JPS6173502A - Contact malfunction detector of power supply conductor connector - Google Patents

Contact malfunction detector of power supply conductor connector

Info

Publication number
JPS6173502A
JPS6173502A JP59193105A JP19310584A JPS6173502A JP S6173502 A JPS6173502 A JP S6173502A JP 59193105 A JP59193105 A JP 59193105A JP 19310584 A JP19310584 A JP 19310584A JP S6173502 A JPS6173502 A JP S6173502A
Authority
JP
Japan
Prior art keywords
current
piezoelectric element
contact
intermediate electrode
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59193105A
Other languages
Japanese (ja)
Inventor
理 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59193105A priority Critical patent/JPS6173502A/en
Publication of JPS6173502A publication Critical patent/JPS6173502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、特にガス絶縁開閉装置(以下GiSと略記
する)などのように、通電路導体が密閉された金属容器
内に収容された密閉形高電圧電器における導体接続部の
接触不良を検知する装置に関する。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] This invention particularly relates to a gas-insulated switchgear (hereinafter abbreviated as GiS), in which a current-carrying conductor is housed in a sealed metal container. The present invention relates to a device for detecting poor contact in conductor connections in high-voltage electrical appliances.

〔従来技術とその問題点〕[Prior art and its problems]

GiSなど、通電路導体が密閉された金属容器内に収容
された密閉形高電圧電器においては、導体接続部の接継
部や締結部が外界の影響を全く受けないことから、その
信頼性は極めて高いものであるが、容器が密閉されてい
るため内部が目視できず、このため接触部の接触不良や
締結部のねじの緩みなどに起因する異常が生じてもその
個所の検知が困難であって、一度事故がおこると、長期
運転停止などの重大事故に到る恐れがある。従って常時
の運転状態において、容器内部に異常が発生する前に、
その可能性と、その可能性が存在する場所とを察知する
ことが重要な課題になっている。
In sealed high-voltage appliances such as GiS, in which the current-carrying conductor is housed in a sealed metal container, the joints and fastening parts of the conductor connections are completely unaffected by the outside world, so their reliability is low. Although this is extremely high, since the container is sealed, the inside cannot be seen visually, so even if an abnormality occurs due to poor contact or loosened screws in fasteners, it is difficult to detect the location. Therefore, once an accident occurs, there is a risk of serious accidents such as long-term suspension of operation. Therefore, under normal operating conditions, before an abnormality occurs inside the container,
Sensing this possibility and where it exists has become an important issue.

この可能性を察知する方法として、従来、接続部の温度
が異常発生を予測しうる所定の温度に達したときに、こ
れを検知する方法が数多く提案されている。しかしなが
ら、GiSのような高電圧電器においては、通常その定
格電流と通常の運転状態における通電電流との間には大
きな開きがあシ、しかも温度上昇の値は電流値のほぼ自
乗に比例することから、接続部に異常があっても、接続
部の温度は容易に所定値に達せず、例えば2回線で受電
するように構成された変電所において一方の回線のGi
Sを運転停止し、他方の回線のGiS3のみで受電する
必要を生じたような場合においてはじめてとのGiSの
通電電流が定格電流に近い値となり、ここで容易に所定
の温度に達し、異常の存在を知ることになるつ異常が検
知されるとGiSは運転を中止しなければならないから
、もしもさきに停止したGiSの再運転が不可能な状態
にあれば、この変電所は受電不能となり、下位変電所へ
の給電が不可能となる。このように、温度を検知して事
故を未然に防止する方法は、異常を生じた機器自体を焼
損から守ることはできるが、接続部の温度が所定値に達
しないかぎり異常の存在を察知することができないから
、変電所の構成や運用の仕方によっては、変電所の運用
上予期しない支障を生ずるおそれがある。
As a method for detecting this possibility, many methods have been proposed in the past that detect when the temperature of the connection part reaches a predetermined temperature at which it is possible to predict the occurrence of an abnormality. However, in high-voltage appliances such as GiS, there is usually a large difference between the rated current and the current flowing under normal operating conditions, and the temperature rise value is approximately proportional to the square of the current value. Therefore, even if there is an abnormality in the connection part, the temperature of the connection part will not easily reach the specified value. For example, in a substation configured to receive power through two lines, the Gi
In the case where it is necessary to stop operation of S and receive power only through GiS3 on the other line, the current flowing through GiS becomes close to the rated current, easily reaching the specified temperature, and causing an abnormality. If an abnormality is detected, the GiS must stop operation, so if the previously stopped GiS is in a state where it is impossible to restart it, this substation will no longer be able to receive power. Power supply to lower substations becomes impossible. In this way, the method of detecting temperature to prevent accidents can protect the device itself from being burnt out when an abnormality occurs, but it cannot detect the presence of an abnormality unless the temperature of the connection reaches a predetermined value. Therefore, depending on the configuration and operation of the substation, unexpected problems may occur in the operation of the substation.

そこで、温度に関係なく、導体接続部の接触不良を通電
状態において検知する方法として、例えばX線照射装置
を用いる方法が知られている。これは容器の外側からX
線を照射して接続部のX線透過像を得、この透過像から
、接続部を構成する両側の導体が正しい位置で接続され
ているか、接続部に異常な消耗や変形がみられないか、
などをみて接触状態の良否を判断しようとするものであ
る。しかしながら、Xa透過像からは接続部の輪郭しか
観測されず、これによって接触状態の良否を的確に判断
することは実質的に困難であり、またX線照射装置には
大容量の電源を必要とし、経済上ならびに設置スペース
上の問題点があった。
Therefore, a method using, for example, an X-ray irradiation device is known as a method for detecting poor contact at a conductor connection portion in a energized state regardless of the temperature. This is from the outside of the container
A beam is irradiated to obtain an X-ray transmission image of the connection part. From this transmission image, check whether the conductors on both sides of the connection part are connected in the correct position, and whether there is any abnormal wear or deformation in the connection part. ,
It attempts to judge whether the contact condition is good or bad by looking at things like this. However, only the outline of the connection part can be observed from the Xa transmission image, which makes it virtually difficult to accurately judge whether the contact state is good or bad, and the X-ray irradiation device requires a large-capacity power source. However, there were problems in terms of economics and installation space.

さらに、X@照射装置はこれを適切に操作して人体に与
える放射線の害を避ける必要から、装置の運用に当って
は監督官庁への届出を必要とし、運用が必ずしも容易で
はないという欠点があった。
Furthermore, since the X@ irradiation device needs to be operated properly to avoid radiation harm to the human body, it is necessary to report to the regulatory authority when operating the device, and it has the disadvantage that it is not always easy to operate. there were.

〔発明の目的〕[Purpose of the invention]

この発明は、人体に対する放射線の影響がなく、従って
運用が容易であって、密閉容器内に収容された通電路導
体の接続部の接触不良を、X線透過像によるような定性
的な判断ではなく、外部から定量的に判断することがで
き、かつ、接触状態のみならず高電圧電器の絶縁状態や
封入された絶縁性ガスの圧力などを常時総合的に監視す
る常時監視システムに容易に組み込むことのできる接触
不良検知装置を提供することを目的とする。
This invention has no effect of radiation on the human body, and is therefore easy to operate, and is capable of detecting poor contact at the connection part of a current-carrying conductor housed in an airtight container without making qualitative judgments such as those based on X-ray transmission images. It can be quantitatively determined from the outside without any problems, and can be easily incorporated into a constant monitoring system that comprehensively monitors not only the contact status but also the insulation status of high-voltage appliances and the pressure of the enclosed insulating gas. The purpose of the present invention is to provide a contact failure detection device that can detect contact failure.

〔発明の要点〕[Key points of the invention]

この発明は、接触不良検知装置が、金属容器の内壁側に
設けられ高周波電源からき電される第1のループアンテ
ナと、この$1のループアンテナと対向配置され前記高
周波電源の周波数と同調するように構成されたループコ
イルとコンデンサとからなる第2のループアンテナに接
続され、前記接続部の接触部位を挾む通電路導体の一方
に配された第1の圧電素子と、前記接触部位を挾む通電
路導体の他方に配され、一方の電気端子が該通電路導体
と接続された第2の圧電素子と、通電路と金属容器との
間に配され、前記第2の圧電素子の他方の電気端子が接
続される第1の中間電極と、この第1の中間電極と前記
金属容器との間に配された第2の中間電極と、この第2
の中間電極と前記金属容器との間の電圧を測定する電圧
測定手段とを備え、前記高周波電源から前記第1.第2
のループアンテナを介して前記第1の圧電素子に高周波
の機械的振動を生せしめるとともに、この振動を前記接
触部位を介して前記第2の圧電素子に 。
In the present invention, a poor contact detection device is arranged to face a first loop antenna provided on the inner wall side of a metal container and powered from a high frequency power source, and to be arranged opposite to this $1 loop antenna so as to be tuned to the frequency of the high frequency power source. A first piezoelectric element is connected to a second loop antenna consisting of a loop coil and a capacitor configured as shown in FIG. a second piezoelectric element disposed on the other side of the current carrying path conductor and having one electric terminal connected to the current carrying path conductor; and a second piezoelectric element disposed between the current carrying path and the metal container, the other side of the second piezoelectric element a first intermediate electrode to which an electrical terminal is connected; a second intermediate electrode disposed between the first intermediate electrode and the metal container;
voltage measuring means for measuring the voltage between the intermediate electrode of the first electrode and the metal container; Second
A high-frequency mechanical vibration is generated in the first piezoelectric element through the loop antenna, and the vibration is applied to the second piezoelectric element through the contact portion.

伝達し、これによりこの第2の圧電素子に生じた電圧を
前記第2の中間電極と前記金属容器との間で検出し、こ
の検出された電圧を前記接触部位の接触状態が正常なと
きの電圧と比較することにより接続部の接触不良を検知
するようにして、前記の目的を達成しようとするもので
ある。
The voltage generated in the second piezoelectric element is detected between the second intermediate electrode and the metal container, and the detected voltage is used when the contact state of the contact portion is normal. The purpose is to achieve the above object by detecting poor contact at the connection portion by comparing the voltage.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明に基づき、GiSのケーブル接続部にお
いて構成された接触不良検知装置の一実施例を示す。図
において、密閉された金属容器1の内壁側には、 MH
2(メガヘルツ)オーダの周波数を有する高周波電源2
から同軸ケーブル3を介してき電される第1のループア
ンテナ4が取り付けられ、この第1のループアンテナの
直下には、このループアンテナから発せられる電波を受
信する第2のループアンテナ8が配され、GiSの主回
路機器と接続された引出し導体5に直角方向にねじ込ま
れた棒状の通電路導体6の上端面6aに取り付けられた
第1の圧電素子7と接続されている。なお、前記高周波
電源2には、例えば高周波発振管としてマグネトロンを
用いたマグネトロンパルス電源を用いる。
FIG. 1 shows an embodiment of a poor contact detection device constructed in a GiS cable connection section based on the present invention. In the figure, on the inner wall side of the sealed metal container 1, MH
High frequency power supply 2 having a frequency on the order of 2 (megahertz)
A first loop antenna 4 is attached to which power is supplied from the antenna via a coaxial cable 3, and a second loop antenna 8 is arranged directly below the first loop antenna to receive radio waves emitted from the loop antenna. , is connected to a first piezoelectric element 7 attached to the upper end surface 6a of a rod-shaped current carrying path conductor 6 screwed perpendicularly into the lead-out conductor 5 connected to the main circuit equipment of GiS. Note that the high frequency power source 2 is a magnetron pulse power source using a magnetron as a high frequency oscillation tube, for example.

第1の圧電素子7を前記通電路導体の上端面6aに取り
付ける際には、この面に対して高精度の仕上げを施し、
機械油などの接触媒質を塗布した上で圧電索子7を取り
付ける。圧1素子7は、高周波電界を印加することによ
って高周波の超音波を発生する機能をもち、例えば半導
体圧電結晶に適当な不純物を拡散させてごく薄い高抵抗
層を出現させ、この層に高周波電界を集中させて超音波
を発生させる拡散層トランジューサをこの圧電素子とし
て用いることができる。なお、第2のループアンテナ8
は、ループコイル8aとコンデンサを形成する平行平板
電極8bとにより構成し、ループコイル8aのインダク
タンスと平行平板電極8bの静電容量とを、前記高周波
電源の周波数と同調するように選ぶ。
When attaching the first piezoelectric element 7 to the upper end surface 6a of the current-carrying path conductor, this surface is finished with high precision,
The piezoelectric cord 7 is attached after applying a couplant such as machine oil. The pressure 1 element 7 has a function of generating high-frequency ultrasonic waves by applying a high-frequency electric field. For example, by diffusing appropriate impurities into a semiconductor piezoelectric crystal, a very thin high-resistance layer appears, and a high-frequency electric field is applied to this layer. A diffusion layer transducer that generates ultrasonic waves by concentrating the waves can be used as this piezoelectric element. Note that the second loop antenna 8
is composed of a loop coil 8a and a parallel plate electrode 8b forming a capacitor, and the inductance of the loop coil 8a and the capacitance of the parallel plate electrode 8b are selected so as to be in tune with the frequency of the high frequency power source.

通電路導体6の先端には直径の大きい接触部6bが形成
され、接触片9とこの接触部6bとの接触部位9aと、
同じくこの接触片9とケーブル側の通電路導体10の先
端に形成された接触部10aとの接触部位9bとを介し
て両通電路導体6,1oが互いに接続されている。ここ
でnは接触片9に接触圧力を与える板ばねであって、こ
れをと9囲む円筒12aによって支えられている。この
円筒12aと座121)とからなる取付台用と通電路導
体10との結合は次のように行な゛われる。すなわち、
図の14は通電路導体10に形成された頚部15の直径
とほぼ等しい直径を有する半円形の両端において半径方
向に伸びる直線部を有する細い金属棒であって、これを
2本中央に円形が形成されるように対称に向かい合わせ
、座12bに設けられた直径方向の孔12cに挿入し、
中央の円形部を押し広げて接触部10aを挿入すること
により通電路導体10と取付台12とを結合させている
。このような緩い結合状態とすることにより、通電路導
体10と6との軸線が互いに一致しないときにも接触片
9は容易に傾くことができ、側導体10と6との間の通
電機能が正常に保たれる。なお、13は側導体10と6
との接続部の電界を緩和するための静電シールドであっ
て、この実施例では円筒状に形成され、取付台12に取
り付けられている。
A contact portion 6b having a large diameter is formed at the tip of the current-carrying path conductor 6, and a contact portion 9a between the contact piece 9 and this contact portion 6b,
Similarly, the current conducting path conductors 6 and 1o are connected to each other via this contact piece 9 and a contact portion 9b with a contact portion 10a formed at the tip of the current conducting path conductor 10 on the cable side. Here, n is a leaf spring that applies contact pressure to the contact piece 9, and is supported by a cylinder 12a surrounding the contact piece 9. The mounting base consisting of the cylinder 12a and the seat 121) is coupled to the current-carrying conductor 10 in the following manner. That is,
Reference numeral 14 in the figure is a thin metal rod having straight portions extending in the radial direction at both ends of a semicircular shape having a diameter approximately equal to the diameter of the neck portion 15 formed in the current-carrying conductor 10. symmetrically facing each other so as to be formed, and inserted into the diametrical hole 12c provided in the seat 12b,
The current-carrying path conductor 10 and the mounting base 12 are coupled by expanding the central circular portion and inserting the contact portion 10a. By establishing such a loose coupling state, the contact piece 9 can be easily tilted even when the axes of the current-carrying path conductors 10 and 6 do not coincide with each other, and the current-carrying function between the side conductors 10 and 6 is maintained. maintained normally. In addition, 13 is the side conductor 10 and 6
This is an electrostatic shield for mitigating the electric field at the connection part with the mount 12, and in this embodiment, it is formed into a cylindrical shape and is attached to the mounting base 12.

通電路導体lOには第2の圧電素子16が設けられ、そ
の一方の電気端子は通電路導体10に接続され、他方の
電気端子はこの導体をとり囲んで円筒状に形成された第
1の中間電極17に接続されている。
The current carrying path conductor lO is provided with a second piezoelectric element 16, one electrical terminal of which is connected to the current carrying path conductor 10, and the other electrical terminal of which is connected to a first piezoelectric element 16 formed in a cylindrical shape surrounding this conductor. It is connected to the intermediate electrode 17.

18はこの中間電極17を通電路導体10から絶縁支持
する絶縁部材である。この第1の中間電極17と金属容
器ユとの間には第2の中間電極19が配され、この第2
の中間電極と金属容器との間には電圧測定手段菊が接続
される。
Reference numeral 18 denotes an insulating member that insulates and supports this intermediate electrode 17 from the current-carrying path conductor 10. A second intermediate electrode 19 is disposed between the first intermediate electrode 17 and the metal container Yu.
A voltage measuring means is connected between the intermediate electrode and the metal container.

このように構成された接触不良検知装置により、通電状
態において接触部位の接触状態の良否が判別されるまで
の過程は次の通りである。
The process of determining whether the contact state of the contact portion is good or bad in the energized state by the contact failure detection device configured as described above is as follows.

まず、高周波電源2を起動して第1のループアンテナ4
にき電する。これによりループアンテナ4から発射され
た高周波の電波は、このループアンテナと対向して通電
路導体6側に配置された第2のループアンテナ8により
受信され、この第2のループアンテナ日の出力電圧が第
1の圧電素子7に印加される。圧電素子7はこの印加電
圧により高周波の機械的伸縮振動を発生し、この振動が
通電路導体6.接触部位9a 、 9bを介して第2の
圧電素子16に伝わる。この伸縮振動はまた、まわりの
絶縁媒質、例えばSF、ガスを介して半径方向へ広がる
超音波を発生し、前記第2の圧電素子16に伝えられた
振動に影響を与えようとするが、第1の圧電素子7をと
り囲んで遮蔽筒21が通電路導体6に固定され、半径方
向への超音波の広がりを妨げているから、第2の圧電素
子16に伝えられた振動へのこの超音波の影響は無視す
ることができる。
First, start up the high frequency power supply 2 and start the first loop antenna 4.
Power up. As a result, the high frequency radio waves emitted from the loop antenna 4 are received by the second loop antenna 8 placed on the current-carrying conductor 6 side opposite to this loop antenna, and the output voltage of this second loop antenna is is applied to the first piezoelectric element 7. The piezoelectric element 7 generates high-frequency mechanical expansion and contraction vibrations due to this applied voltage, and this vibration causes the current-carrying path conductor 6. It is transmitted to the second piezoelectric element 16 via the contact portions 9a and 9b. This stretching vibration also generates an ultrasonic wave that spreads in the radial direction through the surrounding insulating medium, such as SF, gas, and tries to influence the vibration transmitted to the second piezoelectric element 16. A shielding cylinder 21 is fixed to the current-carrying conductor 6 surrounding the first piezoelectric element 7, and prevents the spread of ultrasonic waves in the radial direction. The effect of sound waves can be ignored.

第2の圧電素子16に伝えられた機械的振動は、この圧
電素子内で高周波の電圧に変換される。この変換された
電圧は、前記第1の圧電素子の場合と同様に、ループア
ンテナを用いてこれを取り出すことも不可能ではないが
、集1のループアンテナ4から発射される電波により障
害を受け、正しい測定結果が得られない。このため、第
2の圧電素子16をとり囲む円筒により第1の中間電極
17を形成させ、この中間電極17と通電路導体10と
で圧電素子16の両端子の役を果させ、この圧電素子が
発生する電圧を、中間電極17と容器1との間に同心的
に形成された円筒からなる第2の中間電極19と、前記
第1の中間電極17との間に形成された静電容量と、こ
の第2の中間電極19と容器1との間に形成された静電
容量とにより分圧して取り出し、電波障害を避ける方法
をとっている。すなわち、第2図に示されるように、高
周波電圧を発生する圧電素子16の一方の端子、すなわ
ち第1の中間電極17から流出した高周波の電流は、第
1の中間電極17と第2の中間電極19との間に形成さ
れた静電容量C1と、@2の中間電極19と容器1との
間に形成された静電容量C2と、容器lを含む大地電位
と通電路導体10を含む通電路との間に形成された静電
容量C,とを介して流れ、圧電素子16の他方の端子へ
還流する。従って圧電素子16の両端子間に発生した電
圧は、”C+ ”Gy ’ ”Csの比で分圧されるが
、C,は前述のように通電路導体10を含む通電路の長
い区間にわたる静電容量であり、C+ + 02と比較
して著しく大きい値を有するから、C5はほとんど電圧
を分担せず、圧電素子が発生するMHzオーダの高周波
電圧に関しては、通電路は金属容器、すなわち大地と同
電位にあり、従って第1の中間電極17を高電位側の導
体と考えることができる。
The mechanical vibrations transmitted to the second piezoelectric element 16 are converted into a high-frequency voltage within this piezoelectric element. Although it is not impossible to extract this converted voltage using a loop antenna, as in the case of the first piezoelectric element, it is interfered with by the radio waves emitted from the loop antenna 4 of the first piezoelectric element. , correct measurement results cannot be obtained. Therefore, the first intermediate electrode 17 is formed by a cylinder surrounding the second piezoelectric element 16, and this intermediate electrode 17 and the current-carrying path conductor 10 serve as both terminals of the piezoelectric element 16. The voltage generated is controlled by the capacitance formed between the first intermediate electrode 17 and the second intermediate electrode 19 formed concentrically between the intermediate electrode 17 and the container 1. In this method, the voltage is divided and taken out by the capacitance formed between the second intermediate electrode 19 and the container 1, thereby avoiding radio wave interference. That is, as shown in FIG. 2, the high-frequency current flowing out from one terminal of the piezoelectric element 16 that generates a high-frequency voltage, that is, the first intermediate electrode 17, flows between the first intermediate electrode 17 and the second intermediate electrode. The capacitance C1 formed between the electrode 19, the capacitance C2 formed between the intermediate electrode 19 of @2 and the container 1, and the earth potential including the container l and the current carrying path conductor 10. The current flows through the capacitance C, which is formed between the current-carrying path and the current-carrying path, and returns to the other terminal of the piezoelectric element 16. Therefore, the voltage generated between both terminals of the piezoelectric element 16 is divided by the ratio "C + "Gy '''Cs, where C is the static voltage over a long section of the current-carrying path including the current-carrying path conductor 10, as described above. Since it has a significantly larger capacitance than C+ + 02, C5 hardly shares the voltage, and for the high frequency voltage on the MHz order generated by the piezoelectric element, the current-carrying path is connected to the metal container, that is, the ground. They are at the same potential, so the first intermediate electrode 17 can be considered a conductor on the high potential side.

従って圧電素子16の電圧は実質的にC,とC2とのみ
Kより分圧されることとなる。このように、静電容量を
用いるこの分圧方法は、常時の通電路が常に高電位にあ
るのではなく、MHzオーダの高周波においては大地と
同電位となることに着目することにより、はじめて可能
となった方法であって、これにより電波障害を極めて効
果的に阻止することができる。
Therefore, the voltage of the piezoelectric element 16 is substantially divided from K only to C and C2. In this way, this voltage division method using capacitance is only possible by focusing on the fact that the normally energized path is not always at a high potential, but is at the same potential as the ground at high frequencies on the MHz order. This method makes it possible to prevent radio wave interference extremely effectively.

ところで、接触部の接触面積が、板ばねの接触圧力の変
化や、接触部の変形ないし摩耗や、あるいは組立て時の
不具合により、正常な範囲の接触面積より小さくなると
、接触部の通電能力が低下し、異常発熱のおそれを生ず
る。一方、第1の圧電素子から第2の圧電素子へ伝達さ
れる振動の大きさも接触面積によって異なるから、接触
部の通電能力の変化は、第2の圧電素子へ伝達された振
動の大きさ、すなわちこの圧電素子が発生する電圧を電
圧測定手段20により検出し、この電圧を、接触部が正
常なときの電圧と比較することにより知ることができる
。なお、この電圧検出に必要な、第1のループアンテナ
から第2のループアンテナへ伝達されるエネルギー、す
なわち機械的振動を生ぜしめるエネルギーはW(ワット
)オーダの小さい値ですむから、高周波電源2を構成す
る高周波発信管(この実施例ではマグネトロン)も入手
容易な大きさのものですみ、接触不良検知装置の構成を
極めて容易に行なうことができる。
By the way, if the contact area of the contact part becomes smaller than the normal range due to changes in the contact pressure of the leaf spring, deformation or wear of the contact part, or defects during assembly, the current carrying capacity of the contact part will decrease. This may cause abnormal heat generation. On the other hand, since the magnitude of the vibration transmitted from the first piezoelectric element to the second piezoelectric element also differs depending on the contact area, the change in the current carrying capacity of the contact portion depends on the magnitude of the vibration transmitted to the second piezoelectric element, That is, the voltage generated by this piezoelectric element is detected by the voltage measuring means 20, and this voltage can be determined by comparing this voltage with the voltage when the contact portion is normal. Note that the energy transmitted from the first loop antenna to the second loop antenna necessary for this voltage detection, that is, the energy that causes mechanical vibration, can be small on the order of W (watts), so the high frequency power source 2 The high-frequency transmitting tube (magnetron in this embodiment) constituting the device can also be of an easily available size, making it possible to construct the poor contact detection device extremely easily.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、 (1)接触部の接触面積を定量的に検出することができ
るから、接触状態の良否の判別を確実に行なうことがで
きる。
As described above, according to the present invention, (1) Since the contact area of the contact portion can be quantitatively detected, it is possible to reliably determine whether the contact state is good or bad.

(2)第1のループアンテナから発射される電波は密閉
された容器内に閉じ込められ、外部へは発射されないか
ら、X線のように人体への放射線の影響がなく、接触不
良の検出作業を容易に行なうことができる。
(2) The radio waves emitted from the first loop antenna are confined in a sealed container and are not emitted outside, so unlike X-rays, there is no radiation effect on the human body, making it easier to detect poor contacts. It can be done easily.

(3)X線の場合のように高電圧の発生を必要としない
から、電源が小形になり、またエネルギーの伝達系もル
ープアンテナのみで小形に構成することができるから、
接触不良検出装置全体を小形かつ経済的に構成すること
ができ、高電圧電器の状態を総合的に監視する常時監視
システムに容易に組み込むことができる。
(3) Unlike the case of X-rays, high voltage generation is not required, so the power supply can be made smaller, and the energy transfer system can also be made smaller with only a loop antenna.
The entire contact failure detection device can be constructed compactly and economically, and can be easily incorporated into a constant monitoring system that comprehensively monitors the status of high-voltage electrical appliances.

(4)本装置は寮触部の接触状態をみるものであるから
、無電流状態においても危険を予知することができる。
(4) Since this device monitors the contact status of dormitory contact parts, danger can be predicted even in a non-current state.

従って接触部の組立状態の良否の判別に用いることも可
能である。
Therefore, it can also be used to determine whether the assembled state of the contact portion is good or bad.

(5)第2の圧電素子に発生した電圧を静電容量分圧に
より取り出すようにしたので、測定結果に対する入力電
波の影響がなく、精度の高い検出が可能である。
(5) Since the voltage generated in the second piezoelectric element is extracted by capacitance division, there is no influence of input radio waves on measurement results, and highly accurate detection is possible.

などの効果が得られる。Effects such as this can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づきGiSのケーブル接続部におい
て構成された接触不良検知装置の実施例を示す図、第2
図は第2の圧電素子に発生した電圧に対する静電容量分
圧の原理説明図である。 l・・・金属容器、2・・・高周波電源、4・・・第1
のループアンテナ、6・・・通電路導体、7・・・第1
の圧電素子、8・・・第2のループアンテナ、8a・・
・ループコイル、8b・・・コンデンサ、9a 、 9
b・・・接触部位、10・・・通電路導体、16・・・
第2の圧電素子、17・・・第1の中間電極、19・・
・第2の中間電極、20・・・電圧測定手段。 1011洛41本 第2図
FIG. 1 is a diagram showing an embodiment of a poor contact detection device configured in a GiS cable connection section based on the present invention, and FIG.
The figure is an explanatory diagram of the principle of capacitance division with respect to the voltage generated in the second piezoelectric element. l...metal container, 2...high frequency power supply, 4...first
loop antenna, 6... current carrying path conductor, 7... first
piezoelectric element, 8... second loop antenna, 8a...
・Loop coil, 8b... Capacitor, 9a, 9
b... Contact portion, 10... Current-carrying path conductor, 16...
Second piezoelectric element, 17... First intermediate electrode, 19...
- Second intermediate electrode, 20...voltage measuring means. 1011 Raku 41 books 2nd figure

Claims (1)

【特許請求の範囲】[Claims] 1)密閉された金属容器内に収容された通電路導体の接
続部の接触不良を検知する装置であつて、金属容器の内
壁側に設けられ高周波電源からき電される第1のループ
アンテナと、この第1のループアンテナと対向配置され
前記高周波電源の周波数と同調するように構成されたル
ープコイルとコンデンサとからなる第2のループアンテ
ナに接続され、前記接続部の接触部位を挾む通電路導体
の一方に配された第1の圧電素子と、前記接触部位を挾
む通電路導体の他方に配され一方の電気端子が該通電路
導体と接続された第2の圧電素子と、通電路と金属容器
との間に配され前記第2の圧電素子の他方の電気端子が
接続される第1の中間電極と、この第1の中間電極と前
記金属容器との間に配された第2の中間電極と、この第
2の中間電極と前記金属容器との間の電圧を測定する電
圧測定手段とを備えたことを特徴とする通電路導体接続
部の接触不良検知装置。
1) A device for detecting poor contact of a connection part of a current-carrying conductor housed in a sealed metal container, comprising: a first loop antenna provided on the inner wall side of the metal container and powered from a high-frequency power source; A current-carrying path is connected to a second loop antenna, which is arranged opposite to the first loop antenna and is composed of a loop coil and a capacitor configured to be tuned to the frequency of the high-frequency power source, and which sandwiches the contact portion of the connection portion. a first piezoelectric element disposed on one side of the conductor; a second piezoelectric element disposed on the other side of the current-carrying path conductor sandwiching the contact portion and having one electric terminal connected to the current-carrying path conductor; a first intermediate electrode disposed between the metal container and the other electrical terminal of the second piezoelectric element, and a second intermediate electrode disposed between the first intermediate electrode and the metal container; A contact failure detection device for a current-carrying conductor connection portion, comprising: an intermediate electrode; and voltage measuring means for measuring a voltage between the second intermediate electrode and the metal container.
JP59193105A 1984-09-14 1984-09-14 Contact malfunction detector of power supply conductor connector Pending JPS6173502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59193105A JPS6173502A (en) 1984-09-14 1984-09-14 Contact malfunction detector of power supply conductor connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59193105A JPS6173502A (en) 1984-09-14 1984-09-14 Contact malfunction detector of power supply conductor connector

Publications (1)

Publication Number Publication Date
JPS6173502A true JPS6173502A (en) 1986-04-15

Family

ID=16302322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59193105A Pending JPS6173502A (en) 1984-09-14 1984-09-14 Contact malfunction detector of power supply conductor connector

Country Status (1)

Country Link
JP (1) JPS6173502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364897A (en) * 1986-09-04 1988-03-23 日本電気株式会社 Dynamic balancing regulator for space missile
US8776856B2 (en) 2009-07-31 2014-07-15 Uni-Charm Corporation Ultrasonic joining apparatus and absorbent article manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364897A (en) * 1986-09-04 1988-03-23 日本電気株式会社 Dynamic balancing regulator for space missile
US8776856B2 (en) 2009-07-31 2014-07-15 Uni-Charm Corporation Ultrasonic joining apparatus and absorbent article manufacturing apparatus

Similar Documents

Publication Publication Date Title
US4853818A (en) System and method for detecting arcing in dynamoelectric machines
KR101213614B1 (en) Electronic device and noise current measuring method
US4771355A (en) System and method for arc detection in dynamoelectric machines
EP1102998B1 (en) Closely-coupled multiple-winding magnetic induction-type sensor
JP3628244B2 (en) Partial discharge detection method
JP5219816B2 (en) Method and apparatus for detecting sound waves in a high pressure state in a vacuum switch
JP3243752B2 (en) Partial discharge detection device for gas insulated equipment and its calibration method
Zhang et al. Fault Detection for High-Voltage Circuit Breakers Based on Time–Frequency Analysis of Switching Transient $ E $-Fields
US3173086A (en) Apparatus including mechanical vibration detector means for detecting and locating incipient internal faults in electric induction apparatus
Chen et al. Partial discharge detection by RF coil in 161 kV power transformer
JP3126414B2 (en) Wire breakage detector for wire laying equipment
Boggs et al. Coupling devices for the detection of partial discharges in gas-insulated switchgear
JPS6173502A (en) Contact malfunction detector of power supply conductor connector
Bilodeau et al. High-voltage and partial discharge testing techniques for space power systems
JPH04500888A (en) High current feedthrough capacitor
JP3293754B2 (en) NMR detector
JPH03250710A (en) Partial discharge detecting device for compressed gas insulation equipment
US10281511B2 (en) Passive wireless sensor for the measurement of AC electric field in the vicinity of high voltage apparatus
JP2002323533A (en) Partial discharge testing method for electric power equipment
JPH03250711A (en) Partial discharge detecting device for compressed gas insulation equipment
Polyakov Research of Partial Discharge Registration Effectiveness Using HFCT Sensor
JP2881941B2 (en) Insulation monitoring antenna device
Gerasimov Wide-range inductive sensors of currents with nanosecond rise times for measuring parameters of high-current pulses
US2282261A (en) High frequency testing apparatus
JP2970093B2 (en) Abnormal overheat detector