JPH02179282A - Drive circuit for ultrasonic motor - Google Patents

Drive circuit for ultrasonic motor

Info

Publication number
JPH02179282A
JPH02179282A JP63329316A JP32931688A JPH02179282A JP H02179282 A JPH02179282 A JP H02179282A JP 63329316 A JP63329316 A JP 63329316A JP 32931688 A JP32931688 A JP 32931688A JP H02179282 A JPH02179282 A JP H02179282A
Authority
JP
Japan
Prior art keywords
frequency
ultrasonic motor
resonance frequency
drive circuit
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63329316A
Other languages
Japanese (ja)
Other versions
JP2879220B2 (en
Inventor
Koji Toda
浩司 戸田
Hisahiro Hisamoto
久本 尚弘
Koichi Inoue
弘一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63329316A priority Critical patent/JP2879220B2/en
Publication of JPH02179282A publication Critical patent/JPH02179282A/en
Application granted granted Critical
Publication of JP2879220B2 publication Critical patent/JP2879220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To simplify designing and regulating by determining parallel resonance frequency newly generated in a booster transformer and an ultrasonic motor according to predetermined conditions. CONSTITUTION:An ultrasonic motor has a driver, and its piezoelectric element forms an equivalent circuit of a resistance Ra, a capacitance Ca, and an inductance La. When the ultrasonic motor is driven, a parallel resonance of an inductance L2 of the secondary coil of a booster transformer 19 and a capacitance C1 of the driver is generated. This parallel resonance frequency is so selected as to be higher than the resonance frequency of the ultrasonic motor and lower than the frequency at which amplitude characteristic initially becomes a lowest level in this high range.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、超音波モータを安定駆動させるための能動
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an active circuit for stably driving an ultrasonic motor.

「従来の技術」 圧電セラミックなどの圧電素子をステータに貼着し、こ
のステータに弾性振動を励起させてロータを回転させる
超音波モータが知られている。
"Prior Art" Ultrasonic motors are known in which a piezoelectric element such as a piezoelectric ceramic is attached to a stator, and the rotor is rotated by exciting elastic vibrations in the stator.

第9図はこの種のモータの駆動体11と回転体12とを
簡略的に示したもので、円形のステータ13の後面には
薄板状の圧電素子14が貼着され、その前面には周囲に
沿って放射状となったスリットが形成されている。
FIG. 9 schematically shows the driving body 11 and rotating body 12 of this type of motor. A thin plate-like piezoelectric element 14 is attached to the rear surface of the circular stator 13, and the surrounding Radial slits are formed along the .

このステータ13と圧電素子14が駆動体11としてそ
の前面に振動進行波λを発生する。
The stator 13 and the piezoelectric element 14 serve as the driving body 11 and generate a vibration traveling wave λ on the front surface thereof.

回転体12は円形のロータ15にスライダ16を貼着し
たもので、スライダ16を上記ステータ13に圧接する
。この回転体12は駆動体11の振動によって駆動され
振動進行波方向とは反対に回転する。
The rotating body 12 includes a circular rotor 15 and a slider 16 attached thereto, and the slider 16 is pressed against the stator 13. This rotating body 12 is driven by the vibration of the driving body 11 and rotates in the opposite direction to the direction of the vibration traveling wave.

第10図は駆動体11の拡大背面図で、図示する如く圧
電素子14は分極され、この分極に対して3つの電極1
4a、14b、14cが設けられている。これら電極1
4a、14bに対しては90°の位相差をもった2系統
の高周波電圧Va。
FIG. 10 is an enlarged rear view of the driver 11. As shown in the figure, the piezoelectric element 14 is polarized, and three electrodes 1 are connected to the polarization.
4a, 14b, and 14c are provided. These electrodes 1
4a and 14b are two systems of high frequency voltage Va with a phase difference of 90°.

vbを与えるようになっている。具体例を述べれば、V
a=Vsin (ωt)、Vb=Vcos(ωt)とし
て印加する。なお、各電極14a〜14cに対してはス
テータ13を他方の共通電極(例えば、アース電極)と
して給電回路に接続する。
It is designed to give vb. To give a specific example, V
It is applied as a=Vsin (ωt) and Vb=Vcos (ωt). Note that the stator 13 is connected to the power supply circuit as the other common electrode (for example, a ground electrode) for each of the electrodes 14a to 14c.

また、上記のように印加する給電々圧(高周波電圧)V
a、Vbは、20〜300ボルトを必要とするため、カ
メラやビデオカメラなど小形機器の駆動源として使用す
る場合には電池電圧を昇圧して交流電圧を出力するイン
バータなどの駆動回路が使用されている。
In addition, the power supply voltage (high frequency voltage) V applied as described above
Since a and Vb require 20 to 300 volts, when used as a drive source for small devices such as cameras and video cameras, a drive circuit such as an inverter that boosts the battery voltage and outputs AC voltage is used. ing.

第11図は上記した駆動回路の一例である。FIG. 11 shows an example of the above-mentioned drive circuit.

この駆動回路では、スイッチ17a、17bを交互に、
また、スイッチ18a、18bを交互に開閉して、一方
の昇圧トランス19より給電々圧Vaを、他方の昇圧ト
ランス20より給電々圧vbを各々出力させる。この駆
動回路では、電池電源21の直流電圧(例えば、3〜1
2ボルト)が20〜300ボルトの交流電圧に変換され
、圧電素子14の電極14a、14bに加えられる。な
お、実装回路ではスイッチ17a、17b、18a、1
8bを半導体スイッチとして、制御回路によって予め定
めた動作条件にしたがってON、OFFを繰り返す構成
としてあり、上記給電々圧Va、vbが設定された駆動
周波数で出力する。
In this drive circuit, the switches 17a and 17b are alternately
Further, the switches 18a and 18b are alternately opened and closed to cause one step-up transformer 19 to output a power supply voltage Va, and the other step-up transformer 20 to output a power supply voltage Vb. In this drive circuit, the DC voltage of the battery power supply 21 (for example, 3 to 1
2 volts) is converted into an alternating voltage of 20-300 volts and applied to the electrodes 14a, 14b of the piezoelectric element 14. In addition, in the mounted circuit, switches 17a, 17b, 18a, 1
A semiconductor switch 8b is configured to be repeatedly turned on and off according to predetermined operating conditions by a control circuit, and the power supply voltages Va and vb are outputted at a set driving frequency.

「発明が解決しようとする課題」 上記した超音波モータは駆動体11特有の共振周波数f
mと反共振周波数fnとを有しており、多くの場合、共
振周波数fmより僅かに高い周波数(反共振周波数fn
より低い)の給電々圧Va、vbで駆動させる構成とな
っている。
"Problem to be Solved by the Invention" The above-mentioned ultrasonic motor has a resonance frequency f unique to the driving body 11.
m and an anti-resonant frequency fn, and in many cases, the frequency is slightly higher than the resonant frequency fm (anti-resonant frequency fn
The configuration is such that the power supply voltages Va and Vb (lower) are used for driving.

第12図は周波数fをパラメータとして表わした駆動体
11のインピーダンス特性曲線Aであり、第13図は同
様に周波数fをパラメータとして表わした駆動体11の
振幅特性曲線Bである。
FIG. 12 is an impedance characteristic curve A of the driving body 11 expressed with the frequency f as a parameter, and FIG. 13 is an amplitude characteristic curve B of the driving body 11 similarly expressed with the frequency f as a parameter.

これらの特性曲線A、Bより分かる如く、共振周波数f
mに近づくほど振幅レベルが高くなることから、この共
振周波数fmより僅かに高い周波数が駆動周波数fsと
して設定される。
As can be seen from these characteristic curves A and B, the resonant frequency f
Since the amplitude level becomes higher as it approaches m, a frequency slightly higher than this resonance frequency fm is set as the drive frequency fs.

また、周波数fdは共振周波数fmより高い領域で最初
に最も低レベルとなる振幅特性の周波数である。
Further, the frequency fd is the frequency of the amplitude characteristic that first becomes the lowest level in a region higher than the resonance frequency fm.

なお、駆動周波数fsが共振周波数fmより低くなると
、 lli動性能が極端に悪くなることは広く知られて
いる通りである。
Note that it is widely known that when the drive frequency fs becomes lower than the resonance frequency fm, the lli dynamic performance becomes extremely poor.

ところで、超音波モータは負荷の大小によって。By the way, ultrasonic motors depend on the size of the load.

また1周囲温度の変化や組立上の誤差などの外部的な諸
条件によって共振周波数fmが変動する。
Furthermore, the resonant frequency fm fluctuates due to external conditions such as changes in ambient temperature and assembly errors.

例えば、共振周波数fmが低い方向に変動すると、駆動
周波数fsが振幅特性上Δfsのように移り、この結果
、振幅変化Doが生ずるようになり、超音波モータの駆
動性能(トルク、回転数など)が低下する。
For example, when the resonance frequency fm changes in the lower direction, the driving frequency fs changes as Δfs in terms of amplitude characteristics, and as a result, an amplitude change Do occurs, which changes the driving performance (torque, rotation speed, etc.) of the ultrasonic motor. decreases.

このような問題を解決するため、共振周波数fmの変動
を抑制する回路など様々な手段構成が提案されているが
、回路部品が多く構成が複雑化した駆動回路となるなど
、実施化に適当となるものが数少ない。
In order to solve this problem, various means configurations have been proposed, such as circuits that suppress fluctuations in the resonant frequency fm. There are very few things.

本発明は上記した実情にかんがみ、共振周波数fmの変
動にかかわらず超音波モータの安定駆動が可能な駆動回
路を開発することを目的とする。
In view of the above-mentioned circumstances, it is an object of the present invention to develop a drive circuit capable of stably driving an ultrasonic motor regardless of fluctuations in the resonance frequency fm.

「課題を解決するための手段」 上記目的を達成するため、本発明では、昇圧トランスの
出力電圧により給電して超音波モータを駆動させる能動
回路において、上記モータの駆動体が有する静電容量と
上記昇圧トランスの出力コイルのインダクタンスとによ
って生ずる並列共振周波数が、上記モータの共振周波数
と、この共振周波数より高い領域でこのモータの振幅特
性が最初に最も低レベルとなる周波数との間となるよう
に回路構成したことを特徴とする超音波モータの駆動回
路を提案する。
"Means for Solving the Problems" In order to achieve the above object, the present invention provides an active circuit for driving an ultrasonic motor by supplying power with the output voltage of a step-up transformer. The parallel resonance frequency generated by the inductance of the output coil of the step-up transformer is between the resonance frequency of the motor and the frequency at which the amplitude characteristic of the motor first reaches its lowest level in a region higher than this resonance frequency. We propose an ultrasonic motor drive circuit characterized by having a circuit configuration as follows.

また、本発明では、上記した昇圧トランスが、超音波モ
ータの共振周波数より高く、かつ、共振周波数より高い
領域で振幅特性が最初に最も低レベルとなる周波数より
低い駆動周波数の出力電圧をもって給電する構成とした
ことを特徴とする超音波モータの駆動回路を提案する。
Further, in the present invention, the step-up transformer described above supplies power with an output voltage at a drive frequency that is higher than the resonant frequency of the ultrasonic motor and lower than the frequency at which the amplitude characteristic first reaches its lowest level in the region higher than the resonant frequency. We propose a drive circuit for an ultrasonic motor characterized by the following configuration.

「作 用」 上記したように、昇圧トランスと超音波モータとによっ
て新たに生ずる並列共振周波数(反共振周波数)を所定
の条件にしたがって定めることにより、共振周波数を越
えた直後の周波数帯域での振幅特性をレベル変動の少な
いものに改善することができる。
"Function" As mentioned above, by determining the parallel resonance frequency (anti-resonance frequency) newly generated by the step-up transformer and the ultrasonic motor according to predetermined conditions, the amplitude in the frequency band immediately after exceeding the resonance frequency can be increased. The characteristics can be improved to have less level fluctuations.

その結果、共振周波数の変動による超音波モータのトル
クや回転数などの変化が極めて少なくなる。
As a result, changes in the torque, rotational speed, etc. of the ultrasonic motor due to fluctuations in the resonance frequency are extremely reduced.

また、昇圧トランスの出力電圧の周波数は、共振周波数
と、この共振周波数より高い領域で最初に最も低レベル
となる振幅特性点の周波数との間に設定することができ
、駆動周波数の設定が余裕をもって行ない得て1回路設
計や調整作業に有利となる。
In addition, the frequency of the output voltage of the step-up transformer can be set between the resonant frequency and the frequency of the amplitude characteristic point where the level is first lowest in the region higher than this resonant frequency, and the drive frequency can be set with a margin. This is advantageous for single-circuit design and adjustment work.

「実施例」 次に、本発明の実施例について図面に沿って説明する。"Example" Next, embodiments of the present invention will be described with reference to the drawings.

第1図は超音波モータの駆動体11を示す簡略図である
が、この駆動体11の一方の電極14aについて電気的
に表わすと第2図に示した等価回路となる。他方の電極
14bについても同様である。
FIG. 1 is a simplified diagram showing a driving body 11 of an ultrasonic motor, and when one electrode 14a of this driving body 11 is electrically expressed, the equivalent circuit shown in FIG. 2 is obtained. The same applies to the other electrode 14b.

この等価回路のRa、Ca、Laは圧電素子14の抵抗
、静電容量及びインダクタンスで、Goは圧電素子14
とステータ13の間などに生ずる静電容量である。なお
、Co>Caの関係となる。
In this equivalent circuit, Ra, Ca, and La are the resistance, capacitance, and inductance of the piezoelectric element 14, and Go is the piezoelectric element 14.
This is the capacitance generated between the stator 13 and the stator 13. Note that the relationship is Co>Ca.

このことから、超音波モータが駆動されるときには、第
3図に示すような回路構成となり、昇圧トランス19の
二次コイル19gが有するインダクタンスLよと、H動
体11が有する静電容量C1との並列共振が発生するこ
とになる。ただし、静電容量C工=Co +Caである
From this, when the ultrasonic motor is driven, the circuit configuration is as shown in FIG. Parallel resonance will occur. However, capacitance C = Co + Ca.

この点については、昇圧トランス20と駆動体11に関
しても同じ関係となる。
Regarding this point, the same relationship holds true for the step-up transformer 20 and the driver 11.

この並列共振の周波数(反共振周波数)fnlを。The frequency of this parallel resonance (anti-resonance frequency) fnl.

超音波モータの共振周波数fmより高く、かつ。higher than the resonant frequency fm of the ultrasonic motor;

共振周波数fmより高い領域で振幅特性が最初に最も低
レベルとなる周波数fdより低く選ぶと、第4図に示す
インピーダンス特性となり、また、振幅特性が第5図に
示すように現われる。
If the frequency is selected to be lower than the frequency fd at which the amplitude characteristic first reaches its lowest level in a region higher than the resonance frequency fm, the impedance characteristic will be as shown in FIG. 4, and the amplitude characteristic will appear as shown in FIG. 5.

すなわち、周波数fm、fdの間における振幅特性が第
5図より分かるように、比較的にレベル変化の少ない特
性となる。
That is, as can be seen from FIG. 5, the amplitude characteristics between the frequencies fm and fd have relatively few level changes.

したがって、昇圧トランスから出力させる給電々圧Va
、Vbの周波数、つまり、駆動周波数fsを図示するよ
うに設定すれば、共振周波数fmが変動にしたがってΔ
fsのように移り、振幅特性の変化をD4程度に抑える
ことができる。
Therefore, the supply voltage Va output from the step-up transformer
, Vb, that is, the drive frequency fs, is set as shown in the figure, the resonance frequency fm changes as Δ
fs, and the change in amplitude characteristics can be suppressed to about D4.

このようにして、負荷の大小、周囲温度の変化、超音波
モータの組立て誤差などに原因して共振周波数fmが変
動した場合にも、振幅特性の改善によって超音波モータ
の安定した運転が可能になる6並列共振周波数fn工を
周波数fdより高く選んだ場合には、第6図に示すイン
ピーダンス特性となり、この結果、振幅特性が第7図に
示すようにレベル変化の大きいものとなる。
In this way, even if the resonant frequency fm fluctuates due to factors such as load size, changes in ambient temperature, or assembly errors of the ultrasonic motor, stable operation of the ultrasonic motor is possible by improving the amplitude characteristics. If the 6-parallel resonance frequency fn is selected higher than the frequency fd, the impedance characteristic will be as shown in FIG. 6, and as a result, the amplitude characteristic will have a large level change as shown in FIG.

この場合、共振周波数fmの変動によって駆動周波数が
Δfsのように移り、振幅特性のレベル変化がり、のよ
うに大きくなる。このため、並列共振周波数fn□につ
いては、fm<fnよ<fd(7)条件にしたがって設
定する必要がある。
In this case, due to the fluctuation of the resonance frequency fm, the driving frequency changes as Δfs, and the level change of the amplitude characteristic becomes large as Δfs. Therefore, the parallel resonance frequency fn□ needs to be set according to the condition fm<fn and <fd (7).

並列共振周波数fn工は の式によって求めることができる。The parallel resonant frequency fn is It can be determined by the formula.

なお、駆動体11の静電容量C□は予め算出されており
、インダクタンスL2は二次コイルの巻数によって決め
ることができる。
Note that the capacitance C□ of the driving body 11 is calculated in advance, and the inductance L2 can be determined by the number of turns of the secondary coil.

既在の昇圧トランス22.23を使って並列共振周波数
fn1を設定するときには、第8図に示した如く、各昇
圧トランス22.23の出力側にインダクタンスを可変
できるコイル24,25を接続する構成としてもよい。
When setting the parallel resonance frequency fn1 using the existing step-up transformers 22, 23, as shown in FIG. You can also use it as

「発明の効果」 上記した通り、本発明に係る駆動回路によれば、共振周
波数を越えた直後の周波数帯域がレベル変化の少ない振
幅特性に改善されるため、負荷の状態や周囲温度の変化
、或いは、モータ組立て時の誤差などによる外部的な諸
条件によって共振周波数が変動したとしても、超音波モ
ータのトルク、回転数などの駆動性能を低下させること
なく安定した運転が可能になる。
"Effects of the Invention" As described above, according to the drive circuit according to the present invention, the frequency band immediately after the resonance frequency is improved to have an amplitude characteristic with little level change. Alternatively, even if the resonant frequency fluctuates due to external conditions such as errors during motor assembly, stable operation of the ultrasonic motor is possible without deteriorating drive performance such as torque and rotational speed.

その上、運転状態で超音波モータの無効電流を低く抑え
ることができるので、モータによる消費電力が軽減され
るという有利さがある。
Furthermore, since the reactive current of the ultrasonic motor can be suppressed to a low level during operation, there is an advantage that power consumption by the motor can be reduced.

また、駆動周波数は振幅特性のレベル変化の少ない周波
数帯域内で任意に設定することができるため、駆動回路
の設計、調整などが簡単となる。
Further, since the drive frequency can be arbitrarily set within a frequency band in which the level change of the amplitude characteristic is small, the design and adjustment of the drive circuit are simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波モータの駆動体を示す簡略図、第2図は
当該駆動体の等価回路を示す図、第3図は上記等価回路
と昇圧トランスとの接続を示す回路図、第4図及び第5
図は本発明の実施例を示すインピーダンス特性と振幅特
性とを示す図、第6図は並列共振周波数fn、を周波数
fdより高い位置に設定したときのインピーダンス特性
を示す図、第7図は第6図のインピーダンス特性によっ
て呪われる振幅特性を示す図、第8図は本発明の他の実
施例を示す簡略的な駆動回路図、第9図は超音波モータ
の簡略図、第10図は駆動体の拡大背面図、第11図は
駆動回路の従来例を示す回路図、第12図及び第13図
は超音波モータ自体のインピーダンス特性と振幅特性を
示す図である。 11・・・・駆動体 12・・・・回転体 13・・・・ステータ 14・・・・圧電素子 14a、14b、14c=”電極 15・・・・ロータ 16・・・・スライダ 19.20.22.23・・・・昇圧トランス24.2
5・・・・コイル m1図 j12  図 第 、1jQ W 3 ! 第5図 第 栗 図 図 第 図
Figure 1 is a simplified diagram showing the driving body of the ultrasonic motor, Figure 2 is a diagram showing an equivalent circuit of the driving body, Figure 3 is a circuit diagram showing the connection between the above equivalent circuit and a step-up transformer, and Figure 4. and fifth
The figure shows an impedance characteristic and an amplitude characteristic showing an embodiment of the present invention, FIG. 6 shows an impedance characteristic when the parallel resonance frequency fn is set higher than the frequency fd, and FIG. Figure 6 is a diagram showing amplitude characteristics cursed by impedance characteristics, Figure 8 is a simple drive circuit diagram showing another embodiment of the present invention, Figure 9 is a simplified diagram of an ultrasonic motor, and Figure 10 is a drive circuit diagram. FIG. 11 is a circuit diagram showing a conventional example of a drive circuit, and FIGS. 12 and 13 are diagrams showing impedance characteristics and amplitude characteristics of the ultrasonic motor itself. 11...Driver 12...Rotating body 13...Stator 14...Piezoelectric elements 14a, 14b, 14c="Electrode 15...Rotor 16...Slider 19.20 .22.23...Step-up transformer 24.2
5...Coil m1 diagram j12 diagram 1jQ W 3! Figure 5 Chestnut diagram Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1) 昇圧トランスの出力電圧により給電して超音波
モータを駆動させる駆動回路において、上記モータの駆
動体が有する静電容量と上記昇圧トランスの出力コイル
のインダクタンスとによって生ずる並列共振周波数が、
上記モータの共振周波数と、この共振周波数より高い領
域でこのモータの振幅特性が最初に最も低レベルとなる
周波数との間となるように回路構成したことを特徴とす
る超音波モータの駆動回路。
(1) In a drive circuit that drives an ultrasonic motor by supplying power with the output voltage of a step-up transformer, a parallel resonance frequency generated by the capacitance of the motor driver and the inductance of the output coil of the step-up transformer is
An ultrasonic motor drive circuit characterized in that the circuit is configured to be between the resonant frequency of the motor and a frequency at which the amplitude characteristic of the motor first reaches its lowest level in a region higher than the resonant frequency.
(2) 上記モータの共振周波数と、この共振周波数よ
り高い領域でこのモータの振幅特性が最初に最も低レベ
ルとなる周波数との範囲内に定めるべく、上記出力電圧
の周波数を設定したことを特徴とする請求項(1)記載
の超音波モータの駆動回路。
(2) The frequency of the output voltage is set within the range between the resonant frequency of the motor and the frequency at which the amplitude characteristic of the motor first reaches its lowest level in a region higher than the resonant frequency. An ultrasonic motor drive circuit according to claim (1).
JP63329316A 1988-12-28 1988-12-28 Ultrasonic motor drive circuit Expired - Fee Related JP2879220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63329316A JP2879220B2 (en) 1988-12-28 1988-12-28 Ultrasonic motor drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63329316A JP2879220B2 (en) 1988-12-28 1988-12-28 Ultrasonic motor drive circuit

Publications (2)

Publication Number Publication Date
JPH02179282A true JPH02179282A (en) 1990-07-12
JP2879220B2 JP2879220B2 (en) 1999-04-05

Family

ID=18220102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63329316A Expired - Fee Related JP2879220B2 (en) 1988-12-28 1988-12-28 Ultrasonic motor drive circuit

Country Status (1)

Country Link
JP (1) JP2879220B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502741A2 (en) * 1991-03-06 1992-09-09 Canon Kabushiki Kaisha Driving circuit for vibration driven motor
US6724607B2 (en) 2000-09-28 2004-04-20 Canon Kabushiki Kaisha Driving apparatus of vibration type actuator
DE102007050265A1 (en) * 2007-10-18 2009-04-30 Sew-Eurodrive Gmbh & Co. Kg Load i.e. piezo motor, system, has load supplied by secondary winding that is inductively coupled to primary conductor system, by transformer, into which alternating current of feed-in is stamped,
CN104952604A (en) * 2015-06-24 2015-09-30 广东科谷电源有限公司 Driver transformer resistant to unbalance and LLC resonance circuit composed of same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178775A (en) * 1987-01-19 1988-07-22 Wako Denki Kk Power source for oscillator
JPS63202278A (en) * 1987-02-13 1988-08-22 Nikon Corp Driver circuit for ultrasonic motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178775A (en) * 1987-01-19 1988-07-22 Wako Denki Kk Power source for oscillator
JPS63202278A (en) * 1987-02-13 1988-08-22 Nikon Corp Driver circuit for ultrasonic motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502741A2 (en) * 1991-03-06 1992-09-09 Canon Kabushiki Kaisha Driving circuit for vibration driven motor
EP0502741A3 (en) * 1991-03-06 1993-02-03 Canon Kabushiki Kaisha Driving circuit for vibration driven motor
US5311093A (en) * 1991-03-06 1994-05-10 Canon Kabushiki Kaisha Driving circuit for vibration driven motor
US6724607B2 (en) 2000-09-28 2004-04-20 Canon Kabushiki Kaisha Driving apparatus of vibration type actuator
DE102007050265A1 (en) * 2007-10-18 2009-04-30 Sew-Eurodrive Gmbh & Co. Kg Load i.e. piezo motor, system, has load supplied by secondary winding that is inductively coupled to primary conductor system, by transformer, into which alternating current of feed-in is stamped,
DE102007050265B4 (en) * 2007-10-18 2020-12-17 Sew-Eurodrive Gmbh & Co Kg System with a consumer that is movably arranged relative to a primary conductor system
CN104952604A (en) * 2015-06-24 2015-09-30 广东科谷电源有限公司 Driver transformer resistant to unbalance and LLC resonance circuit composed of same

Also Published As

Publication number Publication date
JP2879220B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US5872418A (en) Piezoelectric motor
US5461273A (en) Method and an apparatus for controlling a moving velocity of an ultrasonic motor
US5920144A (en) Vibrating actuator device
US6121714A (en) Vibration type motor device
JPH06237584A (en) Speed control method and speed controller for ultrasonic motor
US6573636B1 (en) Ultrasonic motor having single booster circuit and electronic device with ultrasonic motor
JPH09163769A (en) Ultrasonic motor apparatus
JPH0534909B2 (en)
JPH02179282A (en) Drive circuit for ultrasonic motor
US5777444A (en) Drive device for a vibration actuator which prevents the cogging phenomenon
JP3172343B2 (en) Ultrasonic motor
JPH0697858B2 (en) Ultrasonic motor drive circuit
JP2509310B2 (en) Control method of ultrasonic motor
JP3262185B2 (en) Ultrasonic motor controller
EP1413043A2 (en) Driving device for ultrasonic motor
JPH01107681A (en) Driver circuit for oscillatory wave motor
JPH09215352A (en) Speed controller of ultrasonic motor
JP2001136764A (en) Control circuit for ultrasonic motor
JPH057951B2 (en)
JPH0833366A (en) Method for driving ultrasonic motor and its drive circuit
JP2817992B2 (en) Starting the vibration wave motor
JP2601268B2 (en) Ultrasonic motor
JP3131520B2 (en) Ultrasonic motor drive circuit
JPS62247771A (en) Oscillatory-wave motor
JPH056430B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees