JPH01107681A - Driver circuit for oscillatory wave motor - Google Patents

Driver circuit for oscillatory wave motor

Info

Publication number
JPH01107681A
JPH01107681A JP62265706A JP26570687A JPH01107681A JP H01107681 A JPH01107681 A JP H01107681A JP 62265706 A JP62265706 A JP 62265706A JP 26570687 A JP26570687 A JP 26570687A JP H01107681 A JPH01107681 A JP H01107681A
Authority
JP
Japan
Prior art keywords
frequency
resonance
motor
wave motor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62265706A
Other languages
Japanese (ja)
Other versions
JPH0516277B2 (en
Inventor
Ritsuo Kashiyama
律夫 樫山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62265706A priority Critical patent/JPH01107681A/en
Publication of JPH01107681A publication Critical patent/JPH01107681A/en
Priority to US07/595,667 priority patent/US5140231A/en
Publication of JPH0516277B2 publication Critical patent/JPH0516277B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/145Large signal circuits, e.g. final stages
    • H02N2/147Multi-phase circuits

Abstract

PURPOSE:To improve drive efficiency by connecting a resonance element constituting a resonance circuit to a transformer and driving a motor by the secondary-side output of the resonance element. CONSTITUTION:A driver circuit for an oscillatory wave motor 43 is composed of an oscillator 2 generating high frequency for drive, a phase shifter 3 in phase difference at 90 deg., a rotation changer 4, buffers 5-12, transistors(Tr) 21-28 for switching, diodes 29-36 for protecting the Trs, capacitors 37-38 for resonance with the inductance of a transformer primary-side winding, transformers 39-40, and coils 41-42 for shaping a waveform. The resonance frequency of the transformer using resonance on the primary side and resonance frequency peculiar to the motor are conformed while resonance frequency and the Q of a resonance circuit are set so that the characteristics of frequency-output voltage at the time of displacement from a resonance point coincide with characteristics at a point where the input currents of the oscillatory wave motor 43 are minimized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は振動波モーターの駆動回路に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a drive circuit for a vibration wave motor.

〔従来の技術〕[Conventional technology]

従来振動波モーターの回転数を制御する場合、第4図の
様に振動波モーターに一定の電圧を印加して、駆動周波
数を変化させることで回転数を制御しているか、又は振
動波モーターに印加する電圧を変化させて回転数を制御
しているか、あるいは、これらを組み合わせて、いくつ
かの電圧切換と周波数の変化による制御とで回転数制御
を行っている。
Conventionally, when controlling the rotation speed of a vibration wave motor, the rotation speed is controlled by applying a constant voltage to the vibration wave motor and changing the driving frequency, as shown in Figure 4, or by controlling the rotation speed of the vibration wave motor. The rotational speed is controlled by changing the applied voltage, or by a combination of these, the rotational speed is controlled by switching several voltages and controlling by changing the frequency.

〔発明が解決しようとしている問題点〕しかし、上記従
来の回転数切換方式では振動波モーターに印加する電圧
を一定(例えば30v)にして、第4図の様に駆動周波
数を変化することで(第4図の30Vのライン上を変化
させることで)回転数を制御した場合、第3図の30V
のうインの様に周波数が駆動電圧が30Vの時の共振周
波数f、。からずれて、回転数が低下した時に振動波モ
ーターに流れる電流が増加してモーターの駆動効率が悪
化してしまうという欠点がある。
[Problem to be solved by the invention] However, in the conventional rotation speed switching method described above, by keeping the voltage applied to the vibration wave motor constant (for example, 30 V) and changing the driving frequency as shown in Fig. 4, When controlling the rotation speed (by changing the 30V line in Figure 4), the 30V in Figure 3
The resonance frequency f when the driving voltage is 30V, as in the case of Nouin. However, when the rotational speed decreases, the current flowing through the vibration wave motor increases, which deteriorates the driving efficiency of the motor.

又、第4図の30V、25V、20Vに示す如く多数の
電圧源を切り換えて周波数の変化と合わせて制御すれば
比較的駆動効率の良い電圧と周波数帯を用いて速度制御
が可能となる。
Furthermore, if a large number of voltage sources are switched as shown at 30V, 25V, and 20V in FIG. 4 and controlled in accordance with changes in frequency, speed control becomes possible using voltages and frequency bands with relatively good drive efficiency.

例えば30Vの状態では第4図のaの範囲にて周波数を
変化させ回転数をN、−N2の範囲で制御し、N2〜N
2の範囲では駆動電圧を25Vに切換えて、25v下で
の共振周波数f2.からbの範囲でのみ周波数を変化さ
せ、更にN、〜N4の範囲では駆動電圧を20Vに切換
えて20V下での共振周波数f2゜からCの範囲で周波
数を変化させれば広範囲における回転速度を共振周波数
からさほどはずれることのない周波数の変化にて実現出
来、駆動効率の悪化を防止し得る。
For example, in the state of 30V, the frequency is changed in the range a in Fig. 4, the rotation speed is controlled in the range N, -N2, and N2 to N2.
In the range of 2, the driving voltage is switched to 25V, and the resonant frequency f2. If you change the frequency only in the range from to b, then switch the drive voltage to 20V in the range of N and ~N4 and change the frequency in the range from f2° to C, the resonance frequency under 20V, you can control the rotation speed in a wide range. This can be achieved by changing the frequency without significantly deviating from the resonance frequency, and it is possible to prevent deterioration of drive efficiency.

しかしながら、この方法によると多数の電圧源を必要と
する問題が生じる。
However, this method has the problem of requiring multiple voltage sources.

〔問題を解決するための手段〕[Means to solve the problem]

本発明はトランスに一次側コイルに対して共振回路を°
構成するコンデンサー等の共振素子を接続し、該トラン
スの一次側への周波信号への印加にてトランスの二次側
出力を発生させ、この出力にてモーターを駆動する様に
し、上記−次側への周波信号の周波数を変えることにて
二次側出力の周波数及び出力電圧を自動的にモーター駆
動効率の良い組み合わせ状態に変化させ上記の問題を解
消した振動波モーターの駆動回路を提供せんとするもの
である。
The present invention provides a transformer with a resonant circuit for the primary coil.
By connecting resonant elements such as condensers, and applying a frequency signal to the primary side of the transformer, a secondary side output of the transformer is generated, and this output drives the motor. The present invention aims to provide a drive circuit for a vibration wave motor that solves the above problem by automatically changing the frequency and output voltage of the secondary side output to a combination state with good motor drive efficiency by changing the frequency of the frequency signal. It is something to do.

〔実施例〕〔Example〕

第1図は本発明に係る振動波モーターの駆動回路の一実
施例を示し、同図において、1は電源であるところの電
池、2は振動波モーター駆動用の高周波を発生する発振
器、該発振器はその出力周波数を手動にて可変させる可
変手段を有している。3は発振器の出力の位相を90’
 シフトして、位相差90″の駆動用高周波を作るため
の移相器、4は振動波モーターの回転方向を変えるため
に、駆動用高周波の位相を変化させるための回転方向切
換器、5,6.9.10は後述のスイッチング用トラン
ジスタを駆動するための非反転バッファ、7,8,11
.12は駆動用高周波の位相を反転させて、スイッチン
グ用トランジスタを駆動するための反転バッファ、13
〜20は、トランジスタのベース抵抗、21〜28はス
イッチング用トランジスタ、29〜36はトランスの逆
起電力を吸収して、トランジスタを保護するための保護
用ダイオード、37.38は、トランスの一次側巻線の
インダクタンスと、直列共振をするための共振用コンデ
ンサ、39.40は、低電圧の駆動用高周波を振動波モ
ーターを駆動するために必要な電圧まで昇圧するための
トランス、41.42は昇圧された駆動用高周波を正弦
波にするための波形整形用コイル、43は高圧の高周波
で駆動される振動波モーターである。
FIG. 1 shows an embodiment of the vibration wave motor drive circuit according to the present invention, in which 1 is a battery as a power source, 2 is an oscillator that generates high frequency waves for driving the vibration wave motor, and the oscillator is has variable means for manually varying the output frequency. 3 sets the phase of the oscillator output to 90'
A phase shifter for shifting and creating a driving high frequency wave with a phase difference of 90'', 4 a rotation direction switching device for changing the phase of the driving high frequency wave in order to change the rotation direction of the vibration wave motor, 5. 6.9.10 is a non-inverting buffer for driving the switching transistor described later, 7, 8, 11
.. 12 is an inversion buffer for driving the switching transistor by inverting the phase of the driving high frequency; 13;
20 is the base resistance of the transistor, 21 to 28 are switching transistors, 29 to 36 are protection diodes to protect the transistor by absorbing the back electromotive force of the transformer, and 37.38 is the primary side of the transformer. The inductance of the winding and the resonance capacitor for series resonance, 39.40 is a transformer that boosts the low voltage driving high frequency to the voltage required to drive the vibration wave motor, 41.42 is a A waveform shaping coil 43 is used to convert the boosted driving high frequency into a sine wave, and 43 is a vibration wave motor driven by high voltage and high frequency.

第6図は振動波モーター43の周方向から見た断面図で
、該第6図中43−1はロータ、43−2は振動体、4
3−4は振動体43−2上に附された分極処理がなされ
た圧電体(電歪素子) 、43a、43bは電極である
。振動体43−’2と圧電体43−4とよりステーター
が構成され、ローター43−1は振動体43−2上に摩
擦接触している。
FIG. 6 is a sectional view of the vibration wave motor 43 viewed from the circumferential direction, in which 43-1 is a rotor, 43-2 is a vibrator, 4
3-4 is a polarized piezoelectric element (electrostrictive element) attached to the vibrating body 43-2, and 43a and 43b are electrodes. The vibrating body 43-'2 and the piezoelectric body 43-4 constitute a stator, and the rotor 43-1 is in frictional contact with the vibrating body 43-2.

上記電極43a、43b中、振動体43−2における屈
曲進行波の波長をλとすると43aは駆動用電極でλ/
2間隔で圧電体43−4上に配されており、又43bは
駆動用電極で、該電極もλ/2間隔で圧電体43−4上
に配される。
Among the electrodes 43a and 43b, if the wavelength of the bending traveling wave in the vibrating body 43-2 is λ, 43a is a driving electrode and
They are arranged on the piezoelectric body 43-4 at intervals of 2, and 43b is a driving electrode, which is also arranged on the piezoelectric body 43-4 at intervals of λ/2.

又電極43aと43bとは3λ/4だけ位置的位相がず
れており、電極43aにて駆動電圧が印加される圧電体
にてA相の圧電体を構成し、電極43bにて駆動電圧が
印加される圧電体にてB相の圧電体が構成される。これ
らの圧電体の分極処理や電極配置構成自体は周知である
ので、その詳細な説明は省略する。
Further, the electrodes 43a and 43b are out of phase in position by 3λ/4, and the piezoelectric material to which the driving voltage is applied to the electrode 43a constitutes an A-phase piezoelectric material, and the driving voltage is applied to the electrode 43b. The B-phase piezoelectric body is composed of the piezoelectric bodies. Since the polarization process of these piezoelectric bodies and the electrode arrangement itself are well known, detailed explanation thereof will be omitted.

上記の構成にあつて、電極43aと電極43bへ位相が
906異なる周波電圧が印加されることにて、振動体4
3−2上に進行性の振動波が発生し、ローター43−1
が該振動波により駆動される。
In the above configuration, by applying frequency voltages having a phase difference of 906 to the electrode 43a and the electrode 43b, the vibrating body 4
A progressive vibration wave is generated on the rotor 43-2, and the rotor 43-1
is driven by the vibration wave.

次に以上の構成の動作を説明する。発振器2で発生した
高周波のパルスを90’移相器3で90°シフトして、
振動波モーター駆動用の同一周波数で位相差が90°の
高周波を作る。次に回転方向切換器4で、位相差を90
°遅らせるか、進ませるかによって、振動波モーターの
回転方向を決める。
Next, the operation of the above configuration will be explained. The high frequency pulse generated by the oscillator 2 is shifted by 90° by the 90' phase shifter 3,
Creates a high frequency wave with the same frequency and a phase difference of 90° for driving a vibration wave motor. Next, use the rotation direction switch 4 to adjust the phase difference to 90
°The rotation direction of the vibration wave motor is determined by whether it is delayed or advanced.

このようにして作られた振動波モーター駆動用の信号は
、それぞれバッファ5〜12を通して、スイッチングト
ランジスタのベースに供給され、スイッチング用の信号
となる。今、発振器2の出力パルスを第2図(a)に示
すものとすると、トランジスター21は第2図(d)の
如くオンオフ動作を行い、一方、トランジスター22は
第2図(b)の如くオンオフ動作を行う。又インバータ
ー7.8を介した発振器2の出力は第2図(C)に示さ
れる通りであり、トランジスター23は第2図(b)の
如(オンオフ動作し、トランジスター24は第2図(d
)の如くオンオフ動作を行う。よって、トランス39の
一次側コイルには交互に異なる方向へ電流が流れ、トラ
ンス39の二次側コイルには高圧高周波電圧が発生する
The signals for driving the vibration wave motor thus generated are supplied to the bases of the switching transistors through buffers 5 to 12, respectively, and become switching signals. Now, assuming that the output pulse of the oscillator 2 is as shown in FIG. 2(a), the transistor 21 performs an on/off operation as shown in FIG. 2(d), while the transistor 22 performs an on/off operation as shown in FIG. 2(b). perform an action. The output of the oscillator 2 via the inverter 7.8 is as shown in FIG. 2(C), the transistor 23 operates on and off as shown in FIG. 2(b), and the transistor 24 operates as shown in FIG.
) performs on/off operations. Therefore, current flows alternately in different directions in the primary coil of the transformer 39, and a high voltage and high frequency voltage is generated in the secondary coil of the transformer 39.

一方、回転方向切換器4の出力としては発振器2の出力
に対して90°位相の異なる第2図(e)のパルスとな
っており、このため、トランジスター26.27は第2
図(f)の如くオンオフし、トランジスター25.28
は第2図(g)の如くオンオフ動作を行う。このため、
トランス40の一次側コイルにも交互に異なる方向へ電
流が流れ、トランス40の二次側コイルの出力としても
高圧高周波電圧が発生する。
On the other hand, the output of the rotation direction switch 4 is the pulse shown in FIG.
It turns on and off as shown in figure (f), and the transistor 25.28
performs on/off operations as shown in FIG. 2(g). For this reason,
Current also flows alternately in different directions in the primary coil of the transformer 40, and a high-voltage, high-frequency voltage is also generated as an output of the secondary coil of the transformer 40.

上記の如く発振器2と回転方向切換器4の出力パルスは
90°位相が異なっているので、上記トランス39.4
0の出力も90°位相が異なるものとなり、コイル41
.42にて正弦波に整形された上、各電極43a、43
bに印加される。
As mentioned above, since the output pulses of the oscillator 2 and the rotation direction switch 4 have a 90° phase difference, the transformer 39.
The output of 0 also has a 90° phase difference, and the coil 41
.. 42, each electrode 43a, 43 is shaped into a sine wave.
b.

これにてA相及びB相の圧電体は90″位相の異なる高
圧高周波電圧が印加され、上述の如く振動波モーター4
3は回動する。
As a result, high-voltage, high-frequency voltages having a phase difference of 90" are applied to the A-phase and B-phase piezoelectric bodies, and as described above, the vibration wave motor 4
3 rotates.

上記トランス39又は40の一次側コイルに対して直列
に共振用コンデンサー37.38が接続され直列共振回
路が構成されている。
Resonant capacitors 37 and 38 are connected in series to the primary coil of the transformer 39 or 40 to form a series resonant circuit.

該直列共振回路は該回路の共振周波数付近ではトランス
の一次側コイルに最も高い電圧が印加され共振周波数か
らずれるに従って一次側コイルに印加される電圧は低下
する。このためトランスの二次側の出力電圧は、第5図
のように一次側共振回路の共振周波数付近の時最も高く
、共振周波数からずれるに従って出力電圧は低下する。
In the series resonant circuit, the highest voltage is applied to the primary coil of the transformer near the resonant frequency of the circuit, and as the voltage deviates from the resonant frequency, the voltage applied to the primary coil decreases. Therefore, the output voltage on the secondary side of the transformer is highest when it is near the resonant frequency of the primary side resonant circuit, as shown in FIG. 5, and the output voltage decreases as it deviates from the resonant frequency.

ここで振動波モーターの周波数−電流の関係は第3図の
様に、周波数−回転数の関係は第4図の様になっており
、一定の電圧(例えば30V)で、周波数を変化させて
回転数を変えた場合、共振周波数からずれるに従って入
力電流が太き(なり、モーターの駆動効率が悪化してし
まう。
Here, the frequency-current relationship of the vibration wave motor is as shown in Figure 3, and the frequency-rotation speed relationship is as shown in Figure 4. When the rotation speed is changed, the input current becomes thicker as it deviates from the resonant frequency, and the drive efficiency of the motor deteriorates.

そこで、駆動効率を悪化させないためには、周波数と共
に駆動電圧を変化させて、常に、入力電流の小さい点で
モーターを駆動すれば、モーターの駆動効率を悪化させ
ずに、回転数を変えるごとができる。
Therefore, in order to prevent the drive efficiency from deteriorating, if you change the drive voltage along with the frequency and always drive the motor at a point where the input current is small, each time the rotation speed changes without deteriorating the motor drive efficiency. can.

よって、本発明では、−次側に共振を使ったトランスの
共振周波数と、振動波モーター固有の共振周波数とを一
致させると共に、共振点からずれた時の周波数−出力電
圧の特性を振動波モーターの入力電流−が最小となる様
な点の周波数−電圧の特性と一致する様に、共振周波数
及び共振回路のQを設定している。これにて、周波数を
変えると振動波モーターに加わる電圧に変化して、常に
電流が最小になる様に制御され駆動効率の向上を計って
いる。
Therefore, in the present invention, the resonant frequency of a transformer that uses resonance on the negative side matches the resonant frequency specific to the vibration wave motor, and the frequency-output voltage characteristic when the vibration wave motor deviates from the resonance point is determined by the vibration wave motor. The resonant frequency and the Q of the resonant circuit are set so as to match the frequency-voltage characteristics at the point where the input current - is minimum. With this, when the frequency is changed, the voltage applied to the vibration wave motor changes, and the current is always controlled to the minimum, improving drive efficiency.

即ち、今、発振器2の発振周波数を上記直列共振回路の
共振周波数f soに設定しており、この時、トランス
39.40の二次側出力として30Vが発生していると
する。上記の如く振動波モーターの共振周波数と直列共
振回路の共振周波数が一致しているので、この時モータ
ーは第3図の30Vのラインの如く高駆動効率で作動す
る。
That is, it is assumed that the oscillation frequency of the oscillator 2 is now set to the resonant frequency f so of the series resonant circuit, and at this time, 30V is generated as the secondary output of the transformer 39,40. As mentioned above, since the resonant frequency of the vibration wave motor and the resonant frequency of the series resonant circuit match, the motor operates at a high driving efficiency as shown by the 30V line in FIG. 3 at this time.

この状態からモーターの回転数を低下させるために発振
器2の出力周波数を変更、f3゜からf 2Bへ移行さ
せると第5図の如くトランスの二次側出力が25Vとな
る。この状態では第3図の如(25V下でのモーターの
共振周波数となっているので、高駆動効率で作動する。
From this state, when the output frequency of the oscillator 2 is changed from f3° to f2B in order to lower the rotational speed of the motor, the secondary output of the transformer becomes 25V as shown in FIG. In this state, as shown in Figure 3 (the resonance frequency of the motor is 25V), the motor operates with high driving efficiency.

又、更に回転数を低下させるために発振器2の出力周波
数を変更し、f211からf2゜へ移行させると、第5
図の如くトランスの二次側出力が20Vとなり、この状
態でも第3図の如(20V下でのモーターの共振周波数
となっており、この状態2で1も高駆動効率状態でモー
ターが作動している。
Moreover, in order to further reduce the rotation speed, if the output frequency of oscillator 2 is changed and shifted from f211 to f2°, the fifth
As shown in the figure, the secondary output of the transformer becomes 20V, and even in this state, as shown in Figure 3 (the resonance frequency of the motor under 20V), the motor operates with high drive efficiency in state 2 and 1. ing.

以上の如くして、本発明ではモーターの回転速度を制御
するに際して駆動周波数を変化させると自動的に駆動電
圧も変化し、常にモーターの駆動電圧と駆動周波数との
関係がモーターの入力電流を最小になる様制御されるも
のである。
As described above, in the present invention, when the drive frequency is changed when controlling the rotational speed of the motor, the drive voltage also changes automatically, and the relationship between the motor drive voltage and the drive frequency always minimizes the input current of the motor. It is controlled so that it becomes.

〔効 果〕〔effect〕

以上の如く、本発明では駆動周波数を変化させると自動
的に駆動電圧も変化し、常にモーターが共振状態、とな
る状態を保持する周波数と駆動電圧との組み合わせを保
つ様なしているので、駆動効率を極めて向上させること
が出来、更にその構成として駆動電圧源としても単一の
もので済み構成が煩雑化することなく上記の目的を達成
し得るものである。
As described above, in the present invention, when the drive frequency is changed, the drive voltage is automatically changed, and the combination of frequency and drive voltage that always maintains the motor in a resonant state is maintained. Efficiency can be greatly improved, and since the structure requires only a single driving voltage source, the above object can be achieved without complicating the structure.

尚、実施例では発振器2から直接駆動周波数を決定する
パルスを得ているが、発振器出力を分周する分周回路を
設け、該分周回路出力にて駆動周波数を決定しても良い
。この場合は分周段を選択することにて駆動周波数を可
変となす構成となる。又、本実施例のモーターとして圧
電体を用いているが、電歪素子を用いても良い。又具体
的な素子としてはYZT等を利用出来るものである。
In the embodiment, a pulse for directly determining the driving frequency is obtained from the oscillator 2, but a frequency dividing circuit for frequency dividing the oscillator output may be provided, and the driving frequency may be determined by the output of the frequency dividing circuit. In this case, the drive frequency is made variable by selecting the frequency dividing stage. Furthermore, although a piezoelectric body is used as the motor in this embodiment, an electrostrictive element may also be used. Further, as a specific element, YZT or the like can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る振動波モーターの駆動回路の一実
施例を示す回路図、第2図(a)〜(g)は第1間奏の
回路動作を説明するための波形図、第3図、第4図はそ
れぞれ振動波モーターの駆動特性を示す説明図、第5図
は第1図実施例のトランスの特性を示す説明図、第6図
は振動波モーターの構成を示す断面図である。 37.38・・コンデンサー 39.40・・トランス 43・・・・・・・・振動波モーター 第3図 11  濁  馴IL教 寮6閃 ン    +    走入    ン
FIG. 1 is a circuit diagram showing an embodiment of the vibration wave motor drive circuit according to the present invention, FIGS. 2(a) to 2(g) are waveform diagrams for explaining the circuit operation of the first interlude, and FIG. 4 are explanatory diagrams showing the drive characteristics of the vibration wave motor, FIG. 5 is an explanatory diagram showing the characteristics of the transformer of the embodiment shown in FIG. 1, and FIG. 6 is a sectional view showing the configuration of the vibration wave motor. be. 37.38...Condenser 39.40...Transformer 43...Vibration wave motor Fig. 3 11 turbidity IL dormitory 6 flash + run-in

Claims (1)

【特許請求の範囲】 振動体に対して位相差をもって配された圧電体又は電歪
素子に対してそれぞれ位相の異なる周波電圧を印加して
振動体に進行性振動波を形成し、該振動波にて移動体を
駆動する振動波モーターの駆動回路において、 トランスの一次側コイルに対して所定周波数の駆動信号
を印加する駆動信号印加回路を設けるとともに、前記ト
ランスの一次側コイルに対して共振回路を構成する共振
回路素子を接続し前記トランスの二次側コイル出力にて
前記圧電体又は電歪素子に対する前記周波電圧を供給し
振動波モーターを前記二次側コイルの出力電圧での周波
数及び電圧値で駆動するとともに、前記駆動信号印加回
路からの駆動信号の周波数を調定する調定手段を設け、
前記二次側コイルの出力電圧の周波数及び電圧値を変化
させたことを特徴とする振動波モーターの駆動回路。
[Claims] A progressive vibration wave is formed in the vibrating body by applying frequency voltages with different phases to a piezoelectric body or an electrostrictive element arranged with a phase difference with respect to the vibrating body, and In a drive circuit for a vibration wave motor that drives a moving object in The frequency voltage is supplied to the piezoelectric body or the electrostrictive element at the secondary coil output of the transformer, and the vibration wave motor is controlled at the frequency and voltage at the output voltage of the secondary coil. and adjusting means for adjusting the frequency of the drive signal from the drive signal application circuit,
A drive circuit for a vibration wave motor, characterized in that the frequency and voltage value of the output voltage of the secondary coil are changed.
JP62265706A 1987-10-20 1987-10-20 Driver circuit for oscillatory wave motor Granted JPH01107681A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62265706A JPH01107681A (en) 1987-10-20 1987-10-20 Driver circuit for oscillatory wave motor
US07/595,667 US5140231A (en) 1987-10-20 1990-10-11 Drive circuit for vibratory-wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265706A JPH01107681A (en) 1987-10-20 1987-10-20 Driver circuit for oscillatory wave motor

Publications (2)

Publication Number Publication Date
JPH01107681A true JPH01107681A (en) 1989-04-25
JPH0516277B2 JPH0516277B2 (en) 1993-03-03

Family

ID=17420879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265706A Granted JPH01107681A (en) 1987-10-20 1987-10-20 Driver circuit for oscillatory wave motor

Country Status (1)

Country Link
JP (1) JPH01107681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2802359A1 (en) * 1999-12-09 2001-06-15 Mets Ole Dev Et Conseil SUPPLY CIRCUIT FOR PIEZOELECTRIC MOTOR
JP2009050051A (en) * 2007-08-15 2009-03-05 Sony Corp Drive circuit of piezoelectric device, and pumping device
JP2015128769A (en) * 2015-02-05 2015-07-16 キヤノン株式会社 Vibration body drive circuit, device, and optical instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5436164B2 (en) 2009-11-20 2014-03-05 キヤノン株式会社 Drive circuit for vibration actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176471A (en) * 1984-02-21 1985-09-10 Canon Inc Drive circuit of vibration wave motor
JPS61289682A (en) * 1985-06-18 1986-12-19 Nippon Denso Co Ltd Piezoelectric element driving apparatus
JPS62131775A (en) * 1985-11-29 1987-06-15 Marcon Electronics Co Ltd Ultrasonic motor circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176471A (en) * 1984-02-21 1985-09-10 Canon Inc Drive circuit of vibration wave motor
JPS61289682A (en) * 1985-06-18 1986-12-19 Nippon Denso Co Ltd Piezoelectric element driving apparatus
JPS62131775A (en) * 1985-11-29 1987-06-15 Marcon Electronics Co Ltd Ultrasonic motor circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2802359A1 (en) * 1999-12-09 2001-06-15 Mets Ole Dev Et Conseil SUPPLY CIRCUIT FOR PIEZOELECTRIC MOTOR
EP1109304A1 (en) * 1999-12-09 2001-06-20 Metabole Development et Conseil Driving circuit for a piezoelectric motor
US6417598B2 (en) 1999-12-09 2002-07-09 Metabole Development Et Conseil Power circuit for piezo-electric motor
JP2009050051A (en) * 2007-08-15 2009-03-05 Sony Corp Drive circuit of piezoelectric device, and pumping device
US7732978B2 (en) 2007-08-15 2010-06-08 Sony Corporation Piezoelectric element driving circuit and pump device
JP2015128769A (en) * 2015-02-05 2015-07-16 キヤノン株式会社 Vibration body drive circuit, device, and optical instrument

Also Published As

Publication number Publication date
JPH0516277B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
US7382080B2 (en) Piezoelectric ultrasonic motor driver
US5140231A (en) Drive circuit for vibratory-wave motor
JPH01185174A (en) Drive circuit for oscillatory wave motor
JP2002529037A (en) Drive device for piezoelectric motor
US6121714A (en) Vibration type motor device
US4965481A (en) Drive circuit for vibratory-wave motor
JP2976489B2 (en) Ultrasonic motor drive circuit
JPH01107681A (en) Driver circuit for oscillatory wave motor
JP2815219B2 (en) Ultrasonic motor drive circuit and multiple motor drive signal supply circuit
JP5110750B2 (en) Drive circuit for vibration actuator
JP4765405B2 (en) Ultrasonic motor drive device
JP2879220B2 (en) Ultrasonic motor drive circuit
JP2000166265A (en) Vibration-type actuator driving apparatus
JPH06237583A (en) Ultrasonic motor driving circuit
JP2002142475A (en) Drive circuit of vibration type actuator
JP2509310B2 (en) Control method of ultrasonic motor
JPH0870590A (en) Driving apparatus for ultrasonic piezoelectric transducer
JPH03139178A (en) Drive circuit for vibration wave motor
JPH0327780A (en) Drive circuit of ultrasonic motor
JPS61224879A (en) Drive circuit of surface wave motor
JP3262185B2 (en) Ultrasonic motor controller
SU1582325A1 (en) Method of rotational speed control of induction electric motor
JPH11196585A (en) Circut for driving ultrasonic motor
JPH09215352A (en) Speed controller of ultrasonic motor
JPH0746858A (en) Switching power supply

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 15