JPS6365745B2 - - Google Patents

Info

Publication number
JPS6365745B2
JPS6365745B2 JP60100537A JP10053785A JPS6365745B2 JP S6365745 B2 JPS6365745 B2 JP S6365745B2 JP 60100537 A JP60100537 A JP 60100537A JP 10053785 A JP10053785 A JP 10053785A JP S6365745 B2 JPS6365745 B2 JP S6365745B2
Authority
JP
Japan
Prior art keywords
cold rolling
rolling
aluminum alloy
intermediate annealing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60100537A
Other languages
Japanese (ja)
Other versions
JPS61261466A (en
Inventor
Makoto Tsuchida
Masaaki Tobinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP10053785A priority Critical patent/JPS61261466A/en
Publication of JPS61261466A publication Critical patent/JPS61261466A/en
Publication of JPS6365745B2 publication Critical patent/JPS6365745B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、包装容器材、例えば缶材、エンド
材、キヤツプ材、ミニだる材等の材料、その他絞
り成形用材に適した、非熱処理型アルミニウム合
金の硬質圧延板の製造方法に関するものである。 従来の技術 従来、包装容器用の非熱処理型アルミニウム合
金、例えばDI缶の胴材用のAA3004系アルミニウ
ム合金材を用いて硬質板を製造する方法として、
耳率の低減ないし強度の向上のための方法が多数
提案されている。 これらの方法において一般的なものは、造塊→
均質化処理→熱間圧延→(必要により、冷間圧
延)→焼鈍→最終冷間圧延の工程から成つてい
る。 一方、熱処理型アルミニウム合金は、100℃〜
200℃で微細析出を起すような成分として、Mg、
Si、Cuを含んでいる。この合金材を500℃以上の
高温に加熱した後、急冷することによつて上記合
金成分を固溶させ、引き続き100〜200℃に加熱し
て析出処理を行なうことによつて強度を高めるこ
とがよく知られている。これは、いわゆる熱処理
型合金の熱処理である。 本発明が解決しようとする問題点 前記非熱処理型アルミニウム合金硬質板の製造
方法において、硬質板の耳率を低減するには、均
質化処理、熱間圧延及び中間焼鈍の各条件を制御
するとともに、最終冷間圧延の圧下量を少なくす
ることが重要であり、一方、強度の向上には、化
学成分及び中間焼鈍条件を選ぶとともに、最終冷
間圧延の圧下量を大きくすることが重要であるこ
とが知られている。 このように、最終冷間圧延の圧下量の相違によ
つて、硬質板の特性が相違するので、成形性及び
強度が共に優れた硬質板を従来の方法によつて製
造することは困難であつた。 また、DI缶の軽量化に伴なつて使用素材の板
厚が薄くなつており、したがつて硬質板の製造方
法においては冷間圧延の圧下量が大きいために、
この硬質板の成形性が低下するようになつた。 本発明は、従来の非熱処理型アルミニウム合金
硬質板の製造方法における前記問題点を解決し
て、強度及び成形性が共に優れた非熱処理型アル
ミニウム合金の成形用硬質板を製造することがで
きる方法を提供することを目的とする。 問題点を解決するための手段 本発明は、前記目的を達成するための手段とし
て、以下のように構成される。 すなわち、本発明は成形性の優れたアルミニウ
ム合金の硬質圧延板の製造方法として、Mg:
0.20〜6%、Si:0.10〜1%、Cu:0.05〜0.30%
を含み、又は以上のほか更にMn:0.20〜2%、
Zn:0.005〜0.2%を含み、残部が実質的にAlであ
るアルミニウム合金を使用して、通常の方法によ
り造塊・均質化処理・熱間圧延を順次行ない、次
いで中間焼鈍を行なうか、又は冷間圧延を行なつ
た後に中間焼鈍を行ない、引き続き最終の冷間圧
延を含めて冷間圧延を1回ないし2回以上行なつ
て前記アルミニウム合金の硬質板を製造するに当
たり、最終の冷間圧延を圧下率20%以上で、かつ
100℃〜200℃で行なうとともに、中間焼鈍後から
最終の冷間圧延の前までに冷間圧延を1回以上行
なう場合には、各冷間圧延を100℃より低い温度
で行なうものである。 以下、上記構成について説明する。 本発明者らは、従来の非熱処理型アルミニウム
合金の硬質板の製造方法において、中間焼鈍後の
冷間圧延の温度と微細析出状態及び加工組織との
関係を検討した結果、冷間加工温度が硬質板の成
形性を左右することを知見した。 すなわち、本発明で使用するアルミニウム合金
は、熱処理型のものではないが、これを使用して
通常の中間焼鈍を行なうと、不十分ながらMg、
Si、Cuの一部が固定し、その後の冷間圧延とこ
れによる温度の上昇によつて、固溶した成分の微
細析出が起る。例えば、冷間圧延を100℃以上で
行なつた場合には、Mg−Si、Mg−Cu、Mg−Si
−Cu、Mg−Cu−Znなどの金属間化合物が微細
に析出する。この微細析出は硬質板の成形性に悪
い影響をもたらす。特に、この状態で更に冷間圧
延、例えば最終冷延を行なうと一層成形性が低下
する。 本発明は以上の知見に基づいて創作されたもの
であつて、前記特定組成の合金を使用し、中間焼
鈍後の最終冷間圧延(仕上げ圧延)を100℃〜200
℃で行なうこと、場合により、中間焼鈍と最終冷
間圧延との間で1回又は2回以上行なう、冷間圧
延を100℃より低い温度で行なうことを特徴とし
ている。 最終の冷間圧延を100℃〜200℃で行なうことに
よつて、合金成分の微細析出が進行して、硬質板
に必要な強度が与えられるとともに、以前に行な
つた冷間圧延による加工組織に回復(内部に蓄積
した歪の解放)が起り、これにより成形性が向上
する。しかし、圧延温度が200℃を越えて高くな
ると、かえつて強度が低下する。このように100
℃〜200℃で行なうことは、簡易的にH3n処理、
すなわち低温で安定化処理を行なうことに相当す
る。これにより、特性の経時変化に対し安定した
硬質板が得られる。 また、中間焼鈍後の冷間圧延を100℃より低い
温度で行なうことによつて、合金成分の微細析出
が妨げられた冷間加工組織が得られる。これが硬
質板の成形性の向上に寄与する。 中間焼鈍後の冷間圧延を必要により2回以上に
分けて行なう場合には、最終の冷間仕上げ圧延の
みを100℃〜200℃で行ない、それ以前の冷間圧延
は、それが何回であつても、すべて100℃より低
い温度で行なうことが必要である。 本発明の実施に当たり、冷間圧延の温度は冷間
圧延の圧下率、圧延速度、冷却剤の量を調整する
ことによつて設定することができる。 本発明で使用するアルミニウム合金の組成に
は、強度をより高め、あるいは耳率を制御するた
めにMn及びZnを添加することもある。 実施例 1 Si:0.17%、Fe:0.40%、Cu:0.16%、Mn:
1.2%、Mg:1.1%、Zn:0.02%、Al:残部のア
ルミニウム合金を通常の方法で鋳塊となし、これ
を580℃×10Hrで均質化処理した後、熱間圧延し
て1.6mm厚の板とした。次いで430℃で中間焼鈍し
た。引き続き最終0.4mm厚の板に圧延するに当た
つて、1回目の冷間圧延で1.6mm→0.8mm、2回目
の仕上げ冷延で0.8mm→0.4mmとするように、かつ
1回目、2回目の冷間圧延温度を下記の第1表に
示すようにそれぞれ変えて圧延した。 各例により製造された0.4mmの硬質板の特性は、
第1表に示すとおりである。
Industrial Application Field The present invention is for manufacturing hard rolled sheets of non-heat-treated aluminum alloy suitable for packaging container materials such as can stock, end materials, cap materials, mini-darling materials, and other drawing materials. It is about the method. BACKGROUND ART Conventionally, as a method of manufacturing a hard plate using a non-heat-treated aluminum alloy for packaging containers, for example, an AA3004 aluminum alloy material for the body material of DI cans,
Many methods have been proposed for reducing the selvage rate or improving the strength. The most common of these methods is agglomeration →
The process consists of homogenization treatment → hot rolling → (cold rolling if necessary) → annealing → final cold rolling. On the other hand, heat-treated aluminum alloys can be heated up to 100℃.
Components that cause fine precipitation at 200℃ include Mg,
Contains Si and Cu. After heating this alloy material to a high temperature of 500°C or higher, it is rapidly cooled to form a solid solution of the alloy components, and then the strength can be increased by heating it to a temperature of 100 to 200°C and performing a precipitation treatment. well known. This is the so-called heat treatment of heat-treatable alloys. Problems to be Solved by the Invention In the method for producing a non-heat-treated aluminum alloy hard plate, in order to reduce the selvage ratio of the hard plate, the conditions of homogenization treatment, hot rolling, and intermediate annealing are controlled and , it is important to reduce the amount of reduction in the final cold rolling, and on the other hand, to improve the strength, it is important to select the chemical composition and intermediate annealing conditions, and to increase the amount of reduction in the final cold rolling. It is known. As described above, the properties of the hard plate differ depending on the amount of reduction in the final cold rolling, so it is difficult to produce a hard plate with excellent formability and strength using conventional methods. Ta. In addition, as the weight of DI cans has been reduced, the thickness of the material used has become thinner, and as a result, the reduction amount of cold rolling is large in the manufacturing method of hard plates.
The formability of this hard plate began to deteriorate. The present invention solves the above-mentioned problems in the conventional method for manufacturing a non-heat-treated aluminum alloy hard plate, and is a method for manufacturing a non-heat-treated aluminum alloy hard plate for forming that has excellent strength and formability. The purpose is to provide Means for Solving the Problems The present invention is configured as follows as a means for achieving the above object. That is, the present invention provides a method for manufacturing a hard rolled aluminum alloy plate with excellent formability, using Mg:
0.20-6%, Si: 0.10-1%, Cu: 0.05-0.30%
Contains, or in addition to the above, Mn: 0.20 to 2%,
Using an aluminum alloy containing Zn: 0.005 to 0.2% and the balance being substantially Al, ingot formation, homogenization treatment, and hot rolling are sequentially performed by a normal method, followed by intermediate annealing, or After performing cold rolling, intermediate annealing is performed, and then cold rolling is performed once or twice or more including the final cold rolling to produce a hard plate of the aluminum alloy. Rolling at a reduction rate of 20% or more, and
When cold rolling is carried out at 100°C to 200°C and at least one cold rolling is performed after intermediate annealing and before final cold rolling, each cold rolling is carried out at a temperature lower than 100°C. The above configuration will be explained below. The present inventors investigated the relationship between the temperature of cold rolling after intermediate annealing, the state of fine precipitation, and the processed structure in the conventional manufacturing method of hard plates of non-heat-treated aluminum alloys, and found that the cold working temperature It was discovered that this affects the formability of hard plates. That is, although the aluminum alloy used in the present invention is not heat-treated, when it is used and subjected to normal intermediate annealing, Mg, Mg,
A portion of Si and Cu is fixed, and the subsequent cold rolling and the resulting temperature rise cause fine precipitation of the solid-dissolved components. For example, when cold rolling is performed at 100℃ or higher, Mg-Si, Mg-Cu, Mg-Si
-Intermetallic compounds such as Cu and Mg-Cu-Zn are finely precipitated. This fine precipitation has a negative effect on the formability of the hard plate. In particular, if further cold rolling, for example final cold rolling, is performed in this state, the formability will further deteriorate. The present invention was created based on the above knowledge, and uses an alloy having the above-mentioned specific composition, and performs final cold rolling (finish rolling) at 100°C to 200°C after intermediate annealing.
It is characterized by performing the cold rolling at a temperature lower than 100°C, and depending on the case, performing the cold rolling once or twice or more between the intermediate annealing and the final cold rolling. By performing the final cold rolling at 100°C to 200°C, the fine precipitation of alloying components progresses, giving the hard plate the necessary strength, and the processed structure caused by the previous cold rolling. Recovery (release of internally accumulated strain) occurs, which improves formability. However, when the rolling temperature becomes higher than 200°C, the strength actually decreases. 100 like this
What can be done at ℃~200℃ is simple H3N treatment,
In other words, this corresponds to performing stabilization treatment at a low temperature. As a result, a hard plate whose properties are stable against changes over time can be obtained. Further, by performing cold rolling after intermediate annealing at a temperature lower than 100° C., a cold-worked structure in which fine precipitation of alloy components is prevented can be obtained. This contributes to improving the formability of the hard plate. If cold rolling after intermediate annealing is carried out in two or more times as necessary, only the final cold finish rolling is carried out at 100℃ to 200℃, and the previous cold rolling is carried out at several times. In any case, it is necessary to carry out all operations at a temperature lower than 100°C. In carrying out the present invention, the cold rolling temperature can be set by adjusting the cold rolling reduction rate, rolling speed, and amount of coolant. Mn and Zn may be added to the composition of the aluminum alloy used in the present invention in order to further increase the strength or control the selvage ratio. Example 1 Si: 0.17%, Fe: 0.40%, Cu: 0.16%, Mn:
1.2%, Mg: 1.1%, Zn: 0.02%, Al: The remaining aluminum alloy was made into an ingot using the usual method, and after homogenizing it at 580℃ x 10 hours, it was hot rolled to a thickness of 1.6mm. It was made into a board. Then, intermediate annealing was performed at 430°C. Subsequently, when rolling the plate to a final thickness of 0.4 mm, the thickness was changed from 1.6 mm to 0.8 mm in the first cold rolling, and from 0.8 mm to 0.4 mm in the second final cold rolling, and Rolling was carried out while changing the cold rolling temperature for the second time as shown in Table 1 below. The properties of the 0.4mm hard plate manufactured by each example are as follows:
As shown in Table 1.

【表】 第1表から分かるように、1回目の冷間圧延の
温度を100℃より低くし、2回目の冷間圧延温度
100℃以上にして圧延して得られた硬質板の成形
性は良好であるが、1回目の冷間圧延温度を100
℃より高くし、2回目の冷間圧延温度を100℃よ
り低くして、それぞれ冷間圧延した場合の硬質板
は成形性が低下している。また、2回目の冷間圧
延を200℃より高い温度で行なつた場合は、硬質
板に十分な強度が得られない。 実施例 2 Si:0.20%、Fe:0.42%、Cu:0.14%、Mn:
0.36%、Mg:0.33%、Zn:0.05%、Al:残部の
アルミニウム合金を通常の方法で鋳塊とし、これ
を580℃×10Hrで均質化処理した後、熱間圧延し
て4mm厚の板にし、次いで冷間圧延して1.5mm厚
とした。その厚さで中間焼鈍を480℃で実施した。
引き続き冷間圧延を1.5mm→0.65mmと、0.65mm→
0.25mmとの2回に分けて行なつた。各回の温度は
第2表のとおりにした。各例により得られた0.25
mmの硬質板の特性を同表に示す。
[Table] As can be seen from Table 1, the temperature of the first cold rolling is lower than 100℃, and the temperature of the second cold rolling is lower than 100℃.
The formability of the hard plate obtained by rolling at 100℃ or higher is good, but the first cold rolling temperature is 100℃ or higher.
℃, and the second cold rolling temperature was lower than 100℃, the formability of the hard plate deteriorated. Furthermore, if the second cold rolling is performed at a temperature higher than 200°C, sufficient strength will not be obtained in the hard plate. Example 2 Si: 0.20%, Fe: 0.42%, Cu: 0.14%, Mn:
0.36%, Mg: 0.33%, Zn: 0.05%, Al: The remaining aluminum alloy was made into an ingot using the usual method, and after homogenizing it at 580℃ x 10 hours, it was hot rolled to form a 4mm thick plate. It was then cold rolled to a thickness of 1.5 mm. Intermediate annealing was performed at 480°C at that thickness.
Continued cold rolling from 1.5mm to 0.65mm and from 0.65mm to
The test was carried out in two sessions, each with 0.25 mm. The temperature for each test was as shown in Table 2. 0.25 obtained by each example
The properties of mm hard plates are shown in the same table.

【表】【table】

【表】 第2表から明らかであるように、本発明に従つ
て、1回目の冷延を100℃より低温で行ない、2
回目の最終冷延を100℃以上の高温で行なつた場
合の硬質板は、その強度及び成形性が共に良好で
ある。これに対して、比較例はいずれも、冷延温
度が本発明による条件に適合していないので、成
形性が劣つている。 実施例 3 Si:0.14%、Fe:0.22%、Cu:0.5%、Mn:
0.11%、Mg:4.7%、Zn:0.02%、Al:残部のア
ルミニウム合金を通常の方法で鋳塊とし、これを
500℃×10Hrで均質化処理した後、熱間圧延して
2.5mm厚の板にした。その厚さで中間焼鈍を360℃
で実施した。引き続き、冷間圧延を2.5mm→1.2mm
→0.6mm→0.3mmの3回で行なつた。各回の温度は
第2表のとおりにした。各例により得られた0.3
mmの硬質板の特性を同表に示す。
[Table] As is clear from Table 2, according to the present invention, the first cold rolling was carried out at a temperature lower than 100°C, and the second
A hard plate obtained by performing the final cold rolling at a high temperature of 100° C. or higher has good strength and formability. On the other hand, in all of the comparative examples, the cold rolling temperature did not meet the conditions according to the present invention, so the moldability was poor. Example 3 Si: 0.14%, Fe: 0.22%, Cu: 0.5%, Mn:
0.11%, Mg: 4.7%, Zn: 0.02%, Al: The remaining aluminum alloy is made into an ingot using the usual method.
After homogenizing at 500℃×10Hr, hot rolling
I made it into a 2.5mm thick plate. Intermediate annealing at 360℃ at that thickness
It was carried out in Continue cold rolling from 2.5mm to 1.2mm
→ 0.6mm → 0.3mm 3 times. The temperature for each test was as shown in Table 2. 0.3 obtained by each example
The properties of mm hard plates are shown in the same table.

【表】 第3表から明らかなように、各回の冷間圧延を
本発明に従つて行なつた場合の硬質板は強度、成
形性が共に良好であるが、比較例では成形性が低
下している。 実施例 4 Si:0.65%、Fe:0.45%、Cu:0.27%、Mn:
1.0%、Mg:1.7%、Zn:0.10%、Al:残部のア
ルミニウム合金を通常の方法で鋳塊とし、これを
熱間圧延と冷間圧延により0.5mm厚の板とし、こ
こで480℃の中間焼鈍した。引き続き、ただ1回
の冷間圧延で0.3mmの硬質板に仕上げた。この際
の冷間圧延温度と各例の硬質板の特性は第4表の
とおりである。
[Table] As is clear from Table 3, the hard plate obtained by each round of cold rolling according to the present invention has good strength and formability, but in the comparative example, the formability decreased. ing. Example 4 Si: 0.65%, Fe: 0.45%, Cu: 0.27%, Mn:
1.0%, Mg: 1.7%, Zn: 0.10%, Al: The remaining aluminum alloy was made into an ingot using the usual method, and this was made into a 0.5 mm thick plate by hot rolling and cold rolling. Intermediately annealed. Subsequently, it was finished into a 0.3 mm hard plate by just one cold rolling. The cold rolling temperature at this time and the properties of the hard plates of each example are shown in Table 4.

【表】 第4表から分かるように、中間焼鈍後から最終
冷間圧延前に冷間圧延を行なわない場合でも、本
発明に従い最終冷間圧延を100℃以上で行なつて
得た硬質板は成形性が良好であるが、100℃以下
で行なつた比較例Yでは成形性が低下し、また
200℃を越える温度で行なつた比較例Zでは強度
が低下している。 発明の効果 本発明により、非熱処理型アルミニウム合金を
使用して冷間圧延することによつて、成形性及び
強度が共に優れ、安定化された硬質板を製造する
ことができる。この硬質板は、缶材等の包装容器
材に特に好適である。
[Table] As can be seen from Table 4, even if cold rolling is not performed after intermediate annealing and before final cold rolling, the hard plate obtained by performing final cold rolling at 100°C or higher according to the present invention The moldability is good, but in Comparative Example Y, which was carried out at 100°C or lower, the moldability decreased and
In Comparative Example Z, which was carried out at a temperature exceeding 200°C, the strength decreased. Effects of the Invention According to the present invention, a stabilized hard plate with excellent formability and strength can be produced by cold rolling using a non-heat-treated aluminum alloy. This hard plate is particularly suitable for packaging container materials such as can stock.

Claims (1)

【特許請求の範囲】[Claims] 1 Mg:0.20〜6%、Si:0.10〜1%、Cu:
0.05〜0.30%を含み、又は以上のほか更にMn:
0.20〜2%、Zn:0.005〜0.2%を含み、残部が実
質的にAlであるアルミニウム合金材を使用して、
通常の方法により造塊・均熱処理・熱間圧延を順
次行ない、次いで中間焼鈍を行なうか、又は冷間
圧延を行なつた後に中間焼鈍を行ない、引き続き
最終の冷間圧延を含めて冷間圧延を1回ないし2
回以上行なつて前記アルミニウム合金の硬質板を
製造するに当たり、最終の冷間圧延を圧下率20%
以上で、かつ100℃〜200℃で行なうとともに、中
間焼鈍後から最終の冷間圧延の前までに冷間圧延
を1回以上行なう場合には、各冷間圧延を100℃
より低い温度で行なうことを特徴とする成形性の
優れたアルミニウム合金の硬質圧延板の製造方
法。
1 Mg: 0.20-6%, Si: 0.10-1%, Cu:
Contains 0.05-0.30%, or in addition to the above, Mn:
Using an aluminum alloy material containing 0.20 to 2%, Zn: 0.005 to 0.2%, and the balance being substantially Al,
Either ingot formation, soaking treatment, and hot rolling are performed sequentially by a normal method, followed by intermediate annealing, or cold rolling is performed, intermediate annealing is performed, and then cold rolling including final cold rolling is performed. once or twice
The final cold rolling is performed at a rolling reduction rate of 20% in manufacturing the hard plate of the aluminum alloy by repeating the process more than once.
above and at 100°C to 200°C, and if cold rolling is performed more than once after intermediate annealing and before final cold rolling, each cold rolling is carried out at 100°C to 200°C.
A method for producing a hard rolled aluminum alloy plate with excellent formability, characterized by carrying out the process at a lower temperature.
JP10053785A 1985-05-14 1985-05-14 Manufacture of hard rolled sheet of aluminum alloy excelling in formability Granted JPS61261466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10053785A JPS61261466A (en) 1985-05-14 1985-05-14 Manufacture of hard rolled sheet of aluminum alloy excelling in formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10053785A JPS61261466A (en) 1985-05-14 1985-05-14 Manufacture of hard rolled sheet of aluminum alloy excelling in formability

Publications (2)

Publication Number Publication Date
JPS61261466A JPS61261466A (en) 1986-11-19
JPS6365745B2 true JPS6365745B2 (en) 1988-12-16

Family

ID=14276700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10053785A Granted JPS61261466A (en) 1985-05-14 1985-05-14 Manufacture of hard rolled sheet of aluminum alloy excelling in formability

Country Status (1)

Country Link
JP (1) JPS61261466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164904A (en) * 1988-12-16 1990-06-25 Nippon Kaijo Koji Kk Mat for underwater construction
JPH0735536U (en) * 1993-12-09 1995-07-04 建設基礎エンジニアリング株式会社 Slope protection structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286589A (en) * 1987-05-19 1988-11-24 Kobe Steel Ltd Hard al alloy sheet for packing having superior curlability and production thereof
JPS63293144A (en) * 1987-05-25 1988-11-30 Kobe Steel Ltd High-strength high-moldability hard aluminum alloy sheet and its production
JP3270709B2 (en) * 1996-04-10 2002-04-02 東洋鋼鈑株式会社 Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JP4667722B2 (en) * 2003-03-28 2011-04-13 住友軽金属工業株式会社 Aluminum alloy can body design method
JP6090793B2 (en) * 2013-12-03 2017-03-08 本田技研工業株式会社 Aluminum member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691972A (en) * 1970-07-09 1972-09-19 Reynolds Metals Co Aluminous metal articles and method
JPS51116105A (en) * 1975-04-04 1976-10-13 Kobe Steel Ltd A process for producing aluminum alloy sheet for deep drawing
JPS5391884A (en) * 1972-09-25 1978-08-12 Olin Corp Aluminum can
JPS57185962A (en) * 1981-05-12 1982-11-16 Kobe Steel Ltd Production of aluminum alloy plate of superior squeezing property
JPS57203754A (en) * 1981-06-05 1982-12-14 Continental Can Co Method of rolling aluminum strip for work-hardenable thin plate production for can manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691972A (en) * 1970-07-09 1972-09-19 Reynolds Metals Co Aluminous metal articles and method
JPS5391884A (en) * 1972-09-25 1978-08-12 Olin Corp Aluminum can
JPS51116105A (en) * 1975-04-04 1976-10-13 Kobe Steel Ltd A process for producing aluminum alloy sheet for deep drawing
JPS57185962A (en) * 1981-05-12 1982-11-16 Kobe Steel Ltd Production of aluminum alloy plate of superior squeezing property
JPS57203754A (en) * 1981-06-05 1982-12-14 Continental Can Co Method of rolling aluminum strip for work-hardenable thin plate production for can manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164904A (en) * 1988-12-16 1990-06-25 Nippon Kaijo Koji Kk Mat for underwater construction
JPH0735536U (en) * 1993-12-09 1995-07-04 建設基礎エンジニアリング株式会社 Slope protection structure

Also Published As

Publication number Publication date
JPS61261466A (en) 1986-11-19

Similar Documents

Publication Publication Date Title
US4260432A (en) Method for producing copper based spinodal alloys
JPS621467B2 (en)
JPS59159961A (en) Superplastic al alloy
CA1119920A (en) Copper based spinodal alloys
JPS6365745B2 (en)
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JP2651932B2 (en) Aluminum alloy foil for anode of electrolytic capacitor and method for producing the same
JPH0122345B2 (en)
JPS6022054B2 (en) High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same
JPS6254183B2 (en)
JPH0480979B2 (en)
JPH03260040A (en) Manufacture of high strength al-mn series alloy sheet
JPH08333644A (en) Aluminum alloy foil and its production
JPS60145348A (en) High-strength thin al alloy plate having superior formability and corrosion resistance and its manufacture
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JP2000001730A (en) Aluminum alloy sheet for can body, and its production
JPS61288055A (en) Manufacture of aluminum alloy sheet for forming excellent in strength
JPH04268054A (en) Manufacture of al-mg alloy sheet excellent in strength and orientation property
JPH028353A (en) Manufacture of aluminum alloy for forming excellent in baking strength
JPH0225539A (en) Aluminum alloy hard plate for forming and its production
JPH02254143A (en) Production of hard aluminum alloy sheet for forming
JP3153541B2 (en) Manufacturing method of aluminum alloy cold rolled sheet for packaging container without surface pattern
JPH01255637A (en) Aluminum alloy for conducting electricity
JPH06200346A (en) Aluminum alloy for forming excellent in formability and it production
JPS6160141B2 (en)