistor, and 1
2 is an emitter, 13 is a base, and 14 is a collector. Further, 15 is an inductor, 16 is a capacitor, and 17 is a parasitic element of the envelope. Also, the internal matching circuit on the output side is the base 13 of the transistor 11.
A DC blocking capacitor 2 connects an inductor 19 that resonates in parallel with the capacitor 18 existing between the
A common method is to provide the impedance at the output terminal of the envelope with a value close to the output operating resistance of the transistor 11. Furthermore, as shown in Fig. 2, high-frequency, high-output transistors that have been put into practical use have been designed to improve heat dissipation by dividing the junction of the transistor into a number of cells 21 to disperse the heat generating parts. A long and thin transistor pellet 22 is made in which the cells 21 can be arranged in parallel in a straight line so that each cell 21 operates uniformly, and a capacitor 23 of a MOS (metal oxide) semiconductor structure, a bonding wire 24 or a patterned conductor 25 is made. The used inductor is used to form an internal matching circuit inside the envelope. In addition, in the figure, 26 is the collector land, which is the mounting part of the transistor pellet 22, and 27 is the collector land.
28 is an emitter input terminal, and 29 is a collector output terminal. Reference numeral 30 denotes a substrate of the envelope, which is made of ceramic with low thermal resistance such as beryllia (BeO). Further, 31 is a side wall of the envelope, which is made of an insulating material such as alumina. Now, the output side internal matching inductor 19 shown in FIG. 1 corresponds to both ends of the collector land 26 and the DC blocking capacitor (FIG. 1 20) as shown in FIG. 2 due to the dimensional limitations of the envelope. A patterned conductor 25 is formed between the MOS capacitor 23 and the ground conductor portion 27. For this reason, the matching state differs between cells at the ends of the elongated transistor pellet 22 and cells near the center. This is because the inductance between both ends of the collector land 26 cannot be ignored compared to the value of the matching inductor 19, that is, the inductance value of the conductor 25. Such adverse effects become more pronounced when the number of cells is increased for the purpose of increasing output or when the frequency used is high. Therefore, with the internal matching circuit as shown in FIG. 2, there is a limit to the ability to increase the output power and frequency of the transistor, and it has not been possible to improve the performance of the transistor. The present invention was made in view of the above circumstances, and
By making the operating state of each cell of a multi-cell parallel-operating high-frequency transistor as uniform as possible, we have created a high-frequency transistor internal matching circuit that can realize high-frequency transistors with higher output and higher efficiency than conventional transistors even when using the same transistor pellet. This is what we provide. Hereinafter, one embodiment of the present invention will be described with reference to the drawings. As described above, if the inductance between both ends of the collector land 26 in FIG. 2 can be made sufficiently smaller than the value of the matching inductor 19, the operating state of each cell 21 can be made uniform.
According to electromagnetism, the method of reducing the inductance between both ends of the collector land 26 is to widen the width of the collector land 26 or reduce the thickness of the substrate 30. Incidentally, the document “Microstrip Lines for
Microwave Integrated Circuit”BSTJ 48.
According to P.1421. (1969), when a microstrip line with a width W is formed on a substrate with a thickness H and a relative permittivity εs, the characteristic impedance Zo of the line is
and the wavelength shortening rate λ/λg (λ: free space wavelength, λg: line wavelength) is is given by On the other hand, the values of inductance and capacitance per unit length of this line are △L, △
If we set it as C,

【式】λ/λg=C√△・△、 C:光速で与えられる。これらの関係から、単位
長さあたりのインダクタンス△Lとキヤパシタン
ス△Cを求せると、次式で表わされる。 △L=1201π/C〔W/H+2.42−0.44H/W+(1
−H/W)6〕 △C=ε・ff/120π・C〔W/H+2.42−0.44H/
W+(1− H/W)6〕 すなわち、コレクタランド26の幅Wを広げる
か、基板30の厚みHを充分に薄くできればコレ
クタランド26の両端間のインダクタンスを整合
用インダクタ19の値に比べて充分に小さくでき
ることが判る。しかしコレクタランド26の幅を
広げる方法は外囲器の形状が大きくなり得策とは
言えない。そこで本発明にあつては、コレクタラ
ンド26の両端間のインダクタンスを小さくする
ために、第3図に示すようにコレクタランド26
と並行して後述する線路片としての擬似コレクタ
ランド32を設け、ボンデイングウイヤ24等で
コレクタランド26→擬似コレクタランド32→
コレクタ出力端子29と配線し、出力側整合用イ
ンダクタに相当するパターニングされた導体25
を擬似コレクタランド32の両端と接地導体部2
7との間に直流阻止用コンデンサに相当する
MOSキヤパシタ23を介してボンデイングワイ
ヤ24等で配線する事により実現できる。上記擬
似コレクタランド32は導体体層―絶縁物層―導
電体層のMOM構造あるいはMOS電極構造を有
し、絶縁物層の厚みは蒸着等の方法で形成するこ
とによつて1μm前後の厚さまで薄くできる。この
ようにすることにより、コレクタランドのインダ
クタンスに平行に擬似コレクタランドのインダク
タンスが付加されるので、全体でのインダクタン
スは減少することになる。したがつて、出力側内
部整合用インダクタの値すなわち導体25のイン
ダクタンス値に比較して充分小さくできるので、
ペレツト22上の各セル21を均一に動作させる
ことができる。 なお、上記擬似コレクタランド32の絶縁物層
の厚みを薄くすれば、トランジスタのコレクタと
接地導体部27間の容量が増加する。本実施例で
は、トランジスタペレツト22のコレクタ・ベー
ス間の容量は64pFであり、擬似コレクタランド
32の容量は16pFであり、したがつて、全体の
容量は80pFと従来と比べて25%増加するが、し
かし擬似コレクタランド32の両端間のインダク
タンスを容易に0.1nH以下(本実施例では約
0.04nH)にすることができるので、従来例のコ
レクタランド26の両端間のインダクタンス約
1.4nHに比較して1/10以下にする事ができる。下
記表は同一トランジスタペレツトを用いて作られ
た従来例のトランジスタと本実施例のトランジス
タの特性比較を示している。
[Formula] λ/λg=C√△・△, C: Given by the speed of light. From these relationships, the inductance ΔL and capacitance ΔC per unit length are determined by the following equations. △L=120 1 π/C [W/H+2.42−0.44H/W+(1
-H/W) 6 ] △C=ε・ff/120π・C [W/H+2.42−0.44H/
W+(1-H/W) 6 ] In other words, if the width W of the collector land 26 can be increased or the thickness H of the substrate 30 can be made sufficiently thin, the inductance between both ends of the collector land 26 can be made smaller than the value of the matching inductor 19. It turns out that it can be made sufficiently small. However, increasing the width of the collector land 26 increases the size of the envelope, which is not a good idea. Therefore, in the present invention, in order to reduce the inductance between both ends of the collector land 26, as shown in FIG.
In parallel with this, a pseudo collector land 32 as a line piece to be described later is provided, and a bonding wire 24 or the like connects the collector land 26→pseudo collector land 32→
A patterned conductor 25 wired with the collector output terminal 29 and corresponding to an output side matching inductor
Both ends of the pseudo collector land 32 and the ground conductor part 2
7 and corresponds to a DC blocking capacitor.
This can be realized by wiring with a bonding wire 24 or the like via the MOS capacitor 23. The above-mentioned pseudo collector land 32 has a MOM structure or MOS electrode structure of a conductor layer-insulator layer-conductor layer, and the thickness of the insulator layer can be up to about 1 μm by forming it by a method such as vapor deposition. Can be made thinner. By doing so, the inductance of the pseudo collector land is added in parallel to the inductance of the collector land, so that the overall inductance is reduced. Therefore, the value of the output internal matching inductor, that is, the inductance value of the conductor 25, can be made sufficiently small.
Each cell 21 on the pellet 22 can be operated uniformly. Note that by reducing the thickness of the insulating layer of the pseudo collector land 32, the capacitance between the collector of the transistor and the ground conductor portion 27 increases. In this embodiment, the capacitance between the collector and base of the transistor pellet 22 is 64 pF, and the capacitance of the pseudo collector land 32 is 16 pF, so the total capacitance is 80 pF, which is a 25% increase compared to the conventional one. However, the inductance between both ends of the pseudo collector land 32 can be easily reduced to 0.1 nH or less (in this example, approximately
0.04nH), the inductance between both ends of the collector land 26 in the conventional example is approximately
It can be reduced to less than 1/10 compared to 1.4nH. The table below shows a comparison of characteristics between a conventional transistor made using the same transistor pellet and the transistor of this embodiment.

【表】 上記表から、本実施例のトランジスタは出力で
10W、効率で5%従来例のトランジスタより性能
が向上していることが判る。なお第3図中、2
8,29,31はそれぞれ第2図と同様のエミツ
タ入力端子コレクタ出力端子、外囲器側壁であ
る。 以上説明したように本発明によれば、内部整合
付高周波高出力トランジスタの並列に動作する多
数のセルの動作状態を均一にさせるようにして、
従来に比べて高出力、高効率の高周波トランジス
タが実現可能な高周波トランジスタ内部整合回路
を提供できる。 尚、擬似コレクタランドの絶縁物層の厚みを厚
くしたり、幅を広げたりした場合には、擬似コレ
クタランドのインダクタが大きくなるが、コレク
タランドのインダクタに平行に擬似コレクタラン
ドのインダクタが付加されることにはかわりがな
いので、コレクタランドのインダクタは従来に比
べて減少することになる。すなわち、擬似コレク
タランドの形状にかかわりなく、擬似コレクタラ
ンドをコレクタランドに接続することによりペレ
ツト上の各セルを均一に動作させることができ
る。
[Table] From the table above, the transistor of this example has an output of
It can be seen that the performance is improved by 5% at 10W and efficiency compared to the conventional transistor. In addition, in Figure 3, 2
8, 29, and 31 are an emitter input terminal, a collector output terminal, and an envelope side wall, respectively, similar to those shown in FIG. As explained above, according to the present invention, the operating states of a large number of cells of internally matched high-frequency, high-output transistors operating in parallel are made uniform,
It is possible to provide a high-frequency transistor internal matching circuit that can realize high-frequency transistors with higher output and higher efficiency than conventional ones. Note that if the insulator layer of the pseudo collector land is made thicker or wider, the inductor of the pseudo collector land becomes larger, but the inductor of the pseudo collector land is added parallel to the inductor of the collector land. There is no change in this fact, so the inductor of the collector land will be reduced compared to the conventional one. That is, irrespective of the shape of the pseudo collector land, by connecting the pseudo collector land to the collector land, each cell on the pellet can be operated uniformly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は内部整合回路付高周波高出力トランジ
スタの等価回路図、第2図aは従来の内部整合回
路付トランジスタを示す正面図、第2図bは同図
aのBB線に沿つた断面図、第3図aは本発明の
一実施例を適用した内部整合回路付トランジスタ
を示す正面図、第3図bは同図aのBB線に沿う
断面図である。 11…トランジスタ、12…エミツタ端子、1
3…ベース入力端子、14…コレクタ出力端子、
22…トランジスタペレツト、24…ボンデイン
グワイヤ、32…擬似コレクタランド。
Figure 1 is an equivalent circuit diagram of a high-frequency, high-output transistor with an internal matching circuit, Figure 2 a is a front view of a conventional transistor with an internal matching circuit, and Figure 2 b is a cross-sectional view taken along line BB in Figure a. 3A is a front view showing a transistor with an internal matching circuit to which an embodiment of the present invention is applied, and FIG. 3B is a sectional view taken along line BB in FIG. 3A. 11...Transistor, 12...Emitter terminal, 1
3...Base input terminal, 14...Collector output terminal,
22...Transistor pellet, 24...Bonding wire, 32...Pseudo collector land.

Claims (1)

【特許請求の範囲】[Claims] 1 入出力端子と接地用導体と並列動作多セル・
トランジスタのペレツトマウント用導体を有する
トランジスタ外囲器の内部に設けられる高周波ト
ランジスタ内部整合回路において、上記接地用導
体上に導電体層―絶縁体層―導電体層のMOM構
造又はMOS(金属酸化物半導体)電極構造を持つ
線路片を前記ペレツトマウント用導体と並列にマ
ウントし、この線路片の上部電極と前記ペレツト
マウント用導体と前記出力端子とを接続するとと
もに、前記線路片の上部電極両端部に出力整合用
インダクタを接続してなる事を特徴とする高周波
トランジスタ内部整合回路。
1 Input/output terminals, grounding conductor, and parallel operation multi-cell
In a high-frequency transistor internal matching circuit provided inside a transistor envelope having a transistor pellet mounting conductor, a MOM structure (conductor layer-insulator layer-conductor layer) or MOS (metal oxide A line piece having an electrode structure is mounted in parallel with the pellet mount conductor, and the upper electrode of this line piece is connected to the pellet mount conductor and the output terminal, and the upper part of the line piece is connected to the pellet mount conductor and the output terminal. A high-frequency transistor internal matching circuit characterized by connecting an output matching inductor to both ends of the electrode.
JP55144662A 1980-10-16 1980-10-16 High frequency transistor internal matching circuit Granted JPS5768057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55144662A JPS5768057A (en) 1980-10-16 1980-10-16 High frequency transistor internal matching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55144662A JPS5768057A (en) 1980-10-16 1980-10-16 High frequency transistor internal matching circuit

Publications (2)

Publication Number Publication Date
JPS5768057A JPS5768057A (en) 1982-04-26
JPS6366441B2 true JPS6366441B2 (en) 1988-12-20

Family

ID=15367300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55144662A Granted JPS5768057A (en) 1980-10-16 1980-10-16 High frequency transistor internal matching circuit

Country Status (1)

Country Link
JP (1) JPS5768057A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194526U (en) * 1982-06-21 1983-12-24 キンセキ株式会社 Support structure of piezoelectric vibrator
US4839717A (en) * 1986-12-19 1989-06-13 Fairchild Semiconductor Corporation Ceramic package for high frequency semiconductor devices

Also Published As

Publication number Publication date
JPS5768057A (en) 1982-04-26

Similar Documents

Publication Publication Date Title
US6331931B1 (en) Radio frequency power device improvement
US3946428A (en) Encapsulation package for a semiconductor element
EP1573813B1 (en) Rf power transistor with internal bias feed
US5352998A (en) Microwave integrated circuit having a passive circuit substrate mounted on a semiconductor circuit substrate
US5371405A (en) High-frequency high-power transistor
US4353047A (en) (1-x)BaO.xTiO2 System dielectric material for use in a microwave device
US6072211A (en) Semiconductor package
US3713006A (en) Hybrid transistor
US4393392A (en) Hybrid transistor
US4213141A (en) Hybrid transistor
JP3674780B2 (en) High frequency semiconductor device
JPH10223674A (en) Structure of input/output connection of semiconductor
JP3437826B2 (en) Microwave circuit
JPS6366441B2 (en)
JPS6364081B2 (en)
JP2720628B2 (en) Method for manufacturing semiconductor device
JP2970027B2 (en) Semiconductor device for microwave
JP3840160B2 (en) High frequency device storage package
JPS6017932Y2 (en) Ultra high frequency transistor oscillator
Samanta Advanced Multilayer Components and Front-End Module for Millimetre-Wave and 5G Applications
US6387753B1 (en) Low loss capacitor structure
JPS6114671B2 (en)
JPS622773Y2 (en)
JPS60170911A (en) Printed inductor
JPS6035247Y2 (en) semiconductor equipment