JPS6365059A - Heat resistant ferritic steel having superior strength at high temperature - Google Patents

Heat resistant ferritic steel having superior strength at high temperature

Info

Publication number
JPS6365059A
JPS6365059A JP20885986A JP20885986A JPS6365059A JP S6365059 A JPS6365059 A JP S6365059A JP 20885986 A JP20885986 A JP 20885986A JP 20885986 A JP20885986 A JP 20885986A JP S6365059 A JPS6365059 A JP S6365059A
Authority
JP
Japan
Prior art keywords
steel
strength
amount
temperature
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20885986A
Other languages
Japanese (ja)
Other versions
JPH0635642B2 (en
Inventor
Akishi Sasaki
佐々木 晃史
Kunihiko Kobayashi
邦彦 小林
Isao Takada
高田 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61208859A priority Critical patent/JPH0635642B2/en
Publication of JPS6365059A publication Critical patent/JPS6365059A/en
Publication of JPH0635642B2 publication Critical patent/JPH0635642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the strength of a heat resistant high Cr-Mo ferritic steel at high temp. and the resistance to oxidation at high temp. by adding specified amounts of V, W and Cu to the steel and specifying the quantitative relation between elements including C+N in the steel. CONSTITUTION:A heat resistant ferritic steel having a compsn. consisting of, by weight, 0.03-0.20% C, <1.0% Si, 0.1-1.5% Mn, 0.05-0.30% Cu, 0.1-1.0% Ni, 7.0-13.0% Cr, 0.4-2.5% Mo, 0.02-0.15% Nb, 0.02-0.35% V, 0.05-2.50% W, 0.005-0.080% N and the balance Fe is used as a heat resistant steel forming the members of an extra super critical pressure boiler or the like. In the compsn., W and Mo, V an Nb, Nb and (C+N), V and (Mo+W), and (Mo+W+2 V+2N) and (C+N) have separate specified quantitative relations. The heat resistant ferritic steel has improved strength at high temp. and improved resistance to oxidation at high temp.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、■超臨界圧ならびに超々臨界圧用ボイラの蒸
発管、過熱器管、再熱器管、主蒸気配管、■化学工業用
プラントの加熱器管、熱交換器管、■高速増殖炉の蒸気
発生器管、過熱器管、■核融合炉部−炉壁材料等に用い
て好適な、高温強度に優れたフェライト系耐熱鋼に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to ■ evaporation tubes, superheater tubes, reheater tubes, main steam piping of boilers for supercritical pressure and ultra-supercritical pressure, ■ The present invention relates to a ferritic heat-resistant steel having excellent high-temperature strength and suitable for use in heater tubes, heat exchanger tubes, steam generator tubes and superheater tubes of fast breeder reactors, and fusion reactor parts - reactor wall materials.

[従来の技術] 最近、火力発電用ボイラとしては超臨界圧ボイラが用い
られているが、熱効率を上げ、燃料節減を図るため、超
々臨界圧用ボイラが必要とされている。この種のボイラ
は、電力需要の少ない夜間は操業をダウンさせるため、
高温低温の熱サイクルをもった操業となる。熱膨張率の
大きいオーステナイト系ステンレス鋼では、熱疲労やス
ケール剥離が問題となる。剥離したスケールは鋼管ベン
ド部に本積して局所的に高温となり管が噴破したり、ま
たスケールがタービンに達することもあり種々の障害を
もたらす、一方、フェライト系の場合、オーステナイト
系に比べ熱膨張率が小さいばかりでなく、高温での応力
腐食割れや粒界腐食が軽減され、熱伝導率が高く、しか
も装置であるという長所を備えている。このため、フェ
ライト系高クロム鋼は超臨界圧ならびに超々臨界圧用ボ
イラの蒸発管、過熱器管、再熱器管や、化学工業用各種
機器の加熱器管、熱交換器管、あるいは、高速増殖炉の
蒸気発生器管、過熱器管用材料としても好適である。
[Prior Art] Recently, supercritical pressure boilers have been used as boilers for thermal power generation, but ultra-supercritical pressure boilers are required in order to improve thermal efficiency and save fuel. This type of boiler shuts down operations at night when electricity demand is low, so
The operation involves a heat cycle of high and low temperatures. Austenitic stainless steel, which has a large coefficient of thermal expansion, poses problems such as thermal fatigue and scale peeling. The exfoliated scale accumulates at the bends of steel pipes, causing localized high temperatures that can cause pipes to blow out, and scales that can even reach turbines, causing various problems.On the other hand, in the case of ferritic steel, the temperature is lower than that of austenitic steel. It not only has a low coefficient of thermal expansion, but also reduces stress corrosion cracking and intergranular corrosion at high temperatures, has high thermal conductivity, and has the advantages of being a device. For this reason, ferritic high chromium steel is used for evaporator tubes, superheater tubes, and reheater tubes in supercritical pressure and ultra-supercritical pressure boilers, heater tubes and heat exchanger tubes in various equipment for the chemical industry, and high-speed growth steels. It is also suitable as a material for steam generator tubes and superheater tubes in furnaces.

現時点で実用化されている最も蒸気条件の厳しいボイラ
は超臨界圧ボイラ(246気圧、586℃)である、管
壁温度が580℃までは通常、2φ1cr−INo! 
(STBA24)、620℃までは9Cr −IMo 
〜2Mo系鋼(例えば5TBA2Bや■5TBA27)
もしくは、18Cr−8Nj系ステンレス鋼、820°
Cを超えると専ら18Cr−8Ni系ステンレス鋼が管
材として用いられる。
The boiler with the most severe steam conditions currently in practical use is the supercritical pressure boiler (246 atm, 586°C). Normally, the boiler with tube wall temperature up to 580°C is 2φ1cr-INo!
(STBA24), 9Cr-IMo up to 620℃
~2Mo steel (e.g. 5TBA2B and ■5TBA27)
Or 18Cr-8Nj stainless steel, 820°
When the temperature exceeds C, 18Cr-8Ni stainless steel is exclusively used as the pipe material.

[発明が解決しようとする問題点] 従来の9Cr−1111o 〜2Mo系鋼は、 20M
 Cr−INofIJに比べて耐酸化は向上するものの
、高温強度が低いので使用上制約を受ける。 19Cr
−8Ni系は高温強度、耐高温酸化性に優れているもの
の、既述のようなオーステナイト系特有の欠点があり、
その上、Cr、 Niを多量に含有しているために、経
済性に問題がある。
[Problems to be solved by the invention] Conventional 9Cr-1111o to 2Mo steels are 20M
Although oxidation resistance is improved compared to Cr-INofIJ, its use is limited due to its low high temperature strength. 19Cr
-8Ni type has excellent high-temperature strength and high-temperature oxidation resistance, but has the disadvantages peculiar to austenitic type as mentioned above.
Moreover, since it contains large amounts of Cr and Ni, there is a problem in economic efficiency.

ところで、超臨界圧ボイラとしての第1段階の蒸気条件
(316気圧、588℃)での実用化が近いが、第2段
階では318気圧、583℃の蒸気条件となるため、過
熱器管や再熱器管の管壁温度はおよそ620℃にもなり
、この温度での長時間強度が要求される。しかしながら
、通産省の発電用火力技術基準に則って決められた許容
応力を比較すると、既出のフェライト系高クロム鋼の許
容応力は820℃で18C:r−8Ni系ステンレス鋼
の(5U93048〒B)のおよそ475以下である。
By the way, the first stage steam conditions (316 atm, 588 °C) as a supercritical pressure boiler will soon be put into practical use, but the second stage will have steam conditions of 318 atm and 583 °C, so the superheater tubes and The temperature of the tube wall of the heating tube is approximately 620°C, and long-term strength at this temperature is required. However, when comparing the allowable stress determined in accordance with the Ministry of International Trade and Industry's thermal power generation technical standards, the allowable stress of the already mentioned ferritic high chromium steel is 18C:r-8Ni stainless steel (5U93048〒B) at 820°C. It is approximately 475 or less.

したがって、高温長時間強度保持のためには肉厚を厚く
しなければならず、熱交換上好ましくない上に、材料費
がかさみ、建設コストを高める。
Therefore, in order to maintain strength at high temperatures for a long period of time, the wall thickness must be increased, which is not favorable in terms of heat exchange, and also increases material costs and construction costs.

このように、超々臨界圧用ボイラチューブに対しては高
温強度の一層の改善が求められると同時に、高温環境下
で使用されるため耐高温腐食性の向上が求められる。
Thus, boiler tubes for ultra-supercritical pressure are required to further improve their high-temperature strength, and at the same time, because they are used in high-temperature environments, they are required to have improved high-temperature corrosion resistance.

ところで、従来の2 m l Or−1No鋼やSTB
A2B(ICr−1No鋼)、■5TBA27(9Cr
−2No鋼)の高温強度を改善した鋼として米国オーク
リッジ国立研究所が中心になって開発した5uper 
SCr鋼すなわちASTMA213 Ta2鋼(9Cr
−IMo Nb、V鋼)が知られている。
By the way, conventional 2ml Or-1No steel and STB
A2B (ICr-1No steel), ■5TBA27 (9Cr
5uper was developed mainly by Oak Ridge National Laboratory in the United States as a steel with improved high-temperature strength of
SCr steel or ASTMA213 Ta2 steel (9Cr
-IMo Nb, V steel) is known.

しかしながら、これらの鋼は従来鋼に比べである程度高
温強度が改善されているものの、まだ不十分なため、更
に一層の向上が必要受あり、また耐酸化性の向上が求め
られていた。
However, although the high-temperature strength of these steels has been improved to some extent compared to conventional steels, it is still insufficient, and further improvements are needed, and improvements in oxidation resistance have also been desired.

9〜12Cr系鋼にWを添加することにより高温強度が
改善されることや、Nb、 Vの添加により高温強度が
改善できることは既に知られている0本発明者等は、先
に特願昭80−293092号において、高温強度を改
善し、さらに溶接性を向上させた鋼を提案した。モの後
、更に詳細に検討を続けた結果、高温強度の改善には種
々の元素の適切な組み合わせが効果的であること、その
上高温での耐酸化性の向上には、(uと Vおよび讐の
適正な組み合わせにより著しく改善されることが知見さ
れた。
It is already known that high-temperature strength can be improved by adding W to 9-12Cr steel, and that high-temperature strength can be improved by adding Nb and V. No. 80-293092 proposed a steel with improved high temperature strength and further improved weldability. After conducting further detailed studies, we found that appropriate combinations of various elements are effective in improving high-temperature strength, and that (U and V) are effective in improving oxidation resistance at high temperatures. It was found that the effects were significantly improved by an appropriate combination of

本発明ではNo量と V量の最適値、 V量とNb量の
最適値、Nb量とC+N量の最適値、V量とMO◆W量
の最適値ならびにNo、 W 、 Wb、 V量と04
PN  量の最適値を検討することにより、高温強度の
大幅な向上を達成することができた。さらに、高温耐酸
化性を向上させるために、成分元素の影響を検討した結
果、高0r−No鋼において、V、−とともにCuを適
量添加することにより、高温耐酸化性を大幅に向上させ
ることが可使となった。
In the present invention, the optimum values of No amount and V amount, the optimum value of V amount and Nb amount, the optimum value of Nb amount and C+N amount, the optimum value of V amount and MO◆W amount, and the optimum value of No, W, Wb, V amount and 04
By examining the optimal value for the amount of PN, we were able to achieve a significant improvement in high-temperature strength. Furthermore, in order to improve high-temperature oxidation resistance, we investigated the effects of component elements and found that by adding an appropriate amount of Cu along with V and - to high-0r-No steel, high-temperature oxidation resistance could be significantly improved. became usable.

本発明は、上記要求される特性を満足するために開発さ
れたものであり、下記の特性を備えた比較的安価な高温
用耐熱鋼を提供することを目的とする。
The present invention was developed to satisfy the above-mentioned required characteristics, and an object of the present invention is to provide a relatively inexpensive high-temperature heat-resistant steel having the following characteristics.

■高温強度:850℃x 5ooo hのクリープ破断
強度で10Kg/mm2以上、同じ<650℃X105
hで5Kg/m■2以上。
■High temperature strength: Creep rupture strength of 850℃ x 5ooo h is 10Kg/mm2 or more, same <650℃ x 105
5Kg/m■2 or more in h.

■耐高温酸化性:850℃X1000hの大気中酸化に
よる腐食減量が1 mg/c12以下。
■High-temperature oxidation resistance: Corrosion loss due to atmospheric oxidation at 850°C for 1000 hours is 1 mg/c12 or less.

また、本発明は、付加的に本材料の利用分野において不
可欠な性質である靭性、加工性、溶接性の劣化を生じる
ことなく上記項目の改善を図った。
Additionally, the present invention aims to improve the above items without causing deterioration of toughness, workability, and weldability, which are essential properties in the field of use of this material.

[問題点を解決するための手段] 本発明に係る高温強度に優れたフェライト系耐熱鋼は、
重量%で C:0.03%〜0.20%、Si:1.O%以下Mn
 : 0.1〜1.5%、 Cu : O,05〜0.
30%Xi : 0.1〜1.0%、 Or : 7.
0〜13.0%No : 0.4〜2.5%、 Nb 
: 0.02〜0.15%V : 0.02〜0.35
%、 W : 0.05〜2.50%N : 0.00
5〜0.080% かつ、前記−とNo量の関係が下記の座標点を占める第
1図ABCDに囲まれた範囲、また、 VとNb量の関
係が下記の座標点を占める第2図EFGHIJに囲まれ
た範囲、また、NbとC十N量の関係が下記の座標点を
占める第3図KLMNに囲まれた範囲、また、VとMo
+W量の関係が下記の座標点を占める第4図0PQRニ
囲まれた範囲、tた、No+W+2V+NbとC+N量
の関係が下記の座標点を占める第5図STUVに囲まれ
た範囲にあり、残部Feおよび不可避的不純物からなる
ようにしたものである。
[Means for solving the problems] The ferritic heat-resistant steel with excellent high-temperature strength according to the present invention has the following features:
C: 0.03% to 0.20%, Si: 1.0% by weight. 0% or less Mn
: 0.1-1.5%, Cu: O, 05-0.
30%Xi: 0.1-1.0%, Or: 7.
0-13.0% No: 0.4-2.5%, Nb
: 0.02~0.15%V: 0.02~0.35
%, W: 0.05-2.50%N: 0.00
5 to 0.080% and the range surrounded by ABCD in Figure 1 where the relationship between - and the amount of No occupies the following coordinate points, and Figure 2 where the relationship between V and the amount of Nb occupies the following coordinate points The range surrounded by EFGHIJ, the range surrounded by KLMN in Figure 3 where the relationship between Nb and C0N occupies the following coordinate points, and the range surrounded by V and Mo
The relationship between the +W amount is in the range surrounded by 0PQR in Figure 4, which occupies the following coordinate points, and the relationship between No + W + 2V + Nb and C + N is in the range surrounded by STUV in Figure 5, which occupies the following coordinate points, and the rest. It consists of Fe and inevitable impurities.

臀とNo量       VとNb量 WX    Mo$       VX   Nb!A
(0,05,2,50)      E(0,02,0
,15)B(0,05,0,85)      F(0
,02,0,04)C(0,35,0,40)    
  G(0,0fl、 0.02)D(2,50,0,
40)      H(0,35,0,02)I(0,
35,0,75) J(0,20,0,15) NbとC十N量      V と)!o+W量Nb$
  C◆NZ       VX   Mo+W%K(
0,02,0,15)      O(0,02,2,
5)L(0,02,0,05)      P(0,0
?、 0.5)M(0,15,0,05)     Q
(0,35,0,8)N(0,15,0,28)   
   R(0,30,2,9)Mo+W+2V+Nbと
C十N 量 Mo+W+2V+NbX C◆N! S(0,7,0,19) ?(0,7,0,05) U(3,8,0,08) V(3,El、0.28) [作用] 本発明を達成するために、まずMOと 豐の添加が高温
強度に及ぼす影響を詳細に検討した結果、Wの添加が高
温強度、中でも800℃を越える温度でのクリープ破断
強度を著しく向上させることを見い出した。 Mo、臀
はともにフェライト形成元素であり、あまり多量に添加
するとデルタフェライトの体積率が増し、高温強度が低
下する。一方、N01W添加量が少なくては強度向上効
果が薄れる。この考えのもとに、No、 W添加量の多
くの組合わせにわたって、850℃X5000hのクリ
ープ破断強度を調べた結果、クリープ破断応力σr≧1
0Kg/■m2の領域として第1図の斜線の領域を得た
。すなわち、讐とMOは第1図の斜線の領域内にある時
、優れたクリープ破断強度が得られる。
Buttocks and No amount V and Nb amount WX Mo$ VX Nb! A
(0,05,2,50) E(0,02,0
,15) B(0,05,0,85) F(0
,02,0,04)C(0,35,0,40)
G(0,0fl, 0.02)D(2,50,0,
40) H(0,35,0,02)I(0,
35,0,75) J (0,20,0,15) Nb and C ten N amount V)! o+W amount Nb$
C◆NZ VX Mo+W%K(
0,02,0,15) O(0,02,2,
5) L(0,02,0,05) P(0,0
? , 0.5) M(0,15,0,05) Q
(0,35,0,8)N(0,15,0,28)
R(0,30,2,9)Mo+W+2V+Nb and C1N Quantity Mo+W+2V+NbX C◆N! S(0,7,0,19)? (0,7,0,05) U (3,8,0,08) V (3, El, 0.28) [Function] In order to achieve the present invention, first, the addition of MO and lily increases high temperature strength. As a result of a detailed study of its influence, it was found that the addition of W significantly improves high-temperature strength, especially creep rupture strength at temperatures exceeding 800°C. Both Mo and Mo are ferrite-forming elements, and if they are added in too large a quantity, the volume fraction of delta ferrite will increase and the high temperature strength will decrease. On the other hand, if the amount of N01W added is small, the strength improvement effect will be diminished. Based on this idea, we investigated the creep rupture strength at 850°C for 5000 hours across many combinations of No. and W addition amounts, and found that the creep rupture stress σr≧1
The shaded area in FIG. 1 was obtained as the 0 kg/m2 area. That is, excellent creep rupture strength can be obtained when the resistance and MO are within the shaded area in FIG.

ここで、直線ABはV量が0.05%を示す道線であり
、これ未満ではクリープ強度を向上させる効果が極めて
弱い、直線CDはMo量が0.4%を示す直線であり、
これ未満ではクリープ強度の向上効果が弱い、直線BC
より下の領域ではりとMoの量が少なすぎるためクリー
プ強度が低下する。一方、直線ADより上の領域ではり
十Mo量が多すぎるためデルタフェライトの体積が増し
、クリープ強度が低下する。
Here, the straight line AB is a line showing a V content of 0.05%, and below this, the effect of improving creep strength is extremely weak, and the straight line CD is a straight line showing a Mo content of 0.4%.
Below this, the effect of improving creep strength is weak, straight line BC
In the lower region, the amount of beam and Mo is too small, resulting in a decrease in creep strength. On the other hand, in the region above the straight line AD, the amount of Mo is too large, so the volume of delta ferrite increases and the creep strength decreases.

次に、VとWbの添加が高温強度に及ぼす影響を詳細に
検討した結果、VとNbを複合して適量添加することに
より、高温強度を著しく向上させることが知見された。
Next, as a result of a detailed study of the effect of the addition of V and Wb on high-temperature strength, it was found that high-temperature strength can be significantly improved by adding an appropriate amount of a combination of V and Nb.

その結果得られた最適範囲を示すと、第2図の斜線で示
す領域である。
The optimum range obtained as a result is the shaded area in FIG.

ここで、直線EFはV量が0.02%を示す直線であり
、直線GHはNb量が0.02%を示す直線であり、V
もNbもこれ未満ではクリープ強度を向上させる効果が
極めて弱い、直線IHはV量が0.35%を示す直線で
あり、直線EJはNb量が0.15%を示す直線であり
、VおよびNbがそれぞれの値より多いと炭化物が粗大
化してクリープ強度が低下するとともに、切欠靭性や溶
接性を低下させることになる。直線FCより下の領域で
は、Wb、 V量が少なすぎるためクリープ強度を向上
させる効果が弱く、直線IJより上の領域では炭化物が
粗大化してクリープ強度が低下する。
Here, the straight line EF is a straight line in which the V amount is 0.02%, the straight line GH is a straight line in which the Nb amount is 0.02%, and the V
If both Nb and Nb are less than this, the effect of improving creep strength is extremely weak.The straight line IH is a straight line indicating a V content of 0.35%, and the straight line EJ is a straight line indicating a Nb content of 0.15%. If Nb is greater than the respective values, the carbides will become coarse and the creep strength will decrease, as well as notch toughness and weldability. In the region below straight line FC, the amount of Wb and V is too small, so the effect of improving creep strength is weak, and in the region above straight line IJ, carbides become coarse and creep strength decreases.

、次に、Nb量と C,N量が高温強度に及ぼす影響を
詳細に検討した結果、Nb量に対するC+N量の関係が
第3図の斜線の内部にある時、優れた高温強度が得られ
ることが知見された。
Next, as a result of a detailed study of the effects of Nb content and C and N content on high-temperature strength, it was found that excellent high-temperature strength can be obtained when the relationship between C+N content and Nb content is within the diagonal line in Figure 3. It was discovered that

ここで、直線KLはNb量が0.02%を示す直線であ
り、これ未満ではクリープ強度を向上させる効果が極め
て弱い、直線LMはC◆N量が0.05%を示す直線で
あり、これ未満ではNbとの炭窒化物が有効に生成され
ないため、クリープ強度を向上させる効果がない、直線
>INはNb量が0.15%を示す直線であり、この値
より多くなると炭窒化物が粗大化してクリープ強度が低
下するとともに、切欠靭性や溶接性を低下させる。直線
KNはNb量の増加により CAN量の上限が上昇する
ことを示し、この直線より上の領域では粗大な炭窒化物
が生じるためクリープ強度が低下する。
Here, the straight line KL is a straight line indicating an Nb content of 0.02%; below this, the effect of improving creep strength is extremely weak; the straight line LM is a straight line indicating a C◆N content of 0.05%; If the amount is less than this, carbonitrides with Nb will not be effectively generated, so there is no effect of improving creep strength.The straight line > IN is a straight line that indicates the amount of Nb is 0.15%, and if it exceeds this value, carbonitrides will not form effectively. becomes coarse and the creep strength decreases, as well as notch toughness and weldability. The straight line KN indicates that the upper limit of the CAN content increases with an increase in the Nb content, and in the region above this straight line, coarse carbonitrides are formed, resulting in a decrease in creep strength.

続いて、V量とNo+W量が高温強度に及ぼす影響を詳
細に検討した結果、■の添加が効果があり、このVfi
はにo+W量と密接な関係があり、第4図の斜線の内部
にある時、優れた高温強度が得られることが知見された
Subsequently, as a result of a detailed study of the effects of the amount of V and the amount of No + W on high temperature strength, it was found that the addition of ■ was effective, and this Vfi
It was found that there is a close relationship with the amount of o+W, and that when it is within the diagonal line in FIG. 4, excellent high-temperature strength can be obtained.

ここで、直線OPはNo◆W量の低下に伴ない、高温強
度を達成するためにはV量を増加させる必要があること
を示し、直線RQはNo◆−量の増加に伴ない、高温強
度を達成するためにはV量を低下させる必要があること
を示しており、直線OPより左側の領域ではVの炭窒化
物の形成が不十分であるため、高温強度の改善効果が弱
く、直線RQより右側の領域では炭化物が粗大化しクリ
ープ強度を下げ、しかも切欠靭性や溶接性を低下させる
。直線ORやPQは、高温強度を達成するためにはV量
の増加に伴ない、Mo+W量を増加させる必要があるこ
とを示しており、直線ORより上の領域ではNo+W 
iが多すぎるため、フェライト量が多くなり、クリープ
強度が低下する。直線PQより下の領域ではMO◆w3
が少なすぎるため、高温強度を向上させる効果が少ない
Here, the straight line OP indicates that it is necessary to increase the V amount in order to achieve high temperature strength as the No◆W amount decreases, and the straight line RQ indicates that the V amount increases as the No◆- amount increases. This shows that it is necessary to reduce the amount of V in order to achieve strength, and in the region to the left of the straight line OP, the formation of carbonitrides of V is insufficient, so the effect of improving high-temperature strength is weak. In the region to the right of straight line RQ, carbides become coarse and reduce creep strength, as well as notch toughness and weldability. Linear OR and PQ indicate that in order to achieve high temperature strength, it is necessary to increase the amount of Mo + W as the amount of V increases, and in the region above the line OR, No + W
Since i is too large, the amount of ferrite increases and the creep strength decreases. In the area below the straight line PQ, MO◆w3
is too small, so the effect of improving high-temperature strength is small.

さらに、No、 W 、 V 、 Nb量と CAN量
の関係が高温強度に及ぼす影響を詳細に検討した結果、
Mo+W◆2v◆Nbflに対するC+N量が第5図の
斜線の範囲にある時、優れた高温強度が得られることが
知見された。
Furthermore, as a result of a detailed study of the influence of the relationship between the amounts of No, W, V, and Nb and the amount of CAN on high-temperature strength,
It has been found that when the amount of C+N relative to Mo+W◆2v◆Nbfl is within the shaded range in FIG. 5, excellent high-temperature strength can be obtained.

ここで、直線STはNo+W+2V+Nb量が0.7%
を示す直線であり、これ未満では炭窒化物の生成量が少
ないため、クリープ強度を向上させる効果が弱い、直線
vUはNo+W◆2V+Nb量が3.6%を示す直線で
あり、これより多いと炭化物が粗大化するためにクリー
プ強度が低下する。直線SvやTυは、Mo+W+2V
◆Nbiの増加とともに、C+%量を増加させる必要が
あることを示しており、直線TOより下の領域では、炭
窒化物の生成量が少ないため、クリープ強度を向上させ
る効果が弱い、直線SVより上の領域では、炭窒化物が
粗大化するためクリープ強度が低下する。
Here, the straight line ST has No+W+2V+Nb amount of 0.7%
Below this, the amount of carbonitride produced is small, so the effect of improving creep strength is weak.The straight line vU is a straight line that indicates the amount of No+W◆2V+Nb is 3.6%; Creep strength decreases due to coarsening of carbides. The straight line Sv and Tυ are Mo+W+2V
◆This shows that it is necessary to increase the amount of C+% as Nbi increases, and in the region below the straight line TO, the amount of carbonitride produced is small, so the effect of improving creep strength is weak, and the straight line SV In the upper region, the creep strength decreases because the carbonitrides become coarser.

さらに高Cr鋼において、Cuを冒と Vとともに適量
添加することにより、高温での耐酸化性向北に著しい効
果があることが知見された。その結果を第6図に示す、
すなわち、750℃の大気中で500h加熱後の腐食減
量変化においてCuを添加することによる影響を示すと
、V、Wを複合添加した高Crmでは、Cuを0.05
%以上添加することにより腐食減量が急激に低下する。
Furthermore, it has been found that adding an appropriate amount of Cu along with V to high Cr steel has a significant effect on improving oxidation resistance at high temperatures. The results are shown in Figure 6.
In other words, to show the effect of adding Cu on the change in corrosion loss after heating in the atmosphere at 750°C for 500 hours, in high Cr with combined addition of V and W, Cu was added by 0.05
By adding more than %, the corrosion weight loss decreases rapidly.

一方、V、Wを添加しない高Cr鋼では前者に比べ著し
い効果は認められない。
On the other hand, in high Cr steel without the addition of V or W, no significant effect is observed compared to the former.

本発明は上記の6つの知見を根幹に完成した。The present invention was completed based on the above six findings.

以下、本発明の成分限定理由について説明する。The reasons for limiting the components of the present invention will be explained below.

Cは低温変態生成物の形成、炭化物の析出からクリープ
破断強度の向上に寄与する装置な元素である。 0−2
0%を越えると焼入れ性が著しく増し強度は増加するが
、溶接性、加工性が劣化するので、Cは0.20%以下
とした。 0.03%未満では高温強度の確保が困難で
あり、デルタフェライト量が増加し、切欠靭性の劣化を
もたらすので、Cは0.03%以上とした。
C is an essential element that contributes to the formation of low-temperature transformation products and the precipitation of carbides to improve the creep rupture strength. 0-2
If it exceeds 0%, the hardenability and strength will increase significantly, but the weldability and workability will deteriorate, so the C content is set to 0.20% or less. If it is less than 0.03%, it is difficult to ensure high temperature strength, the amount of delta ferrite increases, and the notch toughness deteriorates, so the C content is set to be 0.03% or more.

Siは脱酸剤として添加するが、多量に用いると鋼の靭
性が劣化するので、上限を 1.00%とした。
Si is added as a deoxidizing agent, but if used in large amounts, the toughness of the steel deteriorates, so the upper limit was set at 1.00%.

xnは脱酸、脱硫剤として、また強度、熱間加工性を改
善し適正な組織を得るために有用な元素であるが、0.
1%未満では有用な効果がなく、1.5%を越えると焼
入れ性が高くなり、強度が上がるものの曲げ等の加工性
や靭性の劣化を招くので、0.1〜1.5%とした。
xn is an element useful as a deoxidizing and desulfurizing agent, as well as for improving strength and hot workability and obtaining an appropriate structure, but 0.
If it is less than 1%, there will be no useful effect, and if it exceeds 1.5%, the hardenability will increase, and although the strength will increase, it will cause deterioration of workability such as bending and toughness, so it was set at 0.1 to 1.5%. .

Cuは高Cr鋼に添加する場合、Orを含んだ酸化被膜
に粘性を与え、さらに被膜の定着性を良くし、Cr鋼の
耐酸化性を助ける。特に高温での耐酸化性向上に対し、
高Cr−No鋼に讐およびVとともにCuを複合添加す
ることにより、第6図に示すように著しい効果があるこ
とが知見された。この効果を発揮するためには、Cuは
0.05%以上の添加が必要である。一方、多量に添加
すると靭性の劣化を招くので上限を 0.3%とした。
When added to high Cr steel, Cu gives viscosity to the oxide film containing Or, further improves the adhesion of the film, and helps the oxidation resistance of the Cr steel. Especially for improving oxidation resistance at high temperatures.
It has been found that the combined addition of Cu and V to high Cr-No steel has a significant effect as shown in FIG. 6. In order to exhibit this effect, Cu needs to be added in an amount of 0.05% or more. On the other hand, since adding too much leads to deterioration of toughness, the upper limit was set at 0.3%.

Xiはデルタフェライト量を適正値に制御し、高温強度
を維持することと、靭性の改善のために添加するが、0
.10%未満では効果なく、1.0%を越えると熱間変
形抵抗が増し熱間加工上好ましくない上に、1.0%を
越えても一層の靭性改善効果はみられず、しかも旧は高
価な元素であるので上限を1.0%とした。
Xi is added to control the amount of delta ferrite to an appropriate value, maintain high temperature strength, and improve toughness, but 0
.. If it is less than 10%, there is no effect, and if it exceeds 1.0%, hot deformation resistance increases and it is not favorable for hot processing. Since it is an expensive element, the upper limit was set at 1.0%.

Crは耐高温酸化性、高温長時間強度の向上のために添
加するもので、800℃以上の高温長時間強度はCrが
7.0〜13.0%のとき高く、13.0%を越えてC
rが多くなるとデルタフェライトが増し、高温長時間強
度が低下する。一方、7.0%未満ではCr炭化物によ
る析出強化、Crの固溶強化が期待できず、高温長時間
強度が低下し、しかも7.0%未満では高温の耐酸化性
に乏しい、このため、Crの成分範囲は7.0〜13.
0%とした。
Cr is added to improve high-temperature oxidation resistance and high-temperature long-term strength.The high-temperature long-term strength of 800℃ or higher is high when Cr is 7.0 to 13.0%, and exceeds 13.0%. teC
As r increases, delta ferrite increases and high temperature long-term strength decreases. On the other hand, if it is less than 7.0%, precipitation strengthening due to Cr carbides and solid solution strengthening of Cr cannot be expected, and high-temperature long-term strength decreases, and if it is less than 7.0%, high-temperature oxidation resistance is poor. The component range of Cr is 7.0 to 13.
It was set to 0%.

Mo、 Wは高温長時間強度を著しく高めるため、耐熱
鋼には、不可欠の元素であり、高Cr鋼においてNoと
Wの複合添加で著しい効果が認められる。
Mo and W are indispensable elements for heat-resistant steel because they significantly increase high-temperature, long-term strength, and the combined addition of No and W has been found to have a significant effect in high-Cr steel.

両元素は鋼中固溶し強化するほか、炭化物を析出してク
リープ強度を向上させるが、0.4%未満のMOや0.
05%未満の−ではこの効果がなく、第1図に示した直
線BCより下の範囲では高温強度の向上は十分発揮され
ない、さらに高Cr−Mofiにおいて、適量のCu、
 Vとともに臀を添加することにより、高温耐酸化性が
著しく向上することが知見された。この効果を発揮する
ためにもWは0.05%以上でなけらばならない、一方
、2.5%を越えるNo、2.5%を越える智もしくは
直線AI)より上の範囲ではデルタフェライト量が増し
高温強度を低下させる上に、Mo、 Wは高価な元素で
あるからコスト高となり経済性の上からも好ましくない
Both elements dissolve in solid solution in steel and strengthen it, as well as precipitate carbides and improve creep strength.
At less than 0.05% -, this effect is absent, and in the range below the straight line BC shown in Fig. 1, the high temperature strength is not sufficiently improved.
It has been found that the addition of V and V can significantly improve high temperature oxidation resistance. In order to exhibit this effect, W must be 0.05% or more; on the other hand, in the range above 2.5% (No, 2.5% or more, or straight line AI), the amount of delta ferrite is In addition, since Mo and W are expensive elements, the cost increases, which is not preferable from an economic point of view.

Nb、 Vは炭化物もしくは炭窒化物として析出し、長
時間にわたって高温強度の低下を抑制する。 Nb炭化
物もしくはNb炭窒化物の溶解度積は7次化物もしくは
7次窒化物の溶解度積より小さく、析出しやすいので高
温短時間強度を著しく高めるが、単独添加ではNb炭化
物、Nb炭窒化物は凝集、粗大化しやすく長時間高温強
度を維持するのが困難となる。長時間強度の向上にはN
b、 Vの複合添加が有効で、製造過程で析出したNb
(C,N)に高温で使用中X、3C,、M6Cの炭化物
が析出し、VはVやC3の炭化物のほかに固溶状態にあ
るVが上記炭化物)1.、C5、M2Cに拡散し、これ
ら炭化物の粗大化を抑制する。Nb、■の複合添加によ
り微細析出したWb、 Vの析出物、さらに長時間経過
後に微細析出するM、lG、 、 M≦C1固有Vが高
温長時間強度を向上させる。したがって、V単独でも微
細炭化物>4.、C≦、に、Cは得られず、長時間強度
を改善することはできない、さらに、Vにおいては、適
量の臀、Cuとともに添加することにより、高温耐酸化
性の改善に著しい効果のあることが知見された。 Nb
、 Vはいずれも0.02%未満では上記の効果が不充
分である。また、NbもしくはVが多すぎても炭化物が
著しく粗大化しクリープ破断強度を下げ、しかも切欠靭
性や溶接性を低下させるので、Nbは 0.15%以下
、Vは0,35%以下とした。
Nb and V precipitate as carbides or carbonitrides and suppress the decline in high temperature strength over a long period of time. The solubility product of Nb carbide or Nb carbonitride is smaller than that of 7th oxide or 7th nitride, and it is easy to precipitate, so it significantly increases the high temperature short-time strength, but when added alone, Nb carbide and Nb carbonitride coagulate. , it tends to become coarse and it is difficult to maintain high temperature strength for a long time. N for long-term strength improvement
Combined addition of b and V is effective, and Nb precipitated during the manufacturing process
During use at high temperatures (C, N), carbides of X, 3C, and M6C precipitate, and V is in a solid solution state in addition to carbides of V and C3. 1. , C5, and M2C, and suppresses coarsening of these carbides. Precipitates of Wb and V that are finely precipitated by the combined addition of Nb and ■, as well as M, lG, and intrinsic V (M≦C1) that finely precipitate after a long period of time improve the high-temperature long-term strength. Therefore, even with V alone, fine carbides >4. , C≦, C cannot be obtained and long-term strength cannot be improved.Furthermore, when V is added with an appropriate amount of Cu, it has a remarkable effect on improving high-temperature oxidation resistance. It was discovered that. Nb
, V are less than 0.02%, the above effects are insufficient. Further, if too much Nb or V is present, the carbides will become coarse and the creep rupture strength will be reduced, and the notch toughness and weldability will also be reduced. Therefore, the Nb content was set to 0.15% or less, and the V content was set to 0.35% or less.

Nは窒化物もしくは炭窒化物の形成、さらに固有Nの残
存から高温長時間強度を向上させるが、0.005%未
満ではその効果がなく、0.080%を越えると溶接時
ブローホールが形成され、著しく溶接性を劣化するので
、Nは0.005%〜o、oso%とした。
N improves high-temperature long-term strength through the formation of nitrides or carbonitrides and the residual inherent N, but if it is less than 0.005%, it has no effect, and if it exceeds 0.080%, blowholes will form during welding. Since this significantly deteriorates weldability, the content of N was set to 0.005% to o, oso%.

[実施例] 第1表は本発明鋼、第2表は比較鋼の化学成分を示す・
これら化学成分の鋼塊を高周波溶解炉にて製造し、その
鋼塊を熱間圧延で20mm厚みの鋼板とし、1050℃
で焼きならし、780℃で1時間焼戻しの処理を行なっ
た。その後、6■■Φ丸棒クリ一プ試験片と3mm厚X
 30X 30の大気中高温酸化試験片、溶接硬さ試験
片を採取した。クリープ試験は、650℃で応力10K
g/am2における破断時間、大気中高温酸化試験は、
700℃で1000時間保持後の重量減少量(mg/a
m2) 、溶接性試験は18(:r−8N+ステンレス
溶接棒を用いた一層の肉感溶接後、75Q℃、1時間の
後熱処理をした後の熱影響部最高硬さを調べた。
[Example] Table 1 shows the chemical composition of the invention steel and Table 2 shows the chemical composition of the comparative steel.
A steel ingot with these chemical components is manufactured in a high-frequency melting furnace, and the steel ingot is hot rolled into a 20 mm thick steel plate at 1050℃.
It was normalized at 780° C. and tempered for 1 hour. After that, a 6■■Φ round bar clip test piece and a 3mm thick X
A 30×30 atmospheric high temperature oxidation test piece and a weld hardness test piece were taken. Creep test was conducted at 650℃ and stress 10K.
Breaking time in g/am2, high temperature oxidation test in air,
Weight loss after holding at 700°C for 1000 hours (mg/a
The weldability test was conducted using a 18(r-8N+ stainless steel welding rod), followed by post-heat treatment at 75Q°C for 1 hour, and the maximum hardness of the heat-affected zone was determined.

本発明例における鋼種としては、C、Si、 Mn。The steel types in the examples of the present invention include C, Si, and Mn.

Cu、旧、Cr、 No、 Nb、 V 、 W 、 
N c7)重量%を変化させた鋼種を示した。比較鋼の
うちイ鋼は5TBA26、口調は■5TBA27(7)
従来鋼、へ〜ホ鋼11Nb、Vが単独または複合添加さ
れるものの、W 、 Cuが添加されていないもの、へ
鋼は曽が添加されるものの、Nb、 V 、 Cuが添
加されていないもの、ト鋼はCuが添加されていないも
の、チ鋼はCuが添加されておらず、かつC量が本発明
鋼を越えているものである。す、ヌ鋼はCuが添加され
ているが、それぞれ冒、Vが添加されていないもの、ル
鋼はASTM Ta2 (Super9Cr)鋼である
Cu, old, Cr, No, Nb, V, W,
N c7) Steel types with different weight % are shown. Among the comparison steels, the steel is 5TBA26, and the tone is ■5TBA27 (7).
Conventional steel, He-ho steel 11Nb and V are added singly or in combination, but W and Cu are not added; He steel is added with So, but Nb, V and Cu are not added. , G steel is one to which Cu is not added, and Z steel is one to which Cu is not added and the amount of C exceeds that of the steel of the present invention. The steels are ASTM Ta2 (Super9Cr) steels to which Cu is added, but the steels to which no V and V are added.

未発萌の試験結果は第1表右欄に示すごとく、優れた高
温強度を有し、クリープ破断時間は7000時間以上と
なっている。高温耐酸化性も本発明鋼の場合、すべて0
.8 tag/c■2以下の低い値であり、優れた耐酸
化性を示している。最高硬さくHマ)は最高強度が優れ
ている割には大きな上昇はなく、すべてHマ<320で
あり、溶接性にも優れている。
As shown in the right column of Table 1, the test results for unexplored seeds show that they have excellent high-temperature strength and a creep rupture time of 7,000 hours or more. High-temperature oxidation resistance is also all 0 in the case of the steel of the present invention.
.. The value is as low as 8 tag/c 2 or less, indicating excellent oxidation resistance. Although the maximum hardness (Hma) is excellent, there is no large increase, and all Hma<320, and the weldability is also excellent.

一方、第2表右欄に示すごとく、比較鋼イ、口調はWb
 、 V 、 W ヲ含有せず、650℃、 10Kg
/ms+’応力下の破断時間が著しく短い、 Nbを含
有するハ鋼、■を含有する二鎖は破断時間が改善される
が、本発明鋼に比べると著しく短かい、 HbとVを複
合添加したホ鋼は破断時間が更に改善されるが、Wを含
まないため本発明鋼に比べると短かく劣っている。 N
b、 Vを含まず−を含むへ鋼はホ鋼と同程度に破断時
間が改善されているものの本発明鋼に比べると短かい、
ト、チ鋼はNb、 V 、 Wが複合添加されて破断強
度は著しく長時間側に改善される。しかし、比較鋼の場
合、いずれもCuを含有しておらず、高温耐酸化性が本
発明鋼に比べて著しく劣っている。また、チ鋼ではCの
重量%が本発明における範囲を上回っているため、最高
硬さが大幅に大きくなっている欠点がある。す、ヌ鋼は
冒またはVが添加されていないためクリープ破断時間が
短いとともに、高温耐酸化性は本発明鋼に比べて劣って
いる。
On the other hand, as shown in the right column of Table 2, the comparative steel is A, and the tone is Wb.
, V, W wo-free, 650℃, 10Kg
/ms+' The fracture time under stress is extremely short.The fracture time of C steel containing Nb and the double chain containing ■ is improved, but it is significantly shorter than the steel of the present invention.Combined addition of Hb and V Although the fracture time of the steel E steel is further improved, it is shorter and inferior to the steel of the present invention because it does not contain W. N
b. The steel containing - but not containing V has an improved rupture time to the same extent as steel E, but it is shorter than the steel of the present invention.
G and H steels have a composite addition of Nb, V, and W, and their breaking strength is significantly improved over a long period of time. However, in the case of the comparative steels, none of them contain Cu, and their high-temperature oxidation resistance is significantly inferior to that of the steel of the present invention. Furthermore, since the weight percent of C in steel is higher than the range specified in the present invention, there is a drawback that the maximum hardness is significantly increased. The steel has a short creep rupture time because it does not contain V or V, and its high-temperature oxidation resistance is inferior to that of the steel of the present invention.

上記のように、本発明鋼は、現用のCr−NotI4よ
り高温長時間強度に優れ、800〜850℃の温度範囲
で5OS304以上の長時間クリープ破断強度を有する
鋼である。しかも、高温耐酸化性も著しく優れた鋼であ
り、溶接性も考慮し、最高硬さくHマ)が320以下と
なって実用上差しつかえなく使用できる範囲である。し
たがって、高価な 18Cr−8Ni系オーステナイト
ステンレス鋼の代替使用が可能で、本発明鋼は経済的な
熱交換器材等の耐熱鋼として極めて有用である。
As described above, the steel of the present invention is superior in high-temperature long-term strength to the currently used Cr-Not I4, and has a long-term creep rupture strength of 5OS304 or higher in the temperature range of 800 to 850°C. Moreover, it is a steel with extremely excellent high-temperature oxidation resistance, and considering weldability, the maximum hardness (H) is 320 or less, which is a range that can be used without any problems in practical use. Therefore, it is possible to use the steel as an alternative to the expensive 18Cr-8Ni austenitic stainless steel, and the steel of the present invention is extremely useful as an economical heat-resistant steel for heat exchange equipment and the like.

本発明鋼の用途としては、ボイラ管、化学プラント用耐
熱鋼管、高速増殖炉用蒸気発生器管、過熱器管のような
耐熱用鋼管として好適であり、さらに、一般に耐熱性が
要求される部材としても広く使用可能である。
The steel of the present invention is suitable for use as heat-resistant steel pipes such as boiler pipes, heat-resistant steel pipes for chemical plants, steam generator pipes for fast breeder reactors, and superheater pipes. It can also be widely used.

[発明の効果] 以上のように、本発明に係る高温強度に優れたフェライ
ト系耐熱鋼は、重量%で C:0.03%〜0.20%、Si:1.0%以下Mn
: 0.1〜1.5%、 Cu : 0.05〜0.3
0%Xi : 0.1〜1.0%、 Or : 7.0
〜13.0%Mo:0.4〜2.5%、 Nb:0.0
2〜0.15%V : 0.02〜0.35%、 W 
: 0.05〜2.50%N : 0.005〜0.0
80% かつ、前記讐とNo量の関係が下記の座標点を占める第
1図AB(Dに囲まれた範囲、また、VとNb量の関係
が下記の座標点を占める第2図EFGHI Jに囲まれ
た範囲、また、HbとC十N量の関係が下記の座標点を
占める第3図KLMNに囲まれた範囲、また、VとMo
+W量の関係が下記の座標点を占める第4図 0PQR
に囲まれた範囲、また、No+W+2V+NbとCAM
量の関係が下記の座標点を占める第5図STUVに囲ま
れた範囲にあり、残部Feおよび不可避的不純物よりな
るようにしたものである。
[Effects of the Invention] As described above, the ferritic heat-resistant steel with excellent high-temperature strength according to the present invention has C: 0.03% to 0.20%, Si: 1.0% or less, and Mn in weight percent.
: 0.1~1.5%, Cu: 0.05~0.3
0%Xi: 0.1-1.0%, Or: 7.0
~13.0%Mo: 0.4~2.5%, Nb:0.0
2~0.15%V: 0.02~0.35%, W
: 0.05~2.50%N: 0.005~0.0
80% And the relationship between the amount of V and the amount of Nb occupies the following coordinate points in Figure 1 AB (D), and the relationship between the amount of V and the amount of Nb occupies the following coordinate points in Figure 2 EFGHI J Also, the range surrounded by KLMN in Figure 3, where the relationship between Hb and the amount of C0N occupies the following coordinate points, and the range surrounded by V and Mo
Figure 4 0PQR where the relationship between +W amount occupies the following coordinate points
Also, No+W+2V+Nb and CAM
The quantity relationship is in the range surrounded by STUV in FIG. 5, which occupies the following coordinate points, and the remainder consists of Fe and unavoidable impurities.

WとNo量       VとNb量 W%    No量       VX   Nb$A
(0,05,2,50)      E(0,02,0
,15)B(0,05,0,65)      F(0
,02,0,04)C(0,35,0,40)    
  G(0,0B、 0.02)D(2,50,0,4
0)     H(0,35,0,02)1(0,35
,0,75) J(0,20,0,15) Hbと04M量      VとMo+W量NbX  
C+N%       VX   Mo◆W%K(0,
02,0,15)      O(0,02,2,5)
L(0,02,0,05)      PCo、0?、
 0.5))!(0,15,0,05)      Q
(0,35,0,8)N(0,15,0,28)   
     R(0,30,2,9)No+W+2V+N
b トCAN 量 Mo+W+2V+Nb$  C+N$ S(0,7,0,19) t(o、7,0.05) U(3,8,0,08) V(3,8,0,28) したがって、従来のフェライト系耐熱鋼に比べ、高温特
に600℃以上での強度(特にクリープ破断強度)が大
幅に改善されており、かつ高温の耐酸化性が改善された
鋼であり、しかも溶接性、加工性も良好な鋼であり、例
えば、高温、高圧環境下で使用される超々臨界圧ボイラ
材料としてやFBR用蒸気発生管、過熱器管等に使用し
、薄肉化、長寿命化に寄与できるフェライト系耐熱鋼を
得ることが可能となる。
W and No amount V and Nb amount W% No amount VX Nb$A
(0,05,2,50) E(0,02,0
,15) B(0,05,0,65) F(0
,02,0,04)C(0,35,0,40)
G(0,0B, 0.02)D(2,50,0,4
0) H(0,35,0,02)1(0,35
,0,75) J(0,20,0,15) Hb and 04M amount V and Mo+W amount NbX
C+N% VX Mo◆W%K(0,
02,0,15) O(0,02,2,5)
L(0,02,0,05) PCo, 0? ,
0.5))! (0,15,0,05) Q
(0,35,0,8)N(0,15,0,28)
R(0,30,2,9)No+W+2V+N
b Quantity Mo+W+2V+Nb$ C+N$ S(0,7,0,19) t(o,7,0.05) U(3,8,0,08) V(3,8,0,28) Therefore, Compared to conventional ferritic heat-resistant steels, this steel has significantly improved strength (especially creep rupture strength) at high temperatures, particularly above 600°C, as well as improved high-temperature oxidation resistance, as well as improved weldability and processability. For example, ferrite can be used as a material for ultra-supercritical pressure boilers used in high-temperature, high-pressure environments, as well as for FBR steam generation tubes, superheater tubes, etc., contributing to thinner walls and longer life. It becomes possible to obtain heat-resistant steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNo、 W量とクリープ破断強度の関係を示す
線図、第2図はNb、 V量とクリープ破断強度の関係
を示す線図、第3図はCAM 、 Nll量とクリープ
破断強度の関係を示す線図、第4図はNo+W、 V量
とクリープ破断強度の関係を示す線図、第5図はCAM
 、 No+W+2V◆Nb量とクリープ破断強度の関
係を示す線図、第6図は750”CX 500 h大気
中における酸化試験後の腐食減量に及ぼすCu量の影響
を示す線図である。 代理人 弁理士  塩 川 修 治 第10 第2図 第4図 V(wt%) 第 5 図 MO+踏2V+Nb 、C十N S  (0,7、0,19)
Figure 1 is a diagram showing the relationship between No. and W content and creep rupture strength. Figure 2 is a diagram showing the relationship between Nb and V content and creep rupture strength. Figure 3 is a diagram showing the relationship between CAM and Nll content and creep rupture strength. Figure 4 is a diagram showing the relationship between No+W, V amount and creep rupture strength, Figure 5 is CAM
, No+W+2V◆A diagram showing the relationship between the amount of Nb and creep rupture strength. Figure 6 is a diagram showing the influence of the amount of Cu on the corrosion weight loss after an oxidation test in 750" CX 500 h atmosphere. Agent Patent Attorney Shuji Shiokawa 10th Fig. 2 Fig. 4 V (wt%) Fig. 5 MO+Step 2V+Nb, C1N S (0,7,0,19)

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で C:0.03〜0.20%、Si:1.0%以下Mn:
0.1〜1.5%、Cu:0.05〜0.30%Ni:
0.1〜1.0%、Cr:7.0〜13.0%Mo:0
.4〜2.5%、Nb:0.02〜0.15%V:0.
02〜0.35%、W:0.05〜2.50%N:0.
005〜0.080% かつ、前記WとMo量の関係が下記の座標点を占める第
1図ABCDに囲まれた範囲、また、VとNb量の関係
が下記の座標点を占める第2図EFGHIJに囲まれた
範囲、また、HbとC+H量の関係が下記の座標点を占
める第3図KLMNに囲まれた範囲、また、VとMo+
W量の関係が下記の座標点を占める第4図OPQRに囲
まれた範囲、またMo+W+2V+NbとC+N量の関
係が下記の座標点を占める第5図STUVに囲まれた範
囲にあり、残部Feおよび不可避的不純物よりなること
を特徴とする高温強度に優れたフェライト系耐熱鋼。 ▲数式、化学式、表等があります▼
(1) C: 0.03 to 0.20%, Si: 1.0% or less, Mn:
0.1-1.5%, Cu: 0.05-0.30% Ni:
0.1-1.0%, Cr: 7.0-13.0% Mo: 0
.. 4-2.5%, Nb: 0.02-0.15% V: 0.
02-0.35%, W: 0.05-2.50% N: 0.
005 to 0.080% and the range surrounded by ABCD in Figure 1 where the relationship between W and the amount of Mo occupies the following coordinate points, and Figure 2 where the relationship between V and the amount of Nb occupies the following coordinate points The range surrounded by EFGHIJ, the range surrounded by KLMN in Figure 3 where the relationship between Hb and C+H amount occupies the following coordinate points, and the range surrounded by V and Mo+
The relationship between the amounts of W is in the range surrounded by OPQR in Figure 4, which occupies the following coordinate points, and the relationship between Mo+W+2V+Nb and C+N is in the range surrounded by STUV in Figure 5, which occupies the following coordinate points, and the remainder is Fe and A ferritic heat-resistant steel with excellent high-temperature strength, characterized by the presence of unavoidable impurities. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
JP61208859A 1986-09-06 1986-09-06 Ferritic heat resistant steel with excellent high temperature strength and oxidation resistance Expired - Fee Related JPH0635642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208859A JPH0635642B2 (en) 1986-09-06 1986-09-06 Ferritic heat resistant steel with excellent high temperature strength and oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208859A JPH0635642B2 (en) 1986-09-06 1986-09-06 Ferritic heat resistant steel with excellent high temperature strength and oxidation resistance

Publications (2)

Publication Number Publication Date
JPS6365059A true JPS6365059A (en) 1988-03-23
JPH0635642B2 JPH0635642B2 (en) 1994-05-11

Family

ID=16563297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208859A Expired - Fee Related JPH0635642B2 (en) 1986-09-06 1986-09-06 Ferritic heat resistant steel with excellent high temperature strength and oxidation resistance

Country Status (1)

Country Link
JP (1) JPH0635642B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069870A (en) * 1989-03-06 1991-12-03 Sumitomo Metal Industries, Ltd. High-strength high-cr steel with excellent toughness and oxidation resistance
US5591391A (en) * 1994-09-20 1997-01-07 Sumitomo Metal Industries, Ltd. High chromium ferritic heat-resistant steel
CN115807197A (en) * 2022-12-21 2023-03-17 中国核动力研究设计院 Ferrite-based boron stainless steel with high boron content

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB741935A (en) * 1952-08-22 1955-12-14 Hadfields Ltd Improvements in alloy steels
JPS60131954A (en) * 1983-12-20 1985-07-13 Nippon Kokan Kk <Nkk> High-chromium steel having high toughness and hot cracking resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB741935A (en) * 1952-08-22 1955-12-14 Hadfields Ltd Improvements in alloy steels
JPS60131954A (en) * 1983-12-20 1985-07-13 Nippon Kokan Kk <Nkk> High-chromium steel having high toughness and hot cracking resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069870A (en) * 1989-03-06 1991-12-03 Sumitomo Metal Industries, Ltd. High-strength high-cr steel with excellent toughness and oxidation resistance
US5591391A (en) * 1994-09-20 1997-01-07 Sumitomo Metal Industries, Ltd. High chromium ferritic heat-resistant steel
CN115807197A (en) * 2022-12-21 2023-03-17 中国核动力研究设计院 Ferrite-based boron stainless steel with high boron content
CN115807197B (en) * 2022-12-21 2024-02-06 中国核动力研究设计院 Ferrite-based boron stainless steel with high boron content

Also Published As

Publication number Publication date
JPH0635642B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US5069870A (en) High-strength high-cr steel with excellent toughness and oxidation resistance
JP7016343B2 (en) High chrome martensitic heat resistant steel with high creep rupture strength and oxidation resistance
JPH04268040A (en) Heat resisting low alloy steel excellent in creep strength and toughness
JPH05345949A (en) Heat resistant low cr ferritic steel excellent in toughness and creep strength
JPS59176501A (en) Boiler tube
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP2631250B2 (en) High-strength ferritic heat-resistant steel for steel tubes for boilers
JP2002235154A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP3508667B2 (en) High Cr ferritic heat resistant steel excellent in high temperature strength and method for producing the same
EP0199046B1 (en) High-strength heat-resisting ferritic steel pipe and tube
JPH04371552A (en) High strength ferritic heat resisting steel
JPS6376854A (en) Heat resistant ferritic steel having superior strength at high temperature
JPS6365059A (en) Heat resistant ferritic steel having superior strength at high temperature
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
CN110919235B (en) Welding wire for stainless steel welding
JP3531228B2 (en) High Cr ferritic heat resistant steel
JPH04365838A (en) Ferritic heat resisting steel excellent in hot workability and strength at high temperature
JPH02217438A (en) Heat-resistant steel having high creep strength at high temperature
JP3869908B2 (en) High chromium ferritic heat resistant steel with excellent high temperature creep strength
JPH055891B2 (en)
JPH0387332A (en) High strength-low alloy-heat resistant steel
JP2002241903A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JPH0320410A (en) Production of high-cr ferritic heat-resisting steel tube having high creep rupture strength
JPH0397832A (en) High-strength high chromium steel excellent in oxidation resistance and weldability
JP2659814B2 (en) Manufacturing method of high strength low alloy heat resistant steel

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees