JPS6364909A - Production of silicon thin plate for solar cell - Google Patents

Production of silicon thin plate for solar cell

Info

Publication number
JPS6364909A
JPS6364909A JP61208052A JP20805286A JPS6364909A JP S6364909 A JPS6364909 A JP S6364909A JP 61208052 A JP61208052 A JP 61208052A JP 20805286 A JP20805286 A JP 20805286A JP S6364909 A JPS6364909 A JP S6364909A
Authority
JP
Japan
Prior art keywords
water
silicon
cooled
thin plate
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61208052A
Other languages
Japanese (ja)
Inventor
Akiya Ozeki
尾関 昭矢
Hideaki Mizukami
秀昭 水上
Masayuki Nakada
正之 中田
Naoki Sakata
坂田 直起
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61208052A priority Critical patent/JPS6364909A/en
Publication of JPS6364909A publication Critical patent/JPS6364909A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To directly obtain the titled thin plate from a molten state in good yield, by melting polycrystalline silicon fed above a water-cooled copper hearth with an electron gun, feeding the molten silicon into the hearth, sticking the molten silicon onto a water-cooled rotating drum and winding up the resultant silicon strip. CONSTITUTION:Polycrystalline silicon 1 in the form of a rod, etc., is horizontally fed onto a water-cooled copper hearth 2 in a device for producing the titled thin plate provided in a vacuum vessel at a constant speed and the tip part thereof is placed above the hearth 2 and melted with an electron gun 3 to feed proplets into the hearth 2. The droplets are subsequently melted with the electron gun 3 to give molten silicon 8, which is made to stick to a water- cooled rotating drum 4 having lateral stripes 7 of 0.1-0.3mm width at a regular interval, coagulated and wound upward to provide a silicon thin plate 5. The resultant silicon thin plate 5 is peeled from the drum 4 with a scraper 6.

Description

【発明の詳細な説明】 〔産業上の利用分胃〕 この発明は太陽電池用シリコン薄板を効率よく製造する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applications] This invention relates to a method for efficiently manufacturing silicon thin plates for solar cells.

〔従来の技術〕[Conventional technology]

従来の太陽電池用シリコンウェハーの製造法を第5図に
示す。
A conventional method for manufacturing silicon wafers for solar cells is shown in FIG.

先ず金属Si(純度98z)より多結晶シリコン(99
,99999999X)の製造は基本的には合成と析出
という工程である。
First, polycrystalline silicon (99
, 99999999X) is basically a process of synthesis and precipitation.

代表的合成反応、析出反応を以下に示す。Typical synthesis reactions and precipitation reactions are shown below.

(合成反応) S i + 3 Hc 1→S i H
c l s 十Hz(析出反応) S IHC13+H
x→S i +3 Hc 1析出反応は電流を通じ赤熱
されたシリコン芯棒上で反応を行わせ、その表面にいわ
ゆるCVD(Chemical Vapor Depo
sition)法により、シリコンを析出させ棒状多結
晶を得るシーメンス(Sie勤ence)法が一般的で
ある。
(Synthesis reaction) S i + 3 Hc 1 → S i H
c l s 10 Hz (precipitation reaction) S IHC13+H
The x→S i +3 Hc 1 precipitation reaction is carried out on a red-hot silicon core rod through an electric current, and a so-called CVD (Chemical Vapor Depot) is applied to the surface of the red-hot silicon rod.
The Siemens method, in which silicon is precipitated to obtain rod-shaped polycrystals, is commonly used.

次にシリコン単結晶を多結晶より製造する方法にはFZ
法(浮融帯法)とCZ法(引上げ法)がある。
Next, the method for manufacturing silicon single crystal from polycrystal is FZ.
There are two methods: the floating zone method and the CZ method (pulling method).

FZ法は第6図に示す如く、高周波加熱により、アルゴ
ン又は真空中で浮融帯溶解するものであり、又、CZ法
は第7図に示す如く、黒鉛ヒーター内の石英るつぼ内か
ら単結晶の種を核とし単結晶を上方に引上げ成長させる
方法である。
As shown in Figure 6, the FZ method melts a floating zone in argon or vacuum using high-frequency heating, and the CZ method melts a single crystal from a quartz crucible in a graphite heater as shown in Figure 7. This is a method of growing a single crystal by pulling it upward using the seed as a nucleus.

次に得られた単結晶を第8図に示すように、厚さ約0.
5閣の厚さで切断する。この際切断しろ、研摩しろは約
0.5a+mであり結局1+lll11のシリコン単結
晶から0.5−の太陽電池用シリコンウニへ−が一枚得
られろことになり、歩留りは約5桟である。
Next, the obtained single crystal has a thickness of about 0.0 mm, as shown in FIG.
Cut into 5 pieces thick. At this time, the cutting and polishing allowance is approximately 0.5a+m, and in the end, one piece of silicon single crystal for solar cells of 0.5- is obtained from a silicon single crystal of 1+lll11, and the yield is approximately 5 pieces. .

尚、これより薄く研摩するとこわれてしまうので0.5
能様度が限界である。
In addition, if you polish it thinner than this, it will break, so 0.5
The limit is the level of ability.

一方、実際には太陽電池用Siウェハーの厚みはO,1
mでもよく、もし0.1mm厚のSiウニ八へが従来法
に代わって得ることができれば、従来法の10倍の歩留
になる。
On the other hand, in reality, the thickness of Si wafer for solar cells is O,1
If a 0.1 mm thick Si film can be obtained instead of the conventional method, the yield will be 10 times that of the conventional method.

また従来法では径の大きなウェハーの製造は難しく 1
00mφ程度が得られる最大径である。
Also, it is difficult to manufacture large diameter wafers using conventional methods.
The maximum diameter that can be obtained is approximately 00 mφ.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の太陽電池用シリコンウェハーの製造法では歩留り
が50Xであり、また直接0.1mのシリコン薄板を製
造することができれば従来法の10倍の歩留りにつなが
る。
The conventional method for manufacturing silicon wafers for solar cells has a yield of 50X, and if a 0.1 m thin silicon plate can be directly manufactured, the yield will be 10 times that of the conventional method.

叙上の従来技術に鑑み、本発明は、溶融状態から直接0
.1m厚のシリコン薄板を得る太陽電池用シリコン薄板
の製造方法を提供することを目的とするものである。
In view of the above-mentioned prior art, the present invention provides zero
.. The object of the present invention is to provide a method for manufacturing a silicon thin plate for solar cells, which yields a silicon thin plate with a thickness of 1 m.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するためになされたものである
The present invention has been made to achieve the above object.

即ち本発明は真空装置内で軸線が略ぼ水平な水冷回転ド
ラムを所定の周速度で回転し、前記水冷回転ドラムに近
接して設けられた水冷銅ハース上部に多結晶シリコンの
バーを水平又は垂直に供給し、この先端を電子銃により
溶解して水冷銅ハース内に滴下注入するか或いは塊状の
多結晶シリコンをハース内に連続的に投入し、これを電
子銃により溶解し、生成した水冷銅ハース内の溶融シリ
コンを前記水冷回転ドラム上に付着させ捲き上げること
によりシリコンの薄板を製造することを持出とする太陽
電池用シリコン薄板の製造方法である。
That is, the present invention rotates a water-cooled rotary drum whose axis is approximately horizontal within a vacuum device at a predetermined circumferential speed, and a polycrystalline silicon bar is horizontally or The tip of polycrystalline silicon is fed vertically, the tip is melted with an electron gun, and then injected dropwise into a water-cooled copper hearth.Alternatively, polycrystalline silicon is continuously fed into the hearth, and this is melted with an electron gun, resulting in water-cooled silicon. This is a method for manufacturing a thin silicon plate for solar cells, which involves manufacturing a thin silicon plate by depositing molten silicon in a copper hearth onto the water-cooled rotating drum and rolling it up.

又、本発明方法を用いられる水冷回転ドラムの表面は縞
状の溝又は突起を設けることが好ましい。
Further, it is preferable that the surface of the water-cooled rotating drum used in the method of the present invention is provided with striped grooves or protrusions.

〔作用〕[Effect]

本発明方法においては、加熱源として電子銃によるエレ
ク)・ロンビームにて溶解が高真空、高温で行われ水冷
鋼ハース内で精練が行われ比較的低品位の金属シリコン
より、純度の高いシリコン薄板が得られる。また水冷回
転ドラム表面に横じまの溝、縦軸の溝、縞状の突起等を
設けろことにより薄いシリコン板を剥離し易く長い板を
製造することができる。
In the method of the present invention, melting is performed in a high vacuum and high temperature using an electron gun as a heating source and a long beam, and scouring is performed in a water-cooled steel hearth, producing a silicon thin sheet with higher purity than relatively low-grade metallic silicon. is obtained. Further, by providing horizontal striped grooves, vertical grooves, striped protrusions, etc. on the surface of the water-cooled rotating drum, the thin silicon plate can be easily peeled off and a long plate can be manufactured.

次の本発明の実施例について述べる。The following embodiments of the present invention will be described.

〔実施例〕〔Example〕

次にこの発明方法を図面を参照しながら説明する。 Next, the method of this invention will be explained with reference to the drawings.

第1図はこの発明方法の1つの実施!?!様を示す説明
図である。
Figure 1 shows one implementation of this invention method! ? ! FIG.

真空容器(図示せず)内で棒状の多結晶シリコン1が水
平(又は垂直)に一定速度で水冷の銅ハース2上に供給
されている。この先端部を上方に設置した電子銃により
溶解し、液滴を下方の水冷の銅ハース2内に注入する。
Rod-shaped polycrystalline silicon 1 is fed horizontally (or vertically) at a constant speed onto a water-cooled copper hearth 2 in a vacuum container (not shown). This tip is melted by an electron gun installed above, and the droplets are injected into the water-cooled copper hearth 2 below.

この水冷鋼心−ス2に近接して水冷回転ドラム4が設置
されており、これが図の矢印の方向に回転しており、溶
解シリコン8がこのドラム4上に付着凝固し上方に捲上
げられる。捲上げられたシリコン薄板5はスクレーパー
6により水冷回転ドラム4から剥離される。
A water-cooled rotary drum 4 is installed adjacent to this water-cooled steel core 2, and this rotates in the direction of the arrow in the figure, and molten silicon 8 adheres to and solidifies on this drum 4 and is rolled upward. . The rolled-up silicon thin plate 5 is peeled off from the water-cooled rotating drum 4 by a scraper 6.

尚、一般にシリコン薄板に脆いので割れてしまうことが
あり、連続した長い薄板を製造することは難しい。従っ
て、水冷回転ドラム4上にあらかじめ0.1〜0.3m
s程度の第2図に示す様な横じまの溝、若しくは突起7
を一定間隔でつけておき、この部分のシリコン薄板の厚
みを他の部分よりも薄(することにより、スクレーパー
6により水冷回転ドラム4から剥離する場合にこの薄い
部分から割れるようにしておくことが好ましい。
Generally, silicon thin plates are brittle and may break, making it difficult to manufacture long continuous thin plates. Therefore, 0.1 to 0.3 m of water is placed on the water-cooled rotating drum 4 in advance.
Horizontal striped grooves or protrusions 7 as shown in Figure 2 of approximately s
are attached at regular intervals, and the thickness of the silicon thin plate in this part is thinner than in other parts (by doing so, when it is peeled off from the water-cooled rotating drum 4 by the scraper 6, it can be made to break from this thin part. preferable.

本発明方法においては、第3図に示すように電子銃3に
より、A部の水冷回転ドラム4とシリコン浴8の直接接
する部分を充分照射することが必要である。これにより
水冷鋼ハース2内の凝固シェル9と水冷回転ドラム4上
の凝固シェル9が接続することを防止でき安定して水冷
回転ドラム4上の凝固シェル9を櫓上げることができる
In the method of the present invention, as shown in FIG. 3, it is necessary to sufficiently irradiate the area A where the water-cooled rotating drum 4 and the silicon bath 8 are in direct contact with each other using the electron gun 3. This prevents the solidified shell 9 in the water-cooled steel hearth 2 from connecting with the solidified shell 9 on the water-cooled rotating drum 4, and allows the solidified shell 9 on the water-cooled rotating drum 4 to be raised stably.

もし、第4図に示すようにA部の水冷回転ドラム4とシ
リコン浴の直接接する部分を充分照射しない場合は水冷
銅ハース2内の凝固シェル9と水冷ドラム4上の凝固シ
ェル9が接続していしまい安定して櫓上げることができ
ない。
As shown in FIG. 4, if the area in A section where the water-cooled rotating drum 4 and the silicone bath are in direct contact is not sufficiently irradiated, the solidified shell 9 in the water-cooled copper hearth 2 and the solidified shell 9 on the water-cooled drum 4 may be connected. I was unable to raise the turret in a stable manner.

以上の理由から電子銃3によるA部の照射は不可欠であ
り、又位置的に精度良く照射せねばならない。従って、
加熱源としてプラズマトーチを使用することは適切でな
い。
For the above reasons, it is essential to irradiate part A with the electron gun 3, and the irradiation must be performed with high positional accuracy. Therefore,
It is not suitable to use a plasma torch as a heating source.

第2図は本発明方法のもう1つの実施態様例を示す説明
図である。真空容器内(図示せず)で塊状のシリコンが
ホッパー11より一定供給速度で水冷の銅ハース2内に
投入され、これが上方に設置した電子銃3により溶解さ
れる。この水冷鋼ハース2に近接して水冷回転ドラム4
が設置されており、これが図の矢印の方向に回転してお
り、溶融シリコンがこのドラム上に付着・凝固し上方に
捲き上げられシリコン薄板はスクレーパー6により、水
冷回転ドラム4から剥離される。
FIG. 2 is an explanatory diagram showing another embodiment of the method of the present invention. In a vacuum container (not shown), bulk silicon is fed into a water-cooled copper hearth 2 from a hopper 11 at a constant supply rate, and is melted by an electron gun 3 installed above. A water-cooled rotating drum 4 is located close to this water-cooled steel hearth 2.
is installed and rotates in the direction of the arrow in the figure, molten silicon adheres to and solidifies on this drum, is rolled up upwards, and the silicon thin plate is peeled off from the water-cooled rotating drum 4 by a scraper 6.

加熱源として用いるエレクトロビーム(電子銃3)溶解
はaX空・高温で行われ、また水冷銅ハース2内での充
分な精練効果が期待されるので、水冷銅ハース2内に投
入するシリコン塊は金属シリコン(純度98z)でも得
られるシリコン薄板は太陽電池用として充分の純度良い
ものが得られる。
The electrobeam (electron gun 3) used as a heating source is used for melting at a high temperature in the aX sky, and a sufficient scouring effect is expected in the water-cooled copper hearth 2, so the silicon lump introduced into the water-cooled copper hearth 2 is Silicon thin plates obtained from metallic silicon (purity 98z) can also be obtained with sufficient purity for use in solar cells.

従って水沫では水冷銅ハース2内投入シリコンは金属シ
リコンでもよい。
Therefore, in the case of water droplets, the silicon introduced into the water-cooled copper hearth 2 may be metal silicon.

また水冷回転ドラム4は横じまの溝以外にあらかじめ縦
軸の溝を設けておいてもよいし、縞状の突起であっても
同様の効果が得られる。
In addition, the water-cooled rotary drum 4 may be provided with vertical grooves in addition to the horizontal striped grooves, or even with striped protrusions, the same effect can be obtained.

60wφの棒状多結晶シリコンを第1図に基づいて次に
示す仕様及び操作条件により、水冷鋼ハース2内に供給
した。
Rod-shaped polycrystalline silicon having a diameter of 60 wφ was supplied into the water-cooled steel hearth 2 under the following specifications and operating conditions based on FIG.

水冷回転ドラム4の直径  0.5醜、W4長0.3a
*水冷回転ドラム4の回転数 6Orpm水冷銅ハース
2の大きさ  0.3m巾X0.7m長電子銃3   
      5OOKW溶解素材多結晶シリコン棒60
mφ 溶解速度         300kg/h高板   
        0.1醜厚X30−巾上記の条件によ
り水冷鋼ハース内に供給された100Kgを約20分で
連続的にO,1m厚のシリコン薄板を製造できた。
Diameter of water-cooled rotating drum 4: 0.5mm, W4 length: 0.3a
*Rotation speed of water-cooled rotating drum 4: 6 Orpm Size of water-cooled copper hearth 2: 0.3 m wide x 0.7 m long Electron gun 3
5OOKW melting material polycrystalline silicon rod 60
mφ Dissolution rate 300kg/h high plate
0.1 Thickness x 30 Width Under the above conditions, it was possible to continuously produce a 1 m thick silicon thin plate from 100 kg supplied into a water-cooled steel hearth in about 20 minutes.

〔発明の効果〕〔Effect of the invention〕

本発明の太陽電池用シリコン薄板の製造方法により、溶
融状態より直接シリコン薄板を製造することができ、従
来法に比較して歩留りよく太陽電池用の薄板を製造する
ことができる。
According to the method for manufacturing a silicon thin plate for solar cells of the present invention, a silicon thin plate can be directly manufactured from a molten state, and thin plates for solar cells can be manufactured with a higher yield than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の説明図、第2図は別の実施態様を
示す説明図、第3図及び第4図は夫々A部の拡大説明図
、第5図は従来法の説明図、第6図及び第7図は、夫々
、従来のFZ法及びCZ法の説明図、第8図は単結晶切
断の説明図である。 図において、1:多結晶シリコン、2:水冷銅へ−ス、
3:電子銃、4:水冷回転ドラム、5:シリコンM板、
6:スクレーパ、7: m溝、8:溶融シリコン、9:
凝固シェル、10:駆動ロール、118ホツパー。 図面中間−符号は、同−又は相当部分を示す。 代理人  弁理士  佐 藤 正 年 6:スグレノ!− 第1図 第2図 第7図 第8図 手続補正書(鵠) 1.事件の表示 特願昭61−208052号 2、発明の名称 太陽電池用シリコン薄板の製造方法 3、補正をする者 事件との関係   特許出願人 住所  東京都千代田区丸の内−丁目1番2号名称  
(412)日本鋼管株式会社 4、代理人 住所  東京都港区虎ノ門五丁目8番6号アミタビル 「図面」の第1図〜第4図を別紙補正図面の第1図。 6:スフレバー 補正図面 第1図 第2図 補正図面 手続補正書く自発) 昭和 6ξ3 用6 日
FIG. 1 is an explanatory diagram of the method of the present invention, FIG. 2 is an explanatory diagram showing another embodiment, FIGS. 3 and 4 are enlarged explanatory diagrams of part A, respectively, and FIG. 5 is an explanatory diagram of the conventional method. 6 and 7 are explanatory diagrams of the conventional FZ method and CZ method, respectively, and FIG. 8 is an explanatory diagram of single crystal cutting. In the figure, 1: polycrystalline silicon, 2: water-cooled copper base,
3: Electron gun, 4: Water-cooled rotating drum, 5: Silicon M plate,
6: scraper, 7: m groove, 8: molten silicon, 9:
Solidified shell, 10: Drive roll, 118 hopper. Reference numerals in the drawings indicate the same or corresponding parts. Agent Patent Attorney Tadashi Sato Year 6: Sugreno! - Figure 1 Figure 2 Figure 7 Figure 8 Procedural Amendment (Mouse) 1. Indication of the case Japanese Patent Application No. 61-208052 2, Name of the invention Method for manufacturing silicon thin plates for solar cells 3, Person making the amendment Relationship to the case Patent applicant address 1-2 Marunouchi-chome, Chiyoda-ku, Tokyo Name
(412) Nippon Kokan Co., Ltd. 4, Agent address: Amita Building, 5-8-6 Toranomon, Minato-ku, Tokyo Figures 1 to 4 of the "Drawings" are attached to Figure 1 of the revised drawings. 6: Souffle bar correction drawings (Fig. 1, Fig. 2, correction drawing procedures, voluntary writing) Showa 6ξ3, 6th.

Claims (2)

【特許請求の範囲】[Claims] (1)真空装置内で軸線が略ぼ水平な水冷回転ドラムを
所定の周速度で回転し、前記水冷回転ドラムに近接して
設けられた水冷銅ハース上部に多結晶シリコンのバーを
水平又は垂直に供給し、この先端を電子銃により溶解し
て水冷銅ハース内に滴下注入するか或いは塊状の多結晶
シリコンを水冷銅ハースに内に連続的に投入し、これを
電子銃により溶解し、生成した水冷銅ハース内の溶融シ
リコンを前記水冷回転ドラム上に付着させ捲き上げるこ
とにより、シリコンの薄板を製造することを特徴とする
太陽電池用シリコン薄板の製造方法。
(1) A water-cooled rotary drum whose axis is approximately horizontal is rotated at a predetermined circumferential speed in a vacuum device, and a polycrystalline silicon bar is placed horizontally or vertically on the upper part of a water-cooled copper hearth provided close to the water-cooled rotary drum. The tip is melted with an electron gun and injected dropwise into a water-cooled copper hearth, or a lump of polycrystalline silicon is continuously introduced into a water-cooled copper hearth, and this is melted with an electron gun to generate the silicon. A method for manufacturing a silicon thin plate for a solar cell, characterized in that a thin silicon plate is manufactured by depositing molten silicon in a water-cooled copper hearth onto the water-cooled rotating drum and rolling it up.
(2)縞状の溝又は突起を表面に設けた水冷回転ドラム
を用いることを特徴とする特許請求の範囲第1項記載の
太陽電池用シリコン薄板の製造方法。
(2) The method for manufacturing a silicon thin plate for solar cells according to claim 1, characterized in that a water-cooled rotating drum having striped grooves or protrusions on its surface is used.
JP61208052A 1986-09-05 1986-09-05 Production of silicon thin plate for solar cell Pending JPS6364909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208052A JPS6364909A (en) 1986-09-05 1986-09-05 Production of silicon thin plate for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208052A JPS6364909A (en) 1986-09-05 1986-09-05 Production of silicon thin plate for solar cell

Publications (1)

Publication Number Publication Date
JPS6364909A true JPS6364909A (en) 1988-03-23

Family

ID=16549845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208052A Pending JPS6364909A (en) 1986-09-05 1986-09-05 Production of silicon thin plate for solar cell

Country Status (1)

Country Link
JP (1) JPS6364909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1030285C2 (en) * 2005-10-27 2007-05-01 Rgs Dev B V Method and device for manufacturing metal foils with a pattern.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1030285C2 (en) * 2005-10-27 2007-05-01 Rgs Dev B V Method and device for manufacturing metal foils with a pattern.
WO2007049964A1 (en) * 2005-10-27 2007-05-03 Rgs Development B.V. Method and device for producing metal panels with a pattern
US8225480B2 (en) 2005-10-27 2012-07-24 Rgs Development B.V. Method and device for producing metal panels with a pattern

Similar Documents

Publication Publication Date Title
JPH0633218B2 (en) Silicon single crystal manufacturing equipment
JPH0729871B2 (en) Quartz crucible for pulling single crystals
JP3733144B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JPH0422861B2 (en)
JPS6289367A (en) Manufacture of large area silicon crystal for solar battery
JPH107493A (en) Production of silicon semiconductor substrate and substrate for solar cell
MY129964A (en) Method for feeding granular silicon material, feed pipe used in the method, and method of manufacturing a silicon monocrystal
JPH06345584A (en) Method and apparatus for pulling monocrystal
EP0209954A2 (en) Melt consolidation of silicon powder
JP4601437B2 (en) Quartz glass crucible with inner surface semi-crystallized and manufacturing method thereof
BE899191A (en) PROCESS FOR THE MANUFACTURE OF MONOCRYSTALLINE PARTICLES AND THEIR USE IN ELECTROCHEMICAL CELL ANODES.
JPS638044B2 (en)
JPS59213697A (en) Pulling device for single crystal semiconductor
JPS6364909A (en) Production of silicon thin plate for solar cell
JPH0742193B2 (en) Quartz crucible for pulling single crystals
JPH0137458B2 (en)
JP4140868B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
US5490477A (en) Process for the production of semiconductor foils and their use
JPS61232295A (en) Production of silicon crystal semiconductor
JP2587932B2 (en) Silicon ribbon manufacturing method
JP2000159593A (en) Production of silica glass crucible
JPH0748200A (en) Production of single crystal
JP2883910B2 (en) Manufacturing method of single crystal silicon
CN220132409U (en) Silicon carbide growing device
JP3719452B2 (en) Method for producing single crystal copper