JPS6364897A - Dynamic balancing regulator for space missile - Google Patents

Dynamic balancing regulator for space missile

Info

Publication number
JPS6364897A
JPS6364897A JP20898386A JP20898386A JPS6364897A JP S6364897 A JPS6364897 A JP S6364897A JP 20898386 A JP20898386 A JP 20898386A JP 20898386 A JP20898386 A JP 20898386A JP S6364897 A JPS6364897 A JP S6364897A
Authority
JP
Japan
Prior art keywords
fixed shaft
piezoelectric elements
fixed
drive section
spacecraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20898386A
Other languages
Japanese (ja)
Other versions
JP2518226B2 (en
Inventor
星野 輝臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61208983A priority Critical patent/JP2518226B2/en
Publication of JPS6364897A publication Critical patent/JPS6364897A/en
Application granted granted Critical
Publication of JP2518226B2 publication Critical patent/JP2518226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、人工衛星等の宇宙航行体において、飛翔中に
その動釣合を調整する宇宙航行体用動釣合調整装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dynamic balance adjustment device for a spacecraft, such as an artificial satellite, that adjusts the dynamic balance of the spacecraft during flight.

〔従来の技術〕[Conventional technology]

第2図に従来の動釣合調整装置を示す、この従来の動釣
合装置は、人工衛星本体に対し固定された固定軸10お
よび固定板11と、固定板11に固定軸10と平行に固
定された固定ねじ12と、固定軸10に案内される動釣
合用調整錘15と、動釣合用調整錘15に回転自在に保
持され、固定ねじ12に螺合する回転ねじ14と、回転
ねじ14を歯車等を介して回転させ動釣合用調整錘15
に設けられた電磁式モータ13とで構成される。
FIG. 2 shows a conventional dynamic balance adjustment device. This conventional dynamic balance adjustment device has a fixed shaft 10 and a fixed plate 11 fixed to the satellite main body, and a fixed plate 11 arranged parallel to the fixed shaft 10. A fixed screw 12, a dynamic balance adjusting weight 15 guided by the fixed shaft 10, a rotating screw 14 rotatably held by the dynamic balancing adjusting weight 15 and screwed into the fixing screw 12, and a rotating screw. 14 is rotated through a gear or the like to adjust the dynamic balance adjustment weight 15.
It is composed of an electromagnetic motor 13 provided at

この構成において、モータ13で回転ねじ14を回転さ
せ、調整用錘15を固定ねじ12上で所定の位置に移動
させ飛翔中の人工衛星の動釣合を調整する。
In this configuration, the rotating screw 14 is rotated by the motor 13, and the adjusting weight 15 is moved to a predetermined position on the fixing screw 12, thereby adjusting the dynamic balance of the artificial satellite in flight.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の宇宙航行体用動釣合調整装置は、モータ
を使用する為、大型で重くなるという欠点がある。
The above-described conventional dynamic balance adjustment device for a spacecraft uses a motor, so it has the disadvantage of being large and heavy.

また、電磁式モータを使用する為、電界の発生を嫌う磁
場計測用の観測機器から遠ざけなければならないという
、人工衛星等の宇宙航行体内の機器の配置を制約すると
いう欠点がある。
Furthermore, since an electromagnetic motor is used, it has the disadvantage that it must be kept away from observation equipment for measuring magnetic fields, which dislikes the generation of electric fields, which restricts the placement of equipment within space vehicles such as artificial satellites.

また、使用するモータの人工衛星打上げ時の環境、宇宙
空間の環境における信頼性、耐久性にも問題がある。
There are also problems with the reliability and durability of the motor used in the environment during satellite launch and in the environment of outer space.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の宇宙航行体周動調整装置は、宇宙航行体の本体
に対し固定された固定軸と、貫通穴に前記固定軸を挿通
させた駆動部と、この駆動部に取り付けられた調整用錘
と、前記固定軸に取り付けられた第1および第2の圧電
素子と、前記駆動部に取り付けられた第3および第4の
圧電素子と、前記第1および第2の圧電素子または前記
第3および第4の圧電素子を励振するかまたは前記第1
ないし第4の圧電素子のいずれをも励振して前記固定軸
の表面または前記貫通穴の内面に進行波となる弾性波を
発生させるか前記固定軸の表面および前記貫通穴の内面
のいずれにも進行波となる弾性波を発生させて前記調整
用錘を前記固定軸に沿って移動させる高周波電源とを含
んで構成される。
The spacecraft circumferential motion adjustment device of the present invention includes a fixed shaft fixed to the main body of the spacecraft, a drive section in which the fixed shaft is inserted through a through hole, and an adjustment weight attached to the drive section. , first and second piezoelectric elements attached to the fixed shaft, third and fourth piezoelectric elements attached to the drive section, and the first and second piezoelectric elements or the third and fourth piezoelectric elements. The fourth piezoelectric element is excited or the first piezoelectric element is excited.
Either the fourth piezoelectric element is excited to generate an elastic wave that becomes a traveling wave on the surface of the fixed shaft or the inner surface of the through hole, or the elastic wave is generated as a traveling wave on the surface of the fixed shaft or the inner surface of the through hole. and a high frequency power source that generates an elastic wave as a traveling wave to move the adjustment weight along the fixed axis.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面図である。図中、1は
人工衛星本体に固定された固定軸で、圧電素子により励
振させ得る弾性体からなる。3は固定軸1の一端の周囲
に巻いた圧電素子、4は固定軸1の他端の周囲に巻いた
圧電素子であり、この圧電素子3及び4にワイヤ7を介
して高周波電源8から位相をずらして電圧を供給し、圧
電素子3及び4を微小振動させ、固定軸1の表面上に進
行波の弾性表面波を発生させる。9は取付けた動釣合調
整用錘2を固定軸1に沿って移動させる駆動部であり、
圧電素子によって励振させ得る弾性体からなる。5は駆
動部9の一端の内径の周囲に巻いた圧電素子、6は駆動
部9の他端の内径の周囲に巻いた圧電素子であり、この
圧電素子5及び6にワイヤ7を介して高周波電源8より
位相をずらした電圧を供給し圧電素子5及び6を微小振
動させ、駆動部9の内径の表面上に進行波の弾性表面波
を発生させる。
FIG. 1 is a sectional view of an embodiment of the present invention. In the figure, reference numeral 1 denotes a fixed shaft fixed to the satellite body, which is made of an elastic body that can be excited by a piezoelectric element. 3 is a piezoelectric element wound around one end of the fixed shaft 1; 4 is a piezoelectric element wound around the other end of the fixed shaft 1; The piezoelectric elements 3 and 4 are slightly vibrated by supplying a voltage while shifting the , and a traveling surface acoustic wave is generated on the surface of the fixed shaft 1 . 9 is a drive unit that moves the attached dynamic balance adjustment weight 2 along the fixed shaft 1;
It is made of an elastic body that can be excited by a piezoelectric element. 5 is a piezoelectric element wound around the inner diameter of one end of the drive unit 9; 6 is a piezoelectric element wound around the inner diameter of the other end of the drive unit 9; A phase-shifted voltage is supplied from the power supply 8 to cause the piezoelectric elements 5 and 6 to vibrate minutely, thereby generating a traveling surface acoustic wave on the inner diameter surface of the drive section 9 .

次に、駆動部9の動作原理を説明する。まず圧電素子3
及び4にワイヤ7を介し位相をずらした高周波電圧を高
周波電源8より供給し圧電素子3および4を微小振動さ
せ、固定軸1を励振し、固定軸1の表面上に進行波の表
面弾性波を発生させる。この進行波によって駆動部9は
、進行波と逆向きの力を受ける。また、圧電素子5及び
6に、ワイヤ7を介して位相をずらした高周波電圧を高
周波電源8より供給し、圧電素子5及び6を微小振動さ
せ、駆動部9を励振し、駆動部9の表面上に上述の固定
軸1の進行波とは逆向きの進行波となる表面弾性波を発
生させる。この進行波によって駆動部9は進行波と逆向
きの力を固定軸1に与えるが、固定軸1は人工衛星本体
に固定されている為、駆動部9は固定軸1から反力を受
ける。この反力と、上述の固定軸1の進行波によって駆
動部9が受ける力との合力により、調整用錘2を取付け
た駆動部9は固定軸1上を移動することができる。
Next, the principle of operation of the drive section 9 will be explained. First, piezoelectric element 3
A phase-shifted high-frequency voltage is supplied from the high-frequency power source 8 to the piezoelectric elements 3 and 4 through the wire 7 to the fixed shaft 1, which excites the fixed shaft 1, and generates a traveling surface acoustic wave on the surface of the fixed shaft 1. to occur. The driving portion 9 receives a force in the opposite direction to the traveling wave due to this traveling wave. Further, a high frequency voltage with a phase shift is supplied to the piezoelectric elements 5 and 6 from a high frequency power source 8 via a wire 7 to cause the piezoelectric elements 5 and 6 to vibrate minutely, to excite the drive unit 9, and to A surface acoustic wave is generated which is a traveling wave in the opposite direction to the traveling wave of the fixed shaft 1 described above. Due to this traveling wave, the driving section 9 applies a force in the opposite direction to the traveling wave to the fixed shaft 1, but since the fixed shaft 1 is fixed to the satellite body, the driving section 9 receives a reaction force from the fixed shaft 1. Due to the resultant force of this reaction force and the force applied to the drive section 9 by the traveling wave of the fixed shaft 1 described above, the drive section 9 to which the adjustment weight 2 is attached can move on the fixed shaft 1.

なお、駆動部9を微少量移動する時は、圧電素子3及び
4に供給する高周波電圧を切り、圧電素子5及び6によ
る進行波によって駆動部9が受ける反力のみで駆動部9
を移動させる。
In addition, when moving the drive part 9 by a small amount, the high frequency voltage supplied to the piezoelectric elements 3 and 4 is cut off, and the drive part 9 is moved only by the reaction force that the drive part 9 receives from the traveling waves generated by the piezoelectric elements 5 and 6.
move.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、宇宙航行体用動釣合調整
装置において電磁式モータを使わず、圧電素子を利用す
ることにより小型・軽量化をはがり、他の機器への電磁
波干渉を抑えかつ信頼性。
As explained above, the present invention does not use an electromagnetic motor in a dynamic balance adjustment device for a spacecraft, but uses a piezoelectric element to reduce size and weight, and suppress electromagnetic interference with other equipment. and reliable.

耐久性を向上させることができる効果がある。This has the effect of improving durability.

【図面の簡単な説明】 第1図は本発明の一実施例の断面図、第2図は従来の宇
宙航行体用動釣合調整装置の断面図である。 1.10・・・固定軸、2,15・・・動釣合調整用錘
、3〜6・・・圧電素子、7・・・ワイヤ、8・・・高
周波電源、9・・・駆動部、11・・・固定板、12・
・・固定ねじ、13・・・モータ、14・・・回転ねじ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional dynamic balance adjustment device for a spacecraft. 1.10...Fixed shaft, 2,15...Dynamic balance adjustment weight, 3-6...Piezoelectric element, 7...Wire, 8...High frequency power supply, 9...Drive unit , 11... fixed plate, 12...
...fixing screw, 13...motor, 14...rotating screw.

Claims (1)

【特許請求の範囲】[Claims] 宇宙航行体の本体に対し固定された固定軸と、貫通穴に
前記固定軸を挿通させた駆動部と、この駆動部に取り付
けられた調整用錘と、前記固定軸に取り付けられた第1
および第2の圧電素子と、前記駆動部に取り付けられた
第3および第4の圧電素子と、前記第1および第2の圧
電素子または前記第3および第4の圧電素子を励振する
かまたは前記第1ないし第4の圧電素子のいずれをも励
振して前記固定軸の表面または前記貫通穴の内面に進行
波となる弾性波を発生させるか前記固定軸の表面および
前記貫通穴の内面のいずれにも進行波となる弾性波を発
生させて前記調整用錘を前記固定軸に沿って移動させる
高周波電源とを含むことを特徴とする宇宙航行体用動釣
合調整装置。
A fixed shaft fixed to the main body of the spacecraft, a drive section in which the fixed shaft is inserted into a through hole, an adjustment weight attached to the drive section, and a first adjustment weight attached to the fixed shaft.
and a second piezoelectric element, third and fourth piezoelectric elements attached to the drive section, and exciting the first and second piezoelectric elements or the third and fourth piezoelectric elements; Either the first to fourth piezoelectric elements are excited to generate an elastic wave that becomes a traveling wave on the surface of the fixed shaft or the inner surface of the through hole, or the surface of the fixed shaft or the inner surface of the through hole A dynamic balance adjustment device for a spacecraft, comprising: a high frequency power source that generates an elastic wave that becomes a traveling wave to move the adjustment weight along the fixed axis.
JP61208983A 1986-09-04 1986-09-04 Dynamic balance adjuster for spacecraft Expired - Lifetime JP2518226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208983A JP2518226B2 (en) 1986-09-04 1986-09-04 Dynamic balance adjuster for spacecraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208983A JP2518226B2 (en) 1986-09-04 1986-09-04 Dynamic balance adjuster for spacecraft

Publications (2)

Publication Number Publication Date
JPS6364897A true JPS6364897A (en) 1988-03-23
JP2518226B2 JP2518226B2 (en) 1996-07-24

Family

ID=16565389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208983A Expired - Lifetime JP2518226B2 (en) 1986-09-04 1986-09-04 Dynamic balance adjuster for spacecraft

Country Status (1)

Country Link
JP (1) JP2518226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476916B2 (en) 2008-04-24 2013-07-02 Multitest Elektronische Systeme Gmbh Plunger with a quick locking system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133397A (en) * 1984-07-26 1986-02-17 日本電気株式会社 Dynamic balance regulator for space missile
JPS6173502A (en) * 1984-09-14 1986-04-15 富士電機株式会社 Contact malfunction detector of power supply conductor connector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133397A (en) * 1984-07-26 1986-02-17 日本電気株式会社 Dynamic balance regulator for space missile
JPS6173502A (en) * 1984-09-14 1986-04-15 富士電機株式会社 Contact malfunction detector of power supply conductor connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476916B2 (en) 2008-04-24 2013-07-02 Multitest Elektronische Systeme Gmbh Plunger with a quick locking system

Also Published As

Publication number Publication date
JP2518226B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US5006746A (en) Travelling-wave motor
JPH0117353B2 (en)
US5646380A (en) Drive assembly for acoustic sources
JPH03289375A (en) Cylindrical ultrasonic wave motor
US5115161A (en) Ultrasonic motor
JP2925272B2 (en) Vibration wave motor
JP3541996B2 (en) Magnetostrictive device
Uchino et al. Ultrasonic linear motors using a multilayered piezoelectric actuator
JPS6364897A (en) Dynamic balancing regulator for space missile
US3408872A (en) Circumferential flexure vibrating gyroscope
US4385521A (en) Ultrasonic apparatus for sector scanning
JPS59185180A (en) Supersonic motor
US6489705B1 (en) Thin-disc piezoelectric actuating ultrasonic motor
JPH10327590A (en) Surface acoustic wave actuator
JPS63262068A (en) Vibration wave motor
JP2513241B2 (en) Ultrasonic motor
JPS59187132A (en) Vibroisolation controlling device
JP2829938B2 (en) Powder transfer method
JPH0662587A (en) Ultrasonic motor
JPH0646870B2 (en) Linear actuator
SU1070628A1 (en) Piezoelectric motor
JP2565081B2 (en) Mast telescopic device
JPH02179282A (en) Drive circuit for ultrasonic motor
SU864387A1 (en) Wave vibromotor
JPH112752A (en) Vibration actuator driving device and lens barrel