JPS60176471A - Drive circuit of vibration wave motor - Google Patents

Drive circuit of vibration wave motor

Info

Publication number
JPS60176471A
JPS60176471A JP59032220A JP3222084A JPS60176471A JP S60176471 A JPS60176471 A JP S60176471A JP 59032220 A JP59032220 A JP 59032220A JP 3222084 A JP3222084 A JP 3222084A JP S60176471 A JPS60176471 A JP S60176471A
Authority
JP
Japan
Prior art keywords
voltage
vibration
frequency
electrostrictive element
vibration wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59032220A
Other languages
Japanese (ja)
Other versions
JPH0515156B2 (en
Inventor
Kazuhiro Izukawa
和弘 伊豆川
Ichiro Okumura
一郎 奥村
Takayuki Tsukimoto
貴之 月本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59032220A priority Critical patent/JPS60176471A/en
Publication of JPS60176471A publication Critical patent/JPS60176471A/en
Publication of JPH0515156B2 publication Critical patent/JPH0515156B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Abstract

PURPOSE:To efficiently and stably move a moving unit by applying the induced electromotive force generated by turning ON and OFF a DC power source by a frequency signal of a resonance vibration of an electrostrictive element to the element. CONSTITUTION:A pulse signal is applied from an oscillator to the base of a transistor Q to switch the primary side of a transformer T1. The pulse frequency at this time is set to the resonance frequency of an electrostritive element 1. A voltage inductively generated at the secondary side of the transformer T1 is applied as a drive voltage to the element 1. When the pulse width is controlled at this time, the drive power is controlled, and a drive speed is controlled.

Description

【発明の詳細な説明】 本発明は進行性振動波により移動体を摩擦駆動する振り
J波モータの駆動回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drive circuit for a swing J-wave motor that frictionally drives a moving body using progressive vibration waves.

最近実用化されつつある、進行性振動波によって駆動す
る振動波モータの実施例の概略図が第1図に示しである
。同図で、lは電歪素子で例えばPZT (チタン酸ジ
ルコン鉛)で、2は振動体で弾性物質からなり、電歪素
子lを接着しである。
FIG. 1 shows a schematic diagram of an embodiment of a vibration wave motor driven by progressive vibration waves, which has recently been put into practical use. In the figure, 1 is an electrostrictive element made of, for example, PZT (lead zirconium titanate), and 2 is a vibrating body made of an elastic material, to which the electrostrictive element 1 is bonded.

振動体2は電歪素子lと共にステータ(不図示)側に保
持されている。3は移動体で振動体2に対し抑圧接触さ
れていてロータを形成する。電歪素子lは複数個接着さ
れており、そのうちの一群の電歪素子に対し、もう一群
の電歪素子は振動波の波長入の%波長分だけずれたピッ
チで配置される。各群内での各電歪素子lは局波長のピ
ッチで、相隣り合うものの極性が逆になるように配置さ
れでいる。また各電歪素子lの表裏には図示を省略した
が、夫々電極膜が設けられて、各電歪素(−1に電圧が
印加できるようになっている。
The vibrating body 2 and the electrostrictive element 1 are held on the stator (not shown) side. Reference numeral 3 denotes a moving body which is in pressure contact with the vibrating body 2 and forms a rotor. A plurality of electrostrictive elements 1 are bonded together, and the electrostrictive elements in one group of the electrostrictive elements in the other group are arranged at a pitch shifted by % wavelength of the wavelength of the vibration wave. The electrostrictive elements l in each group are arranged at a pitch of the local wavelength so that adjacent ones have opposite polarities. Further, although not shown, electrode films are provided on the front and back sides of each electrostrictive element l, respectively, so that a voltage can be applied to each electrostrictive element (-1).

このような構成の振動波モータで一群の電歪素子に■。A vibration wave motor with this configuration can be used as a group of electrostrictive elements ■.

sinωtの交流電圧を印加し、もう一方群の電歪素子
にV。cosωtの交流電圧を印加する。従って各電歪
素子は相隣り合うものどうし極性が逆向きで二つの群ど
うし90°位相のずれた交流電圧が印加されて伸縮振動
をする。この振動が伝えられて振動体2は電歪素子lの
配置ピッチに従って曲げ振動をする。振動体2が−っお
きの電歪素子の位置で出っ張ると、他の−・つぉきの電
歪素子の位置が引っ込む。一方、前記の如く ・群の電
歪素子は他の群の電歪素子に対し、月波長ずれた位置に
あるため曲げ振動が進行する。
An AC voltage of sinωt is applied, and V is applied to the electrostrictive elements of the other group. An alternating current voltage of cosωt is applied. Therefore, each electrostrictive element undergoes stretching and contraction vibrations by applying alternating current voltages in which the polarities of adjacent elements are opposite to each other and the two groups are out of phase by 90 degrees. This vibration is transmitted, and the vibrating body 2 bends and vibrates in accordance with the arrangement pitch of the electrostrictive elements 1. When the vibrating body 2 protrudes at the position of the second electrostrictive element, the position of the other second electrostrictive element retracts. On the other hand, as mentioned above, the bending vibration progresses because the electrostrictive elements of group 1 are at positions shifted by the moon wavelength from the electrostrictive elements of other groups.

交流電圧が印加されている間、次々と振動が励起されて
、進行性曲げ振動波となって振動体2を伝わってゆく。
While the alternating current voltage is applied, vibrations are excited one after another and propagate through the vibrating body 2 as progressive bending vibration waves.

このときの波の進行状態が第2図(a) (b)(c)
(d)に示しである。いま、進行性曲げ振動波が矢示X
1方向に進むとする。0を静止状態に於ける振動体の中
心面とすると振動状態では鎖線示の状態となり、この中
0面6は曲げによる応力が拮抗している。中立面6と直
交する断面7.についてみると、これら二面の交線5I
では応力がかからす[−下振動しているだけである。同
時に断面7、は交線51を中心として左右の振り子振動
している。
The progress state of the wave at this time is shown in Figure 2 (a), (b), and (c).
It is shown in (d). Now, the progressive bending vibration wave is pointing to arrow X.
Suppose it moves in one direction. If 0 is the central plane of the vibrating body in a stationary state, then in the vibrating state it will be in the state shown by the chain line, in which the stress due to bending is balanced on the 0 plane 6. Cross section 7 perpendicular to the neutral plane 6. If we look at the intersection line 5I of these two planes,
Then stress is applied [- It is only vibrating downward. At the same time, the cross section 7 is pendulum vibrating left and right about the intersection line 51.

断面72又は73についても回しように交線52又は5
3を中心として左右の振り−r振動する。
The intersection line 52 or 5 is also rotated for the cross section 72 or 73.
It vibrates left and right around 3.

同図 (a)に示す状態では断面7.と振動体2の琶動
体3側の表面との交線トの点P1は左右振動の右死点と
なっており上方向運動だけしている・この振り子振動は
交m 51 ・5.又は53が波の正側では(中心面O
のL側にあるとき)左方向(波の進行方向xlと逆方向
)の応力が加わり、波の負側(同しく下側にあるとき)
右方向の応力が加わる。即ち同図 (a)に於て、交線
52と断面72が前者のときの状態で、点P2は矢示方
向の応力が加わる。交に線53と断面73が後者のとき
の状態で1点P3は矢示方向の応力が加わる。波が進行
し、 (tl)に示すように波の正側に交線5、かくる
と点P1は左方向の運動をすると同時に上方向の連動を
する。 (C)で点P1は1−r振動のL死−1民で左
方向の運動だけする。(d)で点P1は左方向の連動と
上方向運動をする。さらに波が進行し、右方向とF方向
の運動、右方向と上方向の運動を経て(a)の状態に戻
る。この一連の運動を合成すると点P、は回転楕円運動
をしている。−力、移動体3は振動体2に加圧接触して
おり、同図(C)に示すように、振動体2上の点P1の
回転楕円運動が移動体3をX2方向に摩擦駆動する。
In the state shown in Figure (a), cross section 7. The point P1 of the intersection line between the surface of the vibrating body 2 and the surface of the vibrating body 3 side is the right dead center of the left-right vibration, and is only moving upward.・This pendulum vibration intersects m 51 ・5. Or if 53 is on the positive side of the wave (center plane O
(when it is on the L side of
Stress is applied in the right direction. That is, in FIG. 5A, when the intersection line 52 and the cross section 72 are in the former state, stress is applied to the point P2 in the direction of the arrow. In the latter state where the line 53 and the cross section 73 intersect, a stress is applied to one point P3 in the direction of the arrow. As the wave progresses, as shown in (tl), the intersection line 5 is on the positive side of the wave, and the point P1 moves to the left and at the same time moves upward. In (C), point P1 moves only to the left with 1-r vibration L-1. In (d), point P1 moves leftward and upward. The wave further advances, moving to the right and in the F direction, moving to the right and upward, and then returning to the state in (a). When this series of movements is combined, the point P is moving in a spheroidal ellipse. - The moving body 3 is in pressure contact with the vibrating body 2, and as shown in the same figure (C), the spheroidal motion of the point P1 on the vibrating body 2 frictionally drives the movable body 3 in the X2 direction. .

点P2−P3及びその他派動体2Fの全ての点が点P、
 と回しように移動体3を摩擦駆動する。
Points P2-P3 and all other points of derived body 2F are point P,
The movable body 3 is frictionally driven to rotate.

このように従来の振動波モータではV。sinωtなる
駆動電圧を印加するために交流電源を用意しなければな
らないとう不便かある。またモータの駆動速度を調整す
るには、交流電源の電圧を調整しなければならない。
In this way, in the conventional vibration wave motor, V. It is inconvenient that an AC power supply must be prepared in order to apply the driving voltage of sinωt. Furthermore, in order to adjust the driving speed of the motor, the voltage of the AC power source must be adjusted.

本発明は、1−記の■実に鑑みなされたもので、効−ト
的に1つ安定に動作する振動波モータの駆動方式を提供
することを目的とするものである。
The present invention has been made in consideration of the above-mentioned (1), and an object of the present invention is to provide a driving system for a vibration wave motor that operates effectively and stably.

この目的を達成するため本発明は、電歪素子に周波゛電
圧を印加して生ずる共振振動の進行性振動−波で、移動
体を駆動する振動波モータの、駆動回路に於て、前記共
振振動の周波数信号で直流゛電源をオ/・オフして生す
る誘導起電電圧を、前記周波電圧として、該゛電歪素子
に印加することを特徴とする駆動回路である。
In order to achieve this object, the present invention provides a driving circuit for a vibration wave motor that drives a moving body using progressive vibration waves of resonant vibrations generated by applying a frequency voltage to an electrostrictive element. This drive circuit is characterized in that an induced electromotive voltage generated by turning a DC power source on and off using a vibration frequency signal is applied to the electrostrictive element as the frequency voltage.

以下本発明の実施例をd′r細に説明する。Embodiments of the present invention will be described in detail below.

第3図は本発明を適用する回路の実施例である6同図で
、■は前記(第1図参照)の電歪素f、Batlは電源
電池、TIは一次側と二次側のインタフタンス成分を電
歪素子lに対して合せた1ランス、Qはスイン千ングト
ランジスタである。
FIG. 3 shows an embodiment of a circuit to which the present invention is applied.6 In the same figure, ■ is the electrostrictive element f mentioned above (see FIG. 1), Batl is a power supply battery, and TI is an interface between the primary side and the secondary side. One lance, Q, which combines the tangent component with respect to the electrostrictive element l, is a swing transistor.

このような回路で、トランジスタQのベースに発振器(
図示省略)から、第4図(a)に示されたようなパルス
信号をかえて、トランスTlの一次側をスイッチングす
る。このときのパルス周波数は、電歪素子lの共振周波
数にする。すると同図(b)にノI<された波形の電圧
がトランスTIの一二次側に誘導起電して、電歪素子l
に駆動電圧として11J加される。このとき、パルスI
I+を制御すれば、駆動上方か制御され、駆動速度が制
御できる。なお電歪素/−1の振動周波数を検知して、
発振器にノイーI・バンクさせ、パルス周波数を電歪素
子lの共振周波数に同期させてもよい。
In such a circuit, an oscillator (
(not shown), the primary side of the transformer Tl is switched by changing the pulse signal as shown in FIG. 4(a). The pulse frequency at this time is set to the resonance frequency of the electrostrictive element l. Then, the voltage with the waveform shown in FIG.
A driving voltage of 11 J is added to the voltage. At this time, pulse I
By controlling I+, the upper drive direction can be controlled and the drive speed can be controlled. In addition, by detecting the vibration frequency of the electrostrictive element /-1,
The oscillator may be Noey I-banked and the pulse frequency may be synchronized to the resonant frequency of the electrostrictive element I.

第5図・第6図は、別な実施例の回路を示すもの、第7
図はその信号波形図である。第5図φ第6図に於て、O
SCは発振器、F/Vは周波数−電圧変換器、CPI−
CP、2は比較増巾器、lN1−lN3はインバータ、
AND 1・〜AND4はアントゲ−ト・、0NI−O
N2はシュミツトートリカ回路、FFI −FF2はフ
リップフロップ、R1−R8ハ固定抵抗、VRI−VR
3は可変抵抗、Cl−C5はコンデンサ、Di−D6は
タイオー1・、Q1〜Q7はトランジスタ、T2・T3
はトランス、Bat2は電池である。LEDは発光タイ
オード、FTはフォトi・ランジスタで、移動体31−
のマーク9を読取るフォトインクラブタlOである。P
I−P5は第5図の回路と第6図の回路を連結する接続
点で、その各点に於る信号波形が第7図に示しである。
Figures 5 and 6 show circuits of other embodiments, and Figure 7 shows circuits of other embodiments.
The figure is a signal waveform diagram. Figure 5 φ In Figure 6, O
SC is an oscillator, F/V is a frequency-voltage converter, CPI-
CP, 2 is a comparison amplifier, lN1-lN3 are inverters,
AND 1・~AND4 is ant gate・, 0NI-O
N2 is a Schmitt torque circuit, FFI-FF2 is a flip-flop, R1-R8 is a fixed resistor, VRI-VR
3 is a variable resistor, Cl-C5 is a capacitor, Di-D6 is a diode 1, Q1 to Q7 are transistors, T2 and T3.
is a transformer, and Bat2 is a battery. The LED is a light emitting diode, the FT is a photo-i transistor, and the moving body 31-
This is a photo ink printer 10 that reads the mark 9. P
I-P5 is a connection point connecting the circuit of FIG. 5 and the circuit of FIG. 6, and the signal waveform at each point is shown in FIG.

この回路に於て、発振器O5Cの発振信号Pi(第7図
(a)参jj(1,)で、トランジスタQ3によりトラ
ンスT2の一次側がオン・オフされ、:1次側に第4図
(b)のような起゛屯力がでる。フォトインクラブタ1
0の駆りj速度情報を変換器F/Vでアナログ電圧値に
変換して、比較増III器CPI−CP2に出力する。
In this circuit, the oscillation signal Pi of the oscillator O5C (see FIG. 7(a) jj(1,)) turns on and off the primary side of the transformer T2 by the transistor Q3, ). Photo ink printer 1
The drive j speed information of 0 is converted into an analog voltage value by the converter F/V and outputted to the comparison multiplier III CPI-CP2.

可変抵抗VRIはこのときの電11ニレベルを調整する
ものである。比較増111器CP2に人力したアナログ
電圧値は、′u丁変抵抗VR3で外部(例えば手動)か
ら設定される速度に対応する電圧値と、比較される。比
較増巾器CP2でも同じように比較される。発振信号P
iのt」ニリでハイになるアントゲートAND2の出力
信号P3は、比較増III器CP2の出力が逆転するま
で、維持される。即ち、可変抵抗V、R3で速度設定す
ることは、信号P3のパルスIIIを調整することを意
味する。信号P3のハイ出方で、トランジスタQ6がオ
ンになり、実線矢示方向の電圧が電歪素=I−1に印加
される。出力信号P3の立トリから、発振信号PIの立
下りまで維持されるアンドゲートAND4の出力信号P
4のハイ出力で、トランジスタQ4がオンになる。トラ
ンジスタQ6は既にオフになっており、電歪素子−1に
電荷がチャージしているから、その電荷が放電し、トラ
ンスT3の一次側に実線矢示方向の電流が流れる。一方
、アントゲ−LANDIに人力するPI信号はインバー
タINIで反転するから、発振信号PIの)“f下りで
動作し、電歪素子lに点線矢示方向の電圧を印加すると
きの信号P2を出すことになる。アノ1−ケートAND
3の出力P5でトランス−[3の 次側に点線矢示方向
の電流が流れる。
The variable resistor VRI is used to adjust the voltage level at this time. The analog voltage value manually applied to the comparator 111 CP2 is compared with the voltage value corresponding to the speed set externally (for example, manually) by the variable resistor VR3. Comparison amplifier CP2 performs the same comparison. Oscillation signal P
The output signal P3 of the ant gate AND2, which goes high at t of i, is maintained until the output of the comparator multiplier CP2 is reversed. That is, setting the speed using the variable resistors V and R3 means adjusting the pulse III of the signal P3. When the signal P3 goes high, the transistor Q6 is turned on, and a voltage in the direction indicated by the solid line arrow is applied to the electrostrictive element =I-1. The output signal P of the AND gate AND4 is maintained from the rising edge of the output signal P3 until the falling edge of the oscillation signal PI.
A high output of 4 turns on transistor Q4. Since the transistor Q6 is already turned off and the electrostrictive element -1 is charged with electric charge, the electric charge is discharged and a current flows in the direction indicated by the solid line arrow in the primary side of the transformer T3. On the other hand, since the PI signal manually input to Antogame LANDI is inverted by the inverter INI, the oscillation signal PI operates in the downward direction of f, and outputs the signal P2 when applying the voltage in the direction indicated by the dotted line arrow to the electrostrictive element l. That's it. Anno 1 - Kate AND
At the output P5 of 3, a current flows to the next side of the transformer 3 in the direction indicated by the dotted line arrow.

従って、電歪素/−1には第7図(f)の波形の電圧が
印加されることになる。モして電歪素子lの放電電流が
トランスT3流れて起電し、その電流は、タイオートD
3〜D6のブリッジで整流され、電池Bat2を充電す
る。従って、チャージ電荷が無駄に放電されることがな
い。
Therefore, a voltage having the waveform shown in FIG. 7(f) is applied to the electrostrictive element /-1. Then, the discharge current of the electrostrictive element L flows through the transformer T3 and generates electricity, and the current is
It is rectified by the bridge of 3 to D6 and charges the battery Bat2. Therefore, the charges are not discharged wastefully.

なお、スイッチングトランジスタの代りに、サイリスク
、トライアンクなと゛でもよい。
Incidentally, instead of the switching transistor, a transistor such as a silicon transistor or a trianc transistor may be used.

以1説四したように、本発明を適用した駆動回路は、交
流電源を必要としないため便利である。
As described in the first and fourth theories above, the drive circuit to which the present invention is applied is convenient because it does not require an AC power source.

パルス+l制御をすれば、駆動速度を制御できる。The driving speed can be controlled by pulse +l control.

パルス11+制御は電圧制御に比べて回路が簡単である
から、安価に生産することができる。
Since pulse 11+ control has a simpler circuit than voltage control, it can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は振動波モータの丁要部の概略図、第2図は振動
波モータの駆動原理を説明する図、第3図は本発明を適
用する駆動回路の一実施例奪示す図、第4図はその回路
による波形図、第5図・第6図は別の実施例の回路図、
第7図はその波形図である。 lは電歪素子、2は振動体、3は移動体、Tlはトラン
ス、QはスイッチングトランジスタBatlは電源電池
である。 特許出願人 キャノン株式会社 冒;− 代 理 人 福 口] 勧;1.、・ 1 □ 第3図 、第1図 第4図 第6図 第2図
FIG. 1 is a schematic diagram of the main part of a vibration wave motor, FIG. 2 is a diagram explaining the driving principle of the vibration wave motor, FIG. 3 is a diagram showing an embodiment of a drive circuit to which the present invention is applied, and FIG. Figure 4 is a waveform diagram of the circuit, Figures 5 and 6 are circuit diagrams of other embodiments,
FIG. 7 is a waveform diagram thereof. 1 is an electrostrictive element, 2 is a vibrating body, 3 is a moving body, Tl is a transformer, Q is a switching transistor Batl is a power supply battery. Patent applicant: Canon Co., Ltd. - Agent: Fukuguchi] 1. ,・ 1 □ Figure 3 , Figure 1 Figure 4 Figure 6 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)電歪素rに周波電圧を印加して生ずる共振振動の
進行性振動波で、移動体を駆動する振動波モータの、駆
動回路に於て、 前記共振振動の周波数信号でl流電源をオン・オフして
生ずる誘導起゛l[電圧を、前記周波電圧として、該電
φ素rに印加することを特徴とする駆り1回路。
(1) In the drive circuit of a vibration wave motor that drives a moving object using a progressive vibration wave of resonant vibration generated by applying a frequency voltage to the electrostrictive element r, the frequency signal of the resonant vibration is used to generate a current power supply. 1. A driving circuit characterized in that an induced voltage (l) generated by turning on and off the voltage is applied to the electric element (r) as the frequency voltage.
JP59032220A 1984-02-21 1984-02-21 Drive circuit of vibration wave motor Granted JPS60176471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032220A JPS60176471A (en) 1984-02-21 1984-02-21 Drive circuit of vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032220A JPS60176471A (en) 1984-02-21 1984-02-21 Drive circuit of vibration wave motor

Publications (2)

Publication Number Publication Date
JPS60176471A true JPS60176471A (en) 1985-09-10
JPH0515156B2 JPH0515156B2 (en) 1993-02-26

Family

ID=12352854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032220A Granted JPS60176471A (en) 1984-02-21 1984-02-21 Drive circuit of vibration wave motor

Country Status (1)

Country Link
JP (1) JPS60176471A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140680A (en) * 1986-12-02 1988-06-13 Matsushita Electric Ind Co Ltd Drive circuit of ultrasonic motor
JPH01107681A (en) * 1987-10-20 1989-04-25 Canon Inc Driver circuit for oscillatory wave motor
JPH01255481A (en) * 1988-04-04 1989-10-12 Wako Electric Co Ltd Power source for vibrator
JPH0488891A (en) * 1990-08-01 1992-03-23 Goyo Denshi Kogyo Kk Drive power source for ultrasonic motor
JPH08237971A (en) * 1994-06-28 1996-09-13 Nanomotion Ltd Micro motor
US5682076A (en) * 1993-08-03 1997-10-28 Nanomotion Ltd. Ceramic disc-drive actuator
US5714833A (en) * 1993-08-03 1998-02-03 Nanomotion Ltd. Ceramic motor
US6064140A (en) * 1993-07-09 2000-05-16 Nanomotion Ltd Ceramic motor
EP1157752A2 (en) * 2000-05-23 2001-11-28 HILTI Aktiengesellschaft Tool with ultrasound adaptor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140680A (en) * 1986-12-02 1988-06-13 Matsushita Electric Ind Co Ltd Drive circuit of ultrasonic motor
JPH01107681A (en) * 1987-10-20 1989-04-25 Canon Inc Driver circuit for oscillatory wave motor
JPH0516277B2 (en) * 1987-10-20 1993-03-03 Canon Kk
JPH01255481A (en) * 1988-04-04 1989-10-12 Wako Electric Co Ltd Power source for vibrator
JPH0488891A (en) * 1990-08-01 1992-03-23 Goyo Denshi Kogyo Kk Drive power source for ultrasonic motor
US6064140A (en) * 1993-07-09 2000-05-16 Nanomotion Ltd Ceramic motor
US5682076A (en) * 1993-08-03 1997-10-28 Nanomotion Ltd. Ceramic disc-drive actuator
US5714833A (en) * 1993-08-03 1998-02-03 Nanomotion Ltd. Ceramic motor
JPH08237971A (en) * 1994-06-28 1996-09-13 Nanomotion Ltd Micro motor
EP1157752A2 (en) * 2000-05-23 2001-11-28 HILTI Aktiengesellschaft Tool with ultrasound adaptor
EP1157752A3 (en) * 2000-05-23 2004-05-26 HILTI Aktiengesellschaft Tool with ultrasound adaptor

Also Published As

Publication number Publication date
JPH0515156B2 (en) 1993-02-26

Similar Documents

Publication Publication Date Title
JPS60170474A (en) Vibration wave motor
JPS60176471A (en) Drive circuit of vibration wave motor
JPS60176470A (en) Drive system of vibration wave motor
US4965481A (en) Drive circuit for vibratory-wave motor
US7994687B2 (en) Piezoelectric actuator and method for driving the same
JP2976489B2 (en) Ultrasonic motor drive circuit
JPH07170768A (en) Ultrasonic motor
JPS61221584A (en) Drive circuit of vibration wave motor
SU764016A1 (en) Vibratory motor control device
JPH11356066A (en) Drive for capacitive load
WO2004021091A1 (en) Analog electronic timepiece
JPH07213078A (en) Ultrasonic motor
JP2654876B2 (en) Power supply for switching power converter
JPH02101975A (en) Drive circuit for ultrasonic motor
JPS61224879A (en) Drive circuit of surface wave motor
JPS6185076A (en) Vibration wave ring motor
JPH01107681A (en) Driver circuit for oscillatory wave motor
JP2616953B2 (en) Drive control method for traveling waveform ultrasonic motor
JPS627379A (en) Ultrasonic wave motor apparatus
JPH04222477A (en) Power supply circuit of ultrasonic motor
JPH01234072A (en) Traveling wave motor
JPS61221583A (en) Drive circuit of vibration wave motor
JPH0714275B2 (en) Vibration wave motor device
JPS61157276A (en) Drive circuit of vibration wave motor
JP2683211B2 (en) Vibration wave motor controller

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term