JP4601437B2 - Quartz glass crucible with inner surface semi-crystallized and manufacturing method thereof - Google Patents

Quartz glass crucible with inner surface semi-crystallized and manufacturing method thereof Download PDF

Info

Publication number
JP4601437B2
JP4601437B2 JP2005016543A JP2005016543A JP4601437B2 JP 4601437 B2 JP4601437 B2 JP 4601437B2 JP 2005016543 A JP2005016543 A JP 2005016543A JP 2005016543 A JP2005016543 A JP 2005016543A JP 4601437 B2 JP4601437 B2 JP 4601437B2
Authority
JP
Japan
Prior art keywords
crucible
quartz glass
glass crucible
layer
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005016543A
Other languages
Japanese (ja)
Other versions
JP2006206342A (en
Inventor
稔 神田
義行 辻
正樹 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Japan Super Quartz Corp
Original Assignee
Sumco Corp
Japan Super Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp, Japan Super Quartz Corp filed Critical Sumco Corp
Priority to JP2005016543A priority Critical patent/JP4601437B2/en
Publication of JP2006206342A publication Critical patent/JP2006206342A/en
Application granted granted Critical
Publication of JP4601437B2 publication Critical patent/JP4601437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

本発明は、シリコン単結晶引き上げに用いる石英ガラスルツボに関し、より詳しくは、シリコン単結晶引上げの高温使用下において機械的強度に優れ、引き上げ初期の転位発生がほとんど無い、単結晶化率の高い石英ガラスルツボに関する。 The present invention relates to a quartz glass crucible used for pulling a silicon single crystal. More specifically, the present invention relates to a quartz having a high single crystallization rate, which has excellent mechanical strength under high temperature use of pulling a silicon single crystal and hardly generates dislocations at the initial stage of pulling. Regarding glass crucibles.

シリコン融液からシリコン単結晶を引き上げるCZ法では一般にシリコン融液をシリカガラスルツボに入れて使用している。このシリカガラスルツボについては、シリコン単結晶収率を高めるために従来から多くの改善がなされている。例えば、従来、最も一般的に使用されている石英ガラスルツボは、ルツボ内表面が実質的に気泡を含まない透明シリカガラス層であって、外表面側が気泡を多く含んだ不透明シリカガラス層によって形成された二重構造のルツボである(特許文献1、特許文献2)。このシリカガラスルツボは、ルツボ内表面に気泡を殆ど含まないので、気泡の剥離による転位発生がないと云う利点を有するが、シリコン単結晶引き上げ中に、内表面の透明ガラス層にブラウンリングと呼ばれる酸素欠乏型のリンク状クリストバライト結晶が形成され、このリングの剥離によって単結晶化率が低下するという問題がある。 In the CZ method in which a silicon single crystal is pulled up from a silicon melt, the silicon melt is generally used in a silica glass crucible. With respect to this silica glass crucible, many improvements have been made so far in order to increase the silicon single crystal yield. For example, conventionally, the most commonly used quartz glass crucible is a transparent silica glass layer in which the inner surface of the crucible is substantially free of bubbles, and the outer surface side is formed by an opaque silica glass layer containing many bubbles. This is a crucible having a double structure (Patent Document 1, Patent Document 2). This silica glass crucible has the advantage that there is almost no bubbles on the inner surface of the crucible, so that there is no occurrence of dislocation due to exfoliation of the bubbles. There is a problem that an oxygen-deficient linked cristobalite crystal is formed, and the single crystallization rate is reduced by peeling of the ring.

その対策として、ルツボ内表面にバリウムやアルミニウムなどのシリカの結晶化を促進する成分(結晶化促進剤と云う)を塗布し、シリコン単結晶引き上げ時の高温によって、ルツボ内面に均一なシリカ結晶層を形成し、ブラウンリングの発生を防ぐとともにルツボの機械的強度を高めたシリカガラスルツボ(特許文献3、特許文献4)が提案されている。 As a countermeasure, a silica crystal layer such as barium or aluminum is applied on the inner surface of the crucible, and a uniform silica crystal layer is formed on the inner surface of the crucible at a high temperature when pulling up the silicon single crystal. There are proposed silica glass crucibles (Patent Document 3 and Patent Document 4) that prevent the occurrence of brown rings and increase the mechanical strength of the crucible.

しかし、これらの結晶化促進剤を塗布した従来のルツボは、いずれもCZ引上げ装置に装着した後に、原料の多結晶シリコンを溶融する過程の高温加熱によってルツボ表面を結晶化するものであり、結晶化促進剤の塗布によってルツボ表面が予め結晶化されているものではない。また、高温加熱前の結晶化促進剤はルツボ表面に付着しているだけであるので脱落し易い。このため、ルツボメーカーからユーザーまでの流通過程や、ユーザーがCZ引上げ装置に装着する過程において、ルツボ表面が擦られて結晶化促進剤が部分的に脱落して不均一になったり、剥落した結晶化促進剤が飛散して周囲の環境を汚染するなどの問題があり、取り扱いに難点があった。 However, all of the conventional crucibles coated with these crystallization accelerators crystallize the crucible surface by high-temperature heating in the process of melting the raw material polycrystalline silicon after being mounted on the CZ pulling device. The crucible surface is not crystallized in advance by the application of the crystallization accelerator. Further, since the crystallization accelerator before heating at high temperature is only attached to the surface of the crucible, it easily falls off. For this reason, in the distribution process from the crucible manufacturer to the user and the process in which the user attaches to the CZ pulling device, the surface of the crucible is rubbed, and the crystallization accelerator partially falls off and becomes non-uniform or peeled off. There was a problem that the chemical accelerator was scattered and contaminated the surrounding environment, and there was a difficulty in handling.

そこで、結晶化促進剤を塗布した後、ルツボ表面が結晶化しない程度に焼成して、結晶化促進剤をルツボ表面に焼き付けたルツボも知られている(特許文献5、特許文献6)。しかし、結晶化促進剤をルツボ表面に焼き付けコーテングするものは、ルツボ表面が結晶化しないように行うため、塗布条件や焼成条件を十分に制御しなければならず、製造が面倒である。 Therefore, a crucible is also known in which a crystallization accelerator is applied and then baked to such an extent that the crucible surface does not crystallize, and the crystallization accelerator is baked onto the crucible surface (Patent Documents 5 and 6). However, what coats a crystallization accelerator by baking it on the surface of the crucible is performed so that the surface of the crucible is not crystallized.

また、結晶化促進剤を塗布する方法に代えて、結晶化促進剤を含むシリカ粉を原料として用い、該シリカ粉を溶融してルツボを製造する際に溶融時の高温を利用して結晶化促進剤をルツボ内表面に拡散させることも知られている(特許文献7)。しかし、このルツボもルツボ内表面が予め結晶化されておらず、引き上げ時の高温によって結晶化するため、必ずしも均一な結晶層が形成されないと云う問題がある。一方、ルツボ内表面に予め完全な結晶層を形成すると、ルツボ製造後の放熱時に熱歪みによって結晶層が剥離する問題がある。
特開平01−197381号公報 特開平01−197382号公報 特開平09−110590号報 特開平08−2932号公報 特開2003−192391号公報 特開2004−2083号公報 特開2003−212690号公報
In place of the method of applying a crystallization accelerator, the silica powder containing the crystallization accelerator is used as a raw material, and when the silica powder is melted to produce a crucible, the high temperature during melting is used for crystallization. It is also known to diffuse an accelerator on the inner surface of the crucible (Patent Document 7). However, this crucible also has a problem that a uniform crystal layer is not necessarily formed because the inner surface of the crucible is not crystallized in advance and is crystallized at a high temperature during pulling. On the other hand, if a complete crystal layer is formed in advance on the inner surface of the crucible, there is a problem that the crystal layer peels off due to thermal strain during heat dissipation after the crucible is manufactured.
JP-A-01-197381 JP-A-01-197382 Japanese Patent Laid-Open No. 09-110590 Japanese Patent Laid-Open No. 08-2932 JP 2003-192391 A JP 2004-2083 A JP 2003-212690 A

本発明は、従来の石英ガラスルツボにおける上記問題を解決したものであり、ルツボ内表面を不完全な結晶層(半結晶層)にすることによって、シリコン単結晶引上げの高温使用下において機械的強度に優れ、引き上げ初期の転位発生がほとんど無い、単結晶化率の高い石英ガラスルツボを達成したものである。 The present invention solves the above-mentioned problems in the conventional quartz glass crucible, and makes the inner surface of the crucible an incomplete crystal layer (semi-crystal layer), thereby providing mechanical strength under high temperature use of pulling a silicon single crystal. A quartz glass crucible with a high single crystallization rate and excellent dislocation and almost no dislocation generation at the initial stage of pulling is achieved.

本発明によれば、以下の石英ガラスルツボとその製造方法および用途が提供される。
(1)シリコン単結晶の引き上げに用いる石英ガラスルツボであって、厚さ1〜10μmの内表面が結晶化促進剤を含有し、かつ結晶化度50〜99%の半結晶層であることを特徴とする石英ガラスルツボ。
(2)半結晶層の結晶化度が80〜95%である上記(1)の石英ガラスルツボ。
(3)ルツボ内側部が天然石英によって形成される一方、ルツボ外側部が合成石英によって形成され、厚さ1〜10μmのルツボ内表面が結晶化促進剤を含有すると共に半結晶層である上記(1)または(2)の石英ガラスルツボ。
(4)回転モールド法による石英ガラスルツボの製造方法において、結晶化剤を含有するシリカ粉を用い、このシリカ粉をアーク溶融する工程で、アーク電極とモールドの間に電圧をかけて結晶化促進剤をルツボ内表面に移動させ、かつルツボを1200〜1600℃の温度下に10分以上保持することによって、厚さ1〜10μmのルツボ内表面を半結晶層にすることを特徴とする石英ガラスルツボの製造方法。
(5)上記(4)の製造方法において、結晶化剤を含有するシリカ粉を回転モールドの内表面に所定の厚さに堆積し、モールド中央上部に設置したアーク電極による放電加熱によって、上記シリカ粉を1600℃以上に加熱して溶融し、このアーク溶融の終期に、アーク電極側をマイナス(−)とし、モールド側をプラス(+)として、アーク電極とモールドの間に電圧をかけて結晶化促進剤をルツボ内表面に移動させるとともに、ルツボを1200〜1600℃の温度下に10分以上保持することによって、厚さ1〜10μmのルツボ内表面を結晶化度50〜99%の半結晶層にする石英ガラスルツボの製造方法。
(6)上記(1)〜(3)の何れかに記載した石英ガラスルツボ、あるいは上記(4)または(5)の方法によって製造した石英ガラスルツボを用いたシリコン単結晶の引き上げ方法。
According to the present invention, the following quartz glass crucible and its manufacturing method and application are provided.
(1) A quartz glass crucible used for pulling up a silicon single crystal, wherein the inner surface having a thickness of 1 to 10 μm contains a crystallization accelerator and is a semi-crystalline layer having a crystallinity of 50 to 99%. A featured quartz glass crucible.
(2) The quartz glass crucible according to the above (1), wherein the degree of crystallinity of the semicrystalline layer is 80 to 95%.
(3) The crucible inner portion is formed of natural quartz while the crucible outer portion is formed of synthetic quartz, and the inner surface of the crucible having a thickness of 1 to 10 μm contains a crystallization accelerator and is a semi-crystalline layer. A quartz glass crucible of 1) or (2).
(4) In a method for producing a quartz glass crucible by the rotary mold method, crystallization is promoted by applying a voltage between the arc electrode and the mold in the step of arc melting the silica powder using a silica powder containing a crystallization agent. The quartz glass is characterized in that the inner surface of the crucible having a thickness of 1 to 10 μm is made a semi-crystalline layer by moving the agent to the inner surface of the crucible and holding the crucible at a temperature of 1200 to 1600 ° C. for 10 minutes or more. Crucible manufacturing method.
(5) In the production method of (4) above, the silica powder containing the crystallizing agent is deposited on the inner surface of the rotary mold to a predetermined thickness, and the silica is obtained by discharge heating with an arc electrode placed at the upper center of the mold. The powder is heated to 1600 ° C or higher and melted. At the end of this arc melting, the arc electrode side is set to minus (-) and the mold side is set to plus (+), and a voltage is applied between the arc electrode and the mold to crystallize. The crystallization accelerator is moved to the inner surface of the crucible, and the crucible is held at a temperature of 1200 to 1600 ° C. for 10 minutes or more, so that the inner surface of the crucible having a thickness of 1 to 10 μm has a crystallinity of 50 to 99%. A method for producing a quartz glass crucible to be layered.
(6) A method for pulling a silicon single crystal using the quartz glass crucible described in any one of (1) to (3) above or the quartz glass crucible produced by the method (4) or (5) above.

〔具体的な説明〕
本発明の石英ガラスルツボは、シリコン単結晶の引き上げに用いる石英ガラスルツボであって、厚さ1〜10μmの内表面が結晶化促進剤を含有し、かつ結晶化度50〜99%の半結晶層であることを特徴とする石英ガラスルツボである。
[Specific description]
The silica glass crucible of the present invention is a silica glass crucible used for pulling up a silicon single crystal, and an inner surface having a thickness of 1 to 10 μm contains a crystallization accelerator and has a crystallinity of 50 to 99%. It is a quartz glass crucible characterized by being a layer.

本発明において、結晶化度とは次のように定義される。すなわち、クリストバライト結晶を結晶化度100%の標準試料とし、そのX線回折散乱強度ΣX(標準)に対する、測定対象サンプルのX線回折散乱強度ΣX(試料)の相対百分比〔ΣX(試料)/ΣX(標準)〕×100を測定対象サンプルの結晶化度〔Xc〕とする。本発明において半結晶層とはこの結晶化度が50〜99%であることを云う。
Xc=〔ΣX(試料)/ΣX(標準)〕×100。
In the present invention, the crystallinity is defined as follows. That is, using a cristobalite crystal as a standard sample with a crystallinity of 100%, the relative percentage of the X-ray diffraction scattering intensity ΣX (sample) of the sample to be measured with respect to the X-ray diffraction scattering intensity ΣX (standard) [ΣX (sample) / ΣX (Standard)] × 100 is the crystallinity [Xc] of the sample to be measured. In the present invention, the semi-crystalline layer means that the crystallinity is 50 to 99%.
Xc = [ΣX (sample) / ΣX (standard)] × 100.

本発明において、厚さ1〜10μmのルツボ内表面は結晶化度50〜99%、より好ましくは、80〜95%の半結晶層である。すなわち、上記ルツボ内表面は完全な結晶層ではない。この結晶層が不完全であることによって、ルツボ製造工程における1500℃を越えるアーク溶融温度から室温までの冷却時に結晶層の剥落を生じない。ルツボ内表面に結晶化度100%の完全な結晶層を形成すると、ルツボ製造後の放熱時に熱歪みによって結晶層が剥離したり、内部に亀裂を生じる問題がある。この結晶化度は99%以下、好ましくは95%以下が良い。一方、結晶化度が50%未満、あるいは上記半結晶層の厚さが1μm未満では十分な効果が得られず、半結晶層が10μm以上の厚さでは、ポリシリコン溶解時に昇温条件によっては半結晶層の半結晶層の結晶化速度が速くなり、結晶層とガラス層の熱膨張の差で剥離を生じる場合がある。 In the present invention, the inner surface of the crucible having a thickness of 1 to 10 μm is a semi-crystalline layer having a crystallinity of 50 to 99%, more preferably 80 to 95%. That is, the inner surface of the crucible is not a complete crystal layer. Since the crystal layer is incomplete, the crystal layer does not peel off during cooling from the arc melting temperature exceeding 1500 ° C. to room temperature in the crucible manufacturing process. When a complete crystal layer having a crystallinity of 100% is formed on the inner surface of the crucible, there is a problem that the crystal layer is peeled off due to thermal strain during heat dissipation after the crucible is manufactured, or cracks are generated inside. The crystallinity is 99% or less, preferably 95% or less. On the other hand, if the degree of crystallinity is less than 50% or the thickness of the semi-crystalline layer is less than 1 μm, a sufficient effect cannot be obtained. If the semi-crystalline layer has a thickness of 10 μm or more, depending on the temperature rise conditions during polysilicon dissolution, In some cases, the crystallization speed of the semi-crystalline layer is increased, and separation may occur due to a difference in thermal expansion between the crystalline layer and the glass layer.

本発明のルツボは上記半結晶層に結晶化促進剤を含有している。結晶化促進剤は高温下でシリカの結晶化を促す物質であり、具体的にはリチウム等のアルカリ金属イオン、バリウム等のアルカリ土類金属イオン、アルミニウムイオン等である。本発明のルツボは、ルツボ内表面の半結晶層に結晶化促進剤が含有されていることによって、ルツボ使用時の高温下で、結晶促進剤の作用によって半結晶層の結晶化が進行し、この半結晶層が完全な結晶層になるので、ルツボ使用時に優れた機械的強度を得ることができ、引き上げ初期の転位発生がほとんど無いので高い単結晶化率を達成することができる。 The crucible of the present invention contains a crystallization accelerator in the semicrystalline layer. The crystallization accelerator is a substance that promotes crystallization of silica at a high temperature, and specifically includes alkali metal ions such as lithium, alkaline earth metal ions such as barium, and aluminum ions. In the crucible of the present invention, since the crystallization accelerator is contained in the semicrystalline layer on the inner surface of the crucible, the crystallization of the semicrystalline layer proceeds by the action of the crystallization accelerator at a high temperature when the crucible is used, Since this semi-crystalline layer becomes a complete crystalline layer, excellent mechanical strength can be obtained when the crucible is used, and a high single crystallization rate can be achieved since there is almost no dislocation generation at the initial stage of pulling.

本発明の石英ガラスルツボは、回転モールド法によって製造することができる。具体的には、回転モールドを用いた製造方法において、結晶化剤を含有するシリカ粉を回転モールドの内表面に所定の厚さに堆積し、モールド中央上部に設置したアーク電極による放電加熱によって、シリカ粉を1600℃以上に加熱して溶融ガラス化し、ガラスルツボを製造する。このアーク溶融の終期に、アーク電極側をマイナス(−)とし、モールド側をプラス(+)として、アーク電極とモールドの間に電圧をかけ、結晶化促進剤をルツボ内表面に移動させるとともに、ルツボを1200〜1600℃の温度下に10分以上保持することによって、厚さ1〜10μmのルツボ内表面を結晶化度50〜99%の半結晶層にする。 The quartz glass crucible of the present invention can be manufactured by a rotational mold method. Specifically, in a manufacturing method using a rotating mold, silica powder containing a crystallization agent is deposited to a predetermined thickness on the inner surface of the rotating mold, and by discharge heating with an arc electrode placed at the upper center of the mold, The silica powder is heated to 1600 ° C. or higher to be melted into glass to produce a glass crucible. At the end of this arc melting, the arc electrode side is minus (−), the mold side is plus (+), a voltage is applied between the arc electrode and the mold, and the crystallization accelerator is moved to the crucible inner surface, By holding the crucible at a temperature of 1200 to 1600 ° C. for 10 minutes or longer, the inner surface of the crucible having a thickness of 1 to 10 μm is formed into a semicrystalline layer having a crystallinity of 50 to 99%.

上記製造方法において、アーク電極とモールドの間に加える電圧は100〜50000Vであればよい。アーク電極側をマイナス(−)とし、モールド側をプラス(+)として高電圧を印加することによって、シリカ粉に含まれている結晶化促進剤のリチウムイオン等はアーク電極側すなわちルツボ内表面側に引き寄せられる。この状態で、ルツボを1200〜1600℃の温度下に10分以上保持すると、結晶化促進剤の作用によって、ルツボ内表面が次第に結晶化して半結晶層を形成することができる。この半結晶層の厚さ、および結晶化度はルツボを保持する温度および時間によって制御することができる。 In the said manufacturing method, the voltage applied between an arc electrode and a mold should just be 100-50000V. By applying a high voltage with the arc electrode side set to minus (-) and the mold side set to plus (+), the lithium ion of the crystallization accelerator contained in the silica powder is on the arc electrode side, that is, the inner surface side of the crucible. Be drawn to. In this state, when the crucible is held at a temperature of 1200 to 1600 ° C. for 10 minutes or longer, the inner surface of the crucible is gradually crystallized by the action of the crystallization accelerator to form a semicrystalline layer. The thickness and crystallinity of the semicrystalline layer can be controlled by the temperature and time for holding the crucible.

アーク電極とモールドの間に高電圧を加える時期はアーク溶融の終期が適当である。アーク溶融の終期とはアーク溶融工程の後半1/3以降である。アーク溶融初期は、内部のシリカ粉が溶融していないのでシリカ粉に含まれるリチウムイオン等の結晶化促進剤がルツボ内表面側に移動し難いので適当ではない。 The end of arc melting is appropriate for applying a high voltage between the arc electrode and the mold. The end of arc melting is the latter half of the arc melting process. In the initial stage of arc melting, the internal silica powder is not melted, so that a crystallization accelerator such as lithium ions contained in the silica powder is difficult to move to the inner surface side of the crucible, which is not suitable.

結晶化促進剤としてリチウムを用いる場合、ルツボ内表面の半結晶層に含まれるリチウム濃度は0.5ppm以上が好ましい。なお、リチウムは他のアルカリ金属イオンに比べ、高電圧下で移動し易いので、シリカ粉に結晶化促進剤を含有させてルツボ内表面に移動させる製造方法において好ましい。リチウムと共にアルミニウムやバリウムを用いることができる。半結晶層に含まれるアルミニウム濃度は5ppm以上が好ましく、バリウム濃度は10ppm以上が好ましい。なお、このリチウムやアルミニウム等は従来よりも高濃度であるが、本発明の石英ガラスルツボは、その使用時に、高温下で半結晶層の結晶化が急速に進行して完全な結晶層になるので、これら結晶化促進剤の溶出が抑制され、上記リチウム濃度が10ppm程度まではシリコン単結晶引き上げに悪影響を及ぼさない。 When lithium is used as the crystallization accelerator, the concentration of lithium contained in the semicrystalline layer on the inner surface of the crucible is preferably 0.5 ppm or more. In addition, since lithium is easy to move under a high voltage as compared with other alkali metal ions, it is preferable in the production method in which a crystallization accelerator is contained in silica powder and moved to the inner surface of the crucible. Aluminum and barium can be used together with lithium. The aluminum concentration contained in the semicrystalline layer is preferably 5 ppm or more, and the barium concentration is preferably 10 ppm or more. Although the concentration of lithium, aluminum, etc. is higher than in the prior art, the quartz glass crucible of the present invention becomes a complete crystal layer by rapidly crystallizing the semi-crystalline layer at high temperature when used. Therefore, elution of these crystallization accelerators is suppressed, and the silicon single crystal pulling is not adversely affected until the lithium concentration is about 10 ppm.

本発明の石英ガラスルツボは、ルツボ内側部に天然石英を用い、ルツボ外側部に合成石英を用いて形成することができる。ルツボ内側部の天然石英はアルミニウムやリチウムなどの金属不純物を含むので、これを結晶化促進剤として利用することができる。また、ルツボ外側部の合成石英は金属不純物が少なく高純度であるので、ルツボに高電圧を負荷するのに好都合であり、またルツボを装入するモールド(サセプター)との馴染みが良い。これらの石英粉を用い、厚さ1〜10μmのルツボ内表面が結晶化促進剤を含有すると共に結晶化度50〜99%、好ましくは80〜95%の半結晶層である石英ガラスルツボを得ることができる。 The quartz glass crucible of the present invention can be formed using natural quartz for the crucible inner side and synthetic quartz for the crucible outer side. Natural quartz inside the crucible contains metal impurities such as aluminum and lithium and can be used as a crystallization accelerator. In addition, since the synthetic quartz on the outer side of the crucible has few metal impurities and is highly pure, it is convenient for applying a high voltage to the crucible, and is familiar with the mold (susceptor) in which the crucible is inserted. By using these quartz powders, a quartz glass crucible is obtained in which the inner surface of the crucible having a thickness of 1 to 10 μm contains a crystallization accelerator and is a semi-crystalline layer having a crystallinity of 50 to 99%, preferably 80 to 95%. be able to.

本発明の石英ガラスルツボは、ルツボ内表面が結晶化促進剤を含むと共に予め半結晶層に形成されているので、ルツボ使用時の高温下において、この半結晶層の結晶化が均一に進み、ルツボ内表面に良好な結晶層(クリストバライト層)が形成されるので、優れた機械的強度を得ることができ、引き上げ初期の転位発生がほとんど無く、高い単結晶化率を達成することができる。また、結晶化促進剤はこの半結晶層に含有されているので、ルツボ表面が擦られても剥離して飛散することがなく、ルツボの流通過程や使用時の取り扱いが格段に容易である。また、ルツボ内表面は半結晶層であるので、ルツボ製造後の冷却工程において熱歪みによる亀裂や破損を生じることがなく、安定に使用することができる。 In the quartz glass crucible of the present invention, since the inner surface of the crucible contains a crystallization accelerator and is previously formed in a semi-crystalline layer, the crystallization of the semi-crystalline layer progresses uniformly at a high temperature when the crucible is used, Since a good crystal layer (cristobalite layer) is formed on the inner surface of the crucible, excellent mechanical strength can be obtained, almost no dislocation occurs at the initial stage of pulling, and a high single crystallization rate can be achieved. Further, since the crystallization accelerator is contained in this semi-crystalline layer, the crucible surface is not peeled off and scattered even when rubbed, and the crucible distribution process and handling during use are much easier. Further, since the inner surface of the crucible is a semi-crystalline layer, it can be used stably without causing cracks or breakage due to thermal strain in the cooling process after the crucible is manufactured.

以下、本発明を実施例によって具体的に示す。結晶化度に関するX線回折散乱強度の測定は、理学電気株式会社製X線回折装置(製品名:MiniFlex)を使用し、特性X線としてCuKαを利用した。なお、以下の例において、サンプルの結晶化度は半結晶層の厚さに比例しており、概ね1μmの層厚では結晶化度50%であり、10μmの層厚では結晶化度99%であった。


Hereinafter, the present invention will be specifically described by way of examples. The X-ray diffraction scattering intensity relating to the crystallinity was measured by using an X-ray diffractometer (product name: MiniFlex) manufactured by Rigaku Corporation and using CuKα as characteristic X-rays. In the following examples, the crystallinity of the sample is proportional to the thickness of the semi-crystalline layer. The crystallinity is 50% at a layer thickness of approximately 1 μm, and the crystallinity is 99% at a layer thickness of 10 μm. there were.


リチウムを0.3ppm含有するシリカ原料粉を使用し、回転モールド法に基づき、アーク加熱によってシリカ原料粉を溶融して石英ガラスルツボを製造した。このアーク溶融末期に、アーク電極をマイナス(−)およびモールドをプラス(+)にして、−1000Vの電圧を5分間印加し、原料粉に含まれるリチウム等の不純物をルツボ内表面に移動させた。アーク終了後、1200℃〜1600℃の温度で10分間炉内に保持し、ルツボ内表面に不完全結晶層(半結晶層)を形成させた。その後、室温で冷却した。製造した石英ガラスルツボの半結晶層を含む部分をスライス状に1mm厚さのサンプルを切り出し、これを全量溶解して不純物を分析したところ、半結晶層のリチウム濃度は0.8ppmであった。また、この半結晶層の結晶化度Xcを測定したところ、結晶化度は85%であった。この石英ガラスルツボを用いてシリコン単結晶の引き上げを行ったところ、ルツボ内表面の結晶化度が50%以下の石英ガラスルツボを使用した引き上げに比べて単結晶収率が11%向上した。 Silica raw material powder containing 0.3 ppm of lithium was used, and the silica raw material powder was melted by arc heating based on the rotary mold method to produce a quartz glass crucible. At the end of this arc melting, the arc electrode was minus (−) and the mold was plus (+), and a voltage of −1000 V was applied for 5 minutes to move impurities such as lithium contained in the raw material powder to the inner surface of the crucible. . After the end of the arc, the furnace was held in a furnace at a temperature of 1200 ° C. to 1600 ° C. for 10 minutes to form an incomplete crystal layer (semi-crystal layer) on the inner surface of the crucible. Then, it cooled at room temperature. A portion of the manufactured quartz glass crucible including the semi-crystalline layer was cut into a slice of 1 mm thickness, and all the sample was dissolved and analyzed for impurities. As a result, the lithium concentration of the semi-crystalline layer was 0.8 ppm. Further, when the crystallinity Xc of this semi-crystalline layer was measured, the crystallinity was 85%. When the silicon single crystal was pulled using this quartz glass crucible, the single crystal yield was improved by 11% compared to the pulling using the quartz glass crucible having a crystallinity of 50% or less on the inner surface of the crucible.

リチウムを0.6ppm含有するシリカ原料粉を用いた以外は実施例1と同様の条件で石英ガラスルツボを製造した。このルツボ内表面(半結晶層)の結晶化度Xcは97%であり、リチウム濃度は1.5ppmであった。この石英ガラスルツボを用いてシリコン単結晶の引き上げを行ったところ、リチウムを含まない通常の合成石英原料によって製造した石英ガラスルツボ(ルツボ内表面に半結晶層がない)を使用したときに比べて単結晶収率が15向上した。 A quartz glass crucible was produced under the same conditions as in Example 1 except that silica raw material powder containing 0.6 ppm of lithium was used. The crystallinity Xc of the inner surface (semicrystalline layer) of this crucible was 97%, and the lithium concentration was 1.5 ppm. When pulling up a silicon single crystal using this quartz glass crucible, compared to the case of using a quartz glass crucible (without a semi-crystalline layer on the inner surface of the crucible) manufactured from a normal synthetic quartz raw material that does not contain lithium. The single crystal yield was improved by 15 % .

リチウムを0.2ppm含有するシリカ原料粉を用いた以外は実施例1と同様の条件で石英ガラスルツボを製造した。このルツボ内表面(半結晶層)の結晶化度Xcは55%であり、リチウム濃度は0.5ppmであった。この石英ガラスルツボを用いてシリコン単結晶の引き上げを行ったところ、ルツボ内表面の結晶化度が50%以下の石英ガラスルツボを使用した引き上げに比べて単結晶収率が9%向上した。 A quartz glass crucible was produced under the same conditions as in Example 1 except that silica raw material powder containing 0.2 ppm of lithium was used. The crucible inner surface (semi-crystalline layer) had a crystallinity Xc of 55% and a lithium concentration of 0.5 ppm. When the silicon single crystal was pulled using this quartz glass crucible, the single crystal yield was improved by 9% as compared with the pulling using the quartz glass crucible having a crystallinity of 50% or less on the inner surface of the crucible.

リチウムを0.5ppm、アルミニウムを8ppm含有するシリカ原料粉を用いた以外は実施例1と同様の条件で石英ガラスルツボを製造した。このルツボ内表面(半結晶層)の結晶化度Xcは90%であり、リチウム濃度は0.9ppm、アルミニウム濃度は10.1ppmであった。この石英ガラスルツボを用いてシリコン単結晶の引き上げを行ったところ、ルツボ内表面の結晶化度が50%以下の石英ガラスルツボを使用した引き上げに比べて単結晶収率が12%向上した。 A quartz glass crucible was produced under the same conditions as in Example 1 except that silica raw material powder containing 0.5 ppm of lithium and 8 ppm of aluminum was used. The crucible inner surface (semicrystalline layer) had a crystallinity Xc of 90%, a lithium concentration of 0.9 ppm, and an aluminum concentration of 10.1 ppm. When the silicon single crystal was pulled using this quartz glass crucible, the single crystal yield was improved by 12% compared to the pulling using the quartz glass crucible having a crystallinity of 50% or less on the inner surface of the crucible.

〔比較例1〕
シリカ原料粉のアーク溶融時に高電圧を印可せず、かつアーク溶融終了後の所定温度下の保持を行わない以外は実施例1と同様にして石英ガラスルツボを製造した。このルツボ内表面には半結晶層が形成されていなかった。この石英ガラスルツボを用いてシリコン単結晶の引き上げを行ったところ、実施例1の石英ガラスルツボを使用した引き上げに比べて単結晶収率が12%低かった。
[Comparative Example 1]
A quartz glass crucible was produced in the same manner as in Example 1 except that no high voltage was applied during the arc melting of the silica raw material powder and the holding at a predetermined temperature after the arc melting was not performed. A semi-crystalline layer was not formed on the inner surface of the crucible. When the silicon single crystal was pulled using this quartz glass crucible, the single crystal yield was 12% lower than that using the quartz glass crucible of Example 1.

〔比較例2〕
シリカ原料粉のアーク溶融時に高電圧を印可した後に、かつアーク溶融終了後の所定温度下の保持を行わない以外は実施例1と同様にして石英ガラスルツボを製造した。このルツボ内表面には半結晶層が形成されていなかった。この石英ガラスルツボを用いてシリコン単結晶の引き上げを行ったところ、実施例1の石英ガラスルツボを使用した引き上げに比べて単結晶収率が10%低かった。




[Comparative Example 2]
A quartz glass crucible was produced in the same manner as in Example 1 except that a high voltage was applied during the arc melting of the silica raw material powder and that the holding at a predetermined temperature after the completion of the arc melting was not performed. A semi-crystalline layer was not formed on the inner surface of the crucible. When the silicon single crystal was pulled using this quartz glass crucible, the single crystal yield was 10% lower than that using the quartz glass crucible of Example 1.




Claims (5)

シリコン単結晶の引き上げに用いる石英ガラスルツボであって、厚さ1〜10μmの内表面が結晶化促進剤を含有し、かつ結晶化度50〜99%の半結晶層であり、前記半結晶層よりも外表面側の領域は石英ガラス層であることを特徴とする石英ガラスルツボ。 A quartz glass crucible used for pulling a silicon single crystal, the inner surface having a thickness of 1 to 10 μm is a semicrystalline layer containing a crystallization accelerator and having a crystallinity of 50 to 99%, The quartz glass crucible characterized in that the region on the outer surface side is a quartz glass layer. 半結晶層の結晶化度が80〜95%である請求項1の石英ガラスルツボ。 The quartz glass crucible according to claim 1, wherein the degree of crystallinity of the semi-crystalline layer is 80 to 95%. ルツボ内側部が天然石英によって形成される一方、ルツボ外側部が合成石英によって形成され、厚さ1〜10μmのルツボ内表面が結晶化促進剤を含有すると共に半結晶層である請求項1または2の石英ガラスルツボ。 3. The crucible inner portion is formed of natural quartz, while the crucible outer portion is formed of synthetic quartz, and the inner surface of the crucible having a thickness of 1 to 10 μm contains a crystallization accelerator and is a semi-crystalline layer. Quartz glass crucible. 回転モールド法による石英ガラスルツボの製造方法において、結晶化剤を含有するシリカ粉を回転モールドの内表面に所定の厚さに堆積し、モールド中央上部に設置したアーク電極による放電加熱によって、上記シリカ粉を1600℃以上に加熱して溶融し、このアーク溶融の終期に、アーク電極側をマイナス(−)とし、モールド側をプラス(+)として、アーク電極とモールドの間に電圧をかけて結晶化促進剤をルツボ内表面に移動させるとともに、ルツボを1200〜1600℃の温度下に10分以上保持することによって、厚さ1〜10μmのルツボ内表面を結晶化度50〜99%の半結晶層にする石英ガラスルツボの製造方法。 In the method for producing a quartz glass crucible by the rotary mold method, silica powder containing a crystallizing agent is deposited on the inner surface of the rotary mold to a predetermined thickness, and the silica is obtained by discharge heating with an arc electrode placed at the upper center of the mold. The powder is heated to 1600 ° C or higher and melted. At the end of this arc melting, the arc electrode side is set to minus (-) and the mold side is set to plus (+), and a voltage is applied between the arc electrode and the mold to crystallize. The crystallization accelerator is moved to the inner surface of the crucible, and the crucible is held at a temperature of 1200 to 1600 ° C. for 10 minutes or more, so that the inner surface of the crucible having a thickness of 1 to 10 μm has a crystallinity of 50 to 99%. A method for producing a quartz glass crucible to be layered. 請求項4の製造方法において、前記アーク溶融の終期は、アーク溶融工程の後半1/3以降であることを特徴とする石英ガラスルツボの製造方法。 5. The method for manufacturing a quartz glass crucible according to claim 4 , wherein the end of the arc melting is after the latter third of the arc melting step.
JP2005016543A 2005-01-25 2005-01-25 Quartz glass crucible with inner surface semi-crystallized and manufacturing method thereof Active JP4601437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005016543A JP4601437B2 (en) 2005-01-25 2005-01-25 Quartz glass crucible with inner surface semi-crystallized and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005016543A JP4601437B2 (en) 2005-01-25 2005-01-25 Quartz glass crucible with inner surface semi-crystallized and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006206342A JP2006206342A (en) 2006-08-10
JP4601437B2 true JP4601437B2 (en) 2010-12-22

Family

ID=36963596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005016543A Active JP4601437B2 (en) 2005-01-25 2005-01-25 Quartz glass crucible with inner surface semi-crystallized and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4601437B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610570B2 (en) * 2010-07-20 2014-10-22 株式会社Sumco Method for producing silica glass crucible and silicon ingot
JP5912903B2 (en) * 2012-06-21 2016-04-27 クアーズテック株式会社 Silica glass crucible for pulling silicon single crystal and method for producing the same
JP6699741B2 (en) * 2016-09-13 2020-05-27 株式会社Sumco Quartz glass crucible and method of manufacturing the same
DE112017004764T5 (en) 2016-09-23 2019-06-27 Sumco Corporation Quartz glass crucible, manufacturing method thereof, and method of producing a silicon single crystal using a quartz glass crucible
KR102265452B1 (en) 2017-05-02 2021-06-15 가부시키가이샤 사무코 Quartz glass crucible and its manufacturing method
CN107793021B (en) * 2017-10-31 2021-07-30 江苏亨通光导新材料有限公司 Microcrystallization furnace core pipe suitable for optical fiber preform sintering furnace and rapid microcrystallization method
CN108374196B (en) * 2018-04-28 2020-12-08 烟台同立高科新材料股份有限公司 Fused quartz crucible for polycrystalline silicon ingot casting and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199370A (en) * 1998-01-12 1999-07-27 Toshiba Ceramics Co Ltd Quartz glass crucible and its production
JP2001114590A (en) * 1999-10-13 2001-04-24 Nippon Steel Corp Quartz glass crucible for pulling silicon single crystal
JP2003212690A (en) * 2002-01-17 2003-07-30 Shinetsu Quartz Prod Co Ltd Quartz glass crucible for pulling silicon single crystal and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199370A (en) * 1998-01-12 1999-07-27 Toshiba Ceramics Co Ltd Quartz glass crucible and its production
JP2001114590A (en) * 1999-10-13 2001-04-24 Nippon Steel Corp Quartz glass crucible for pulling silicon single crystal
JP2003212690A (en) * 2002-01-17 2003-07-30 Shinetsu Quartz Prod Co Ltd Quartz glass crucible for pulling silicon single crystal and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006206342A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US6106610A (en) Quartz glass crucible for producing silicone single crystal and method for producing the crucible
JP4601437B2 (en) Quartz glass crucible with inner surface semi-crystallized and manufacturing method thereof
JP3621282B2 (en) Quartz glass crucible and method for producing the same
JP4430949B2 (en) Quartz glass crucible and method for producing the crucible
JP5229778B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP4866924B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing silicon single crystal
JP3733144B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP4803784B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP2006213556A (en) Quartz glass crucible for pulling silicon single crystal and production method therefor, and method for taking out the crucible
JPS59213697A (en) Pulling device for single crystal semiconductor
EP3176289B1 (en) Method for producing a quartz glass crucible for single crystal silicon pulling
JP2007091562A (en) Silica glass crucible for crystallization promoting coating
JP3983054B2 (en) Quartz glass crucible for pulling silicon single crystal and method for producing the same
JP2000159593A (en) Production of silica glass crucible
JP3798907B2 (en) Quartz glass crucible for producing silicon single crystal and method for producing the same
JP2010202515A (en) Method for producing quartz glass crucible for pulling up silicon single crystal
JP2004339012A (en) Method for manufacturing sic single crystal
JP2007277026A (en) Method for pulling silicon single crystal
JPH01275496A (en) Quartz crucible for pulling up silicon single crystal
JP2000072589A (en) Quartz glass crucible for pulling single silicon crystal and its production
JP2005239533A (en) Quartz glass crucible for pulling silicon single crystal, and method for manufacturing the same
KR101366728B1 (en) Apparatus and method for manufacturing ingot having single crystals
JP2863554B2 (en) Quartz glass crucible and its manufacturing method
JP2020001979A (en) Quartz glass crucible
JP2014065621A (en) Manufacturing method of silica glass crucible for pulling silicon single crystal and manufacturing apparatus for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4601437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250