JPS6364496B2 - - Google Patents

Info

Publication number
JPS6364496B2
JPS6364496B2 JP57004868A JP486882A JPS6364496B2 JP S6364496 B2 JPS6364496 B2 JP S6364496B2 JP 57004868 A JP57004868 A JP 57004868A JP 486882 A JP486882 A JP 486882A JP S6364496 B2 JPS6364496 B2 JP S6364496B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
precipitation
stainless steel
martensitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57004868A
Other languages
Japanese (ja)
Other versions
JPS58123822A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP486882A priority Critical patent/JPS58123822A/en
Publication of JPS58123822A publication Critical patent/JPS58123822A/en
Publication of JPS6364496B2 publication Critical patent/JPS6364496B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、マルテンサイト系ステンレス鋼の
直接焼入方法に関する。 マルテンサイト系ステンレス鋼はCrを多量に
含有するため極めて焼入性が良く、オーステナイ
ト化温度からの空冷(放冷)で焼入れ可能な寸法
範囲が広い。しかし、実際の焼入れ処理は、空冷
よりも冷却速度の大きい油冷または水冷により行
われることが多い。この理由は、焼入れの際の冷
却速度が不十分であるときに、冷却途中でオース
テナイト粒界に炭化物が析出する場合があること
による。 この粒界炭化物は、その後の焼もどし処理では
全く分解消失せず、粒界強度を低下させ粒界破壊
を起こしやすくして靭性を劣化させるとともに、
粒界近傍のCr量の低下により粒界の耐食性を低
下させて粒界腐食を生じやすくするため、構造材
料や工具材料として用いられるマルテンサイト系
ステンレス鋼の特性上有害である。 一方、材料の靭性を評価するための最も一般的
な試験方法としてシヤルピー衝撃試験があり、こ
の試験温度を変えた場合に脆性破面率が50%とな
る温度を延性―脆性遷移温度として、これが低い
程使用温度における靭性の安定性が優れていると
判断する評価の仕方がある。 このような評価によつた場合、従来の方法で焼
入れ焼もどしを行つたマルテンサイト系ステンレ
ス鋼の延性―脆性遷移温度は一般的に0℃前後か
ら室温(20℃)付近にあるため、外気温度あるい
は使用温度等の変動によつて鋼の靭性が著しく変
動しやすい。このため、部材の設計にあたつては
多大な安全率を必要とし、使用条件の制約を厳し
くしたときでも耐用寿命にばらつきを生ずること
は避け難いという問題を有していた。 この発明は、適正な条件で熱間加工した後の組
織は通常の焼入れ処理で得られる組織に比較して
非常に微細化しており、鋼の靭性を向上させるた
めの潜在的な可能性を持つていることに着目して
なされたもので、熱間加工による焼入れ後に微細
で粒界析出のないマルテンサイト基地組織を有し
延性―脆性遷移温度の低い安定した靭性を具備す
るステンレス鋼を得ることによつて上述したマル
テンサイト系ステンレス鋼特有の欠点を解消する
こを目的としている。 この発明は、熱間加工が誘起する再結晶を利用
して組織を微細化し、その後の冷却速度を調整し
て炭化物の粒界析出を防止することにより延性―
脆性遷移温度の低いマルテンサイト系ステンレス
鋼を得るようにしたもので、マルテンサイト系ス
テンレス鋼を熱間加工し、再結晶開始温度以上の
温度で加工を終了して再結晶を終えるまで保熱
(加熱を含む)し、徐冷しまたは保熱と徐冷を組
合せ、炭化物の析出温度域を当該炭化物の析出が
回避される速度で冷却し、常温まで冷却してマル
テンサイト変態させることによつて微細で粒界析
出のないマルテンサイト基地組織を有し延性―脆
性遷移温度の低いステンレス鋼を得るようにした
ことを特徴としている。 この発明にいうマルテンサイト系ステンレス鋼
は、高温において安定なγ相を有し、常温組織が
マルテンサイトとなるものであり、例えばCr含
有量が10重量%以上、C含有量が0.1〜1.2重量%
程度のもの、あるいはさらに必要にじて他の合金
元素(Ni,Mo,Cu等の耐食性向上元素、W,
V,Si等の強度向上元素、S,Se,Pb,Ca等の
快削向上元素およびその他の元素など)を添加し
たものである。 このようなマルテンサイト系ステンレス鋼を熱
間加工する際の加熱温度は、望ましくは1100〜
1250℃程度の範囲とする。この場合、加熱温度が
低すぎると、炭化物の十分な固溶ができず、後に
述べる加工終了温度の確保が難かしくなり、熱間
加工性も低下する。反対に、加熱温度が高すぎる
と、δ―フエライトが急増して熱間加工性を低下
すると共に鋼の性能を低下し、結晶粒の粗大化が
著しくなつて熱間加工による組織の微細化が阻害
される。 所定の熱間加工温度に加熱したマルテンサイト
系ステンレス鋼に対し圧延や鍛造等の熱間加工を
行うに際しては、その加工率(圧下率、鍛造率)
を望ましくは50%以上とする。これは、加工率が
小さすぎると加工による組織の微細化が十分でな
く、その後の再結晶が不十分なものとなるためで
ある。 このような加工は再結晶開始温度以上の温度で
終了するようにし、再結晶を終えるまで保熱また
は徐冷する。この場合の加工終了温度は、望まし
くは950〜1050℃程度の範囲とするのが良い。こ
れは、加工終了温度が低すぎると熱間加工後の再
結晶が不十分となるためであり、高すぎると再結
晶後に微細化し難いためである。その後再結晶を
終えるまで保熱し、徐冷しまた保熱と徐冷を組合
せるに際しては、例えば900℃まで保熱(加熱を
含む)と徐冷の組合せまたは徐冷のみで冷却す
る。この場合の徐冷は、熱間加工終了後に再結晶
を十分生じさせて微細な整粒組織とするために行
うが、徐冷温度が低すぎると粒界析出温度域にか
かつてオーステナイト粒界に炭化物が析出するお
それがあるので好ましくは850℃以上の温度で適
宜選定する。また、保熱または徐冷は、焼入れ材
の寸法が十分である場合には放冷であつても良
い。 次に、炭化物の析出温度域は当該炭化物の析出
が回避されるように冷却速度を調整する。すなわ
ち、炭化物がオーステナイト粒界に析出するノー
ズ(冷却中に最も短時間で粒界析出が開始する温
度)は約750℃であり、このノーズに達するよう
な冷却速度より遅い冷却では粒界析出が顕著にな
る。したがつて、例えば750℃+150℃=900℃か
ら750℃−150℃=600℃までの間はノーズに達し
ないような冷却速度で急冷、衝風冷もしくは放冷
するのが良い。 次に、上記炭化物の析出温度域以下、例えば
600℃以下の温度範囲では、ベイナイト変態領域
に達しなければ完全なマルテンサイト組織が得ら
れるので、実際上は放冷で十分であるが、上記炭
化物の析出温度域における冷却速度で引き続き急
冷または衝風冷しても支障はない。 図面は、この発明の直接焼入方法における好ま
しい冷却曲線の一例を示すもので、Kは粒界炭化
物の析出開始曲線、Nはノーズすなわち曲線Kの
最短時間位置、Pはパーライト変態領域、Bはベ
イナイト変態領域、Mはマルテンサイト変態領
域、MSはマルテンサイト変態開始線であり、ま
た線←は粒界析出せずして焼入れできるための等
速冷却範囲、線←は焼入れ可能である粒界析出す
る等速冷却範囲、線はこの発明を実施した一例
による冷却曲線を示す。線に示す冷却曲線は、
熱間加工終了温度が1000℃であり、その後900℃
までを徐冷して完全再結晶させ、900〜600℃の温
度域を急冷してオーステナイト粒界での炭化物析
出を防止し、線aでは600℃以下室温までをそ
のまま急冷してマルテンサイト変態させ、線b
では600℃以上室温まで放冷してマルテンサイト
変態させた場合を示している。このようにするこ
とによつて、微細で粒界析出のないマルテンサイ
ト基地組織を有し延性―脆性遷移温度の低いステ
ンレス鋼を得ることができる。 実施例 1 第1表に示す化学成分の鋼を50Kg真空誘導炉で
溶製したのちビレツトを作製し、このビレツトを
第2表に示す加熱温度に加熱してこの温度から熱
間圧延を開始し、圧延寸法30mmφ、圧下率65%の
条件で圧延を行つて同じく第2表に示す熱間圧延
終了温度で圧延終了したのち、同じく第2表に示
す冷却方法で冷却した。次いで焼もどしを行つた
後オーステナイト結晶粒度No.および延性―脆性遷
移温度を測定した。その結果同じく第2表に示
す。 また、比較法1として炭化物の析出温度域を含
む900〜600℃の間を徐冷した場合、比較法2,3
として熱間圧延終了後急冷した場合についても調
べた。この結果を同じく第2表に示す。 さらに、従来法1〜4として熱間圧延終了後い
つたん冷却し、その後再加熱して焼入れ焼もどし
を行つた場合についても調べた。この結果を同じ
く第2表に示す。
The present invention relates to a method for directly quenching martensitic stainless steel. Martensitic stainless steel contains a large amount of Cr, so it has extremely good hardenability, and has a wide range of dimensions that can be hardened by air cooling (natural cooling) from the austenitizing temperature. However, actual hardening treatment is often performed by oil cooling or water cooling, which has a faster cooling rate than air cooling. The reason for this is that when the cooling rate during quenching is insufficient, carbides may precipitate at austenite grain boundaries during cooling. These grain boundary carbides do not decompose and disappear at all during the subsequent tempering treatment, lowering the grain boundary strength, making intergranular fracture more likely to occur, and deteriorating toughness.
A decrease in the amount of Cr near the grain boundaries reduces the corrosion resistance of the grain boundaries and makes intergranular corrosion more likely to occur, which is harmful to the characteristics of martensitic stainless steels used as structural materials and tool materials. On the other hand, the most common test method for evaluating the toughness of materials is the Charpy impact test, and the temperature at which the brittle fracture ratio becomes 50% when the test temperature is changed is defined as the ductile-brittle transition temperature. There is a method of evaluation in which it is determined that the lower the temperature, the better the stability of toughness at the service temperature. According to such an evaluation, the ductile-brittle transition temperature of martensitic stainless steel that has been quenched and tempered using conventional methods is generally from around 0°C to around room temperature (20°C). Alternatively, the toughness of steel tends to vary significantly due to changes in operating temperature, etc. For this reason, a large safety factor is required when designing the components, and even when the conditions of use are strictly restricted, variations in service life are unavoidable. This invention has the potential to improve the toughness of steel, as the structure after hot working under appropriate conditions is much finer than the structure obtained through normal quenching. The purpose of this work was to obtain stainless steel that has a fine martensitic matrix structure without grain boundary precipitation after quenching through hot working, and has stable toughness with a low ductile-brittle transition temperature. The purpose of this invention is to eliminate the drawbacks specific to martensitic stainless steel mentioned above. This invention utilizes recrystallization induced by hot working to refine the structure, and then adjusts the cooling rate to prevent grain boundary precipitation of carbides, thereby improving ductility.
It is designed to obtain martensitic stainless steel with a low brittle transition temperature. Martensitic stainless steel is hot worked, and the processing is completed at a temperature higher than the recrystallization start temperature, and the heat is kept until the recrystallization is completed. (including heating), then slow cooling or a combination of heat retention and slow cooling, cooling the carbide precipitation temperature range at a rate that avoids the carbide precipitation, and cooling to room temperature to cause martensitic transformation. It is characterized by producing a stainless steel with a fine martensitic base structure without grain boundary precipitation and a low ductile-brittle transition temperature. The martensitic stainless steel referred to in this invention has a γ phase that is stable at high temperatures and has a martensite structure at room temperature, for example, has a Cr content of 10% by weight or more and a C content of 0.1 to 1.2% by weight. %
or, if necessary, other alloying elements (corrosion resistance improving elements such as Ni, Mo, Cu, W,
Strength-improving elements such as V and Si, free-cutting improving elements such as S, Se, Pb, and Ca, and other elements are added. The heating temperature when hot working such martensitic stainless steel is preferably 1100~1100℃.
The temperature should be around 1250℃. In this case, if the heating temperature is too low, sufficient solid solution of the carbide will not be achieved, making it difficult to ensure the finishing temperature described later, and hot workability will also decrease. On the other hand, if the heating temperature is too high, δ-ferrite increases rapidly, reducing hot workability and performance of the steel, and coarsening of crystal grains becomes significant, resulting in finer structure due to hot working. inhibited. When performing hot working such as rolling or forging on martensitic stainless steel heated to a predetermined hot working temperature, the processing rate (reduction rate, forging rate)
is preferably 50% or more. This is because if the processing rate is too small, the structure will not be sufficiently refined by processing, and subsequent recrystallization will be insufficient. Such processing is completed at a temperature equal to or higher than the recrystallization start temperature, and the material is kept heated or slowly cooled until the recrystallization is completed. The finishing temperature in this case is preferably in the range of about 950 to 1050°C. This is because if the working end temperature is too low, recrystallization after hot working will be insufficient, and if it is too high, it will be difficult to refine the material after recrystallization. Thereafter, it is kept heated until recrystallization is completed, and then slowly cooled. When a combination of heat preservation and slow cooling is used, for example, it is cooled to 900° C. by a combination of heat preservation (including heating) and slow cooling, or by only slow cooling. In this case, slow cooling is carried out to sufficiently cause recrystallization after hot working to create a fine grained structure. However, if the slow cooling temperature is too low, the grain boundary precipitation temperature range may be reached, or the austenite grain boundaries may form. Since there is a possibility that carbides will precipitate, the temperature is preferably 850° C. or higher and appropriately selected. Further, heat retention or slow cooling may be performed by allowing the material to cool when the dimensions of the quenched material are sufficient. Next, in the carbide precipitation temperature range, the cooling rate is adjusted so that precipitation of the carbide is avoided. In other words, the nose at which carbides precipitate at austenite grain boundaries (the temperature at which grain boundary precipitation begins in the shortest time during cooling) is approximately 750°C, and cooling slower than the cooling rate that reaches this nose causes grain boundary precipitation to occur. become noticeable. Therefore, for example, from 750°C + 150°C = 900°C to 750°C - 150°C = 600°C, it is preferable to perform rapid cooling, blast cooling, or air cooling at a cooling rate that does not reach the nose. Next, below the precipitation temperature range of the carbide, for example,
In the temperature range below 600°C, a complete martensitic structure can be obtained unless the bainite transformation region is reached, so in practice it is sufficient to let it cool naturally. There is no problem even with wind chill. The drawing shows an example of a preferable cooling curve in the direct quenching method of the present invention, where K is the grain boundary carbide precipitation initiation curve, N is the nose, that is, the shortest time position of the curve K, P is the pearlite transformation region, and B is the The bainitic transformation region, M is the martensitic transformation region, M S is the martensitic transformation start line, and the line ← is the constant cooling range for quenching without grain boundary precipitation, and the line ← is the grain that can be quenched. The constant velocity cooling range in which boundary precipitation occurs, and the line indicates a cooling curve according to an example of implementing the present invention. The cooling curve shown by the line is
Hot working end temperature is 1000℃, then 900℃
The temperature range of 900 to 600℃ is rapidly cooled to prevent carbide precipitation at austenite grain boundaries, and the line a is quenched from 600℃ to room temperature to cause martensitic transformation. , line b
This shows the case where martensitic transformation is caused by cooling from 600°C or higher to room temperature. By doing so, it is possible to obtain a stainless steel having a fine martensitic base structure without grain boundary precipitation and a low ductile-brittle transition temperature. Example 1 Steel having the chemical composition shown in Table 1 was melted in a 50 kg vacuum induction furnace, and then a billet was prepared.The billet was heated to the heating temperature shown in Table 2, and hot rolling was started from this temperature. After rolling was carried out under the conditions of a rolling dimension of 30 mmφ and a rolling reduction of 65%, and the rolling was completed at the hot rolling end temperature shown in Table 2, it was cooled by the cooling method shown in Table 2. After tempering, the austenite grain size number and ductile-brittle transition temperature were measured. The results are also shown in Table 2. In addition, when comparative method 1 is slowly cooled between 900 and 600℃, which includes the carbide precipitation temperature range, comparative methods 2 and 3
The case of rapid cooling after hot rolling was also investigated. The results are also shown in Table 2. Furthermore, as conventional methods 1 to 4, cases were also investigated in which the steel was cooled once after completion of hot rolling, and then reheated to perform quenching and tempering. The results are also shown in Table 2.

【表】【table】

【表】【table】

【表】 第2表に示すように、本発明法1〜23による場
合にはオーステナイト結晶粒度No.8.5〜9.1と非常
に微細なものとなつており、従来法1〜4の結晶
粒度No.5.2〜6.3に比較して著しく良好であり、延
性―脆性遷移温度が約30℃以上低下し同時にばら
つきも少さくなつていることが明らかである。一
方、比較法1では炭化物析出温度域を徐冷してい
るために軽微な粒界析出が起つており、微細化効
果が発揮されていないため延性―脆性遷移温度が
かなり高くなつている。また、比較法2,3では
熱間圧延終了後急冷しているために加工後の再結
晶が不完全であり、細粒化効果はあるが小さく、
延性―脆性遷移温度は本発明法程は低下していな
い。 なお、本実施例で用いたマルテンサイト系ステ
ンレス鋼のC含有量および圧延方法では、炭化物
の析出温度域を急冷とせず、放冷とした場合でも
炭化物の粒界析出はなく、良好な結果を得ること
ができる。また、900℃までを保熱と徐冷の組合
せで冷却した場合にも同様に良好な結果を得た。 実施例 2 第3表に示す化学成分の鋼を50Kg真空誘導炉で
溶製したのちビレツトを作製し、このビレツトを
第4表に示す加熱温度に加熱してこの温度から熱
間圧延を開始し、圧延寸法30mmφ、圧下率70%の
条件で圧延を行つて同じく第4表に示す熱間圧延
終了温度で圧延を終了したのち、同じく第4表に
示す冷却方法で冷却した。次いで焼もどしを行つ
た後オーステナイト結晶粒度No.および延性―脆性
遷移温度を測定した。その結果同じく第4表に示
す。 また、比較法31として炭化物の析出温度域を含
む900〜600℃の間を徐冷した場合、比較法32とし
て熱間圧延終了後急冷した場合についても調べ
た。この結果を同じく第4表に示す。 さらに、従来法31〜34として熱間圧延終了後い
つたん冷却し、その後再加熱して焼入れ焼もどし
を行つた場合についても調べた。この結を同じく
第4表に示す。
[Table] As shown in Table 2, in the case of methods 1 to 23 of the present invention, the austenite crystal grain size is very fine with No. 8.5 to 9.1, while the crystal grain size of conventional methods 1 to 4 is No. 8.5 to 9.1. It is significantly better than 5.2 to 6.3, and it is clear that the ductile-brittle transition temperature is lowered by about 30°C or more, and at the same time, the variation is also reduced. On the other hand, in Comparative Method 1, slight grain boundary precipitation occurs due to slow cooling in the carbide precipitation temperature range, and the ductile-brittle transition temperature is considerably high because the refinement effect is not exhibited. In addition, in Comparative Methods 2 and 3, recrystallization after processing is incomplete due to rapid cooling after completion of hot rolling, and although there is a grain refining effect, it is small.
The ductile-brittle transition temperature is not reduced by the process of the present invention. In addition, with the C content and rolling method of the martensitic stainless steel used in this example, even when the carbide precipitation temperature range was allowed to cool without rapid cooling, there was no grain boundary precipitation of carbides, and good results were obtained. Obtainable. Similar good results were also obtained when cooling up to 900°C using a combination of heat retention and slow cooling. Example 2 Steel having the chemical composition shown in Table 3 was melted in a 50 kg vacuum induction furnace, and then a billet was prepared.The billet was heated to the heating temperature shown in Table 4, and hot rolling was started from this temperature. After rolling was carried out under the conditions of a rolling dimension of 30 mmφ and a rolling reduction of 70%, the rolling was completed at the hot rolling end temperature shown in Table 4, and then cooled by the cooling method shown in Table 4. After tempering, the austenite grain size number and ductile-brittle transition temperature were measured. The results are also shown in Table 4. In addition, comparative method 31 in which slow cooling was performed between 900 and 600° C., which includes the precipitation temperature range of carbides, and comparative method 32 in which rapid cooling was performed after completion of hot rolling were also investigated. The results are also shown in Table 4. Furthermore, as conventional methods 31 to 34, cases were also investigated in which the steel was cooled once after completion of hot rolling, and then reheated to perform quenching and tempering. The results are also shown in Table 4.

【表】【table】

【表】 第4表に示すように、本発明法31〜47による場
合にはオーステナイト結晶粒度No.8.6〜9.1と非常
に微細なものとなつており、従来法31〜34の結晶
粒度No.6.2〜6.5に比較して著しく良好であり、延
性―脆性遷移温度もかなり低くなつている。一
方、比較法31では炭化物析出温度域を徐冷してい
るために軽微な粒界析出が起つており、比較法32
では熱間圧延終了後急冷しているために加工後の
再結晶が不完全であり、いずれも本発明法による
ものほど延性―脆性遷移温度は低くない。 なお、本実施例で用いたマルテンサイト系ステ
ンレス鋼のC含有量および圧延方法では、炭化物
の析出温度域を衝風冷以上の冷却速度とすること
によつて安定して低い延性―脆性遷移温度を得る
ことができる。また、900℃までを保熱と徐冷の
組合せで冷却した場合にも同様に良好な結果を得
ることができた。 上記各実施例においては、冷却方法の温度区分
として、再結晶を終えるまでの徐冷区間を900℃
以上とし、炭化物の粒界析出を防止するための冷
却温度域を900〜600℃とし、その後常温まで冷却
する温度域を600℃以下とした場合を例にとつて
示したが、この温度区分は使用するマルテンサイ
ト系ステンレス鋼の化学成分等によつて適宜変更
することができ、また変更することが望ましい場
合があることはいうまでもない。 以上説明してきたように、この発明によれば、
熱間加工が誘起する再結晶を利用して組織を微細
化し、その後の冷却速度を調整して炭化物の粒界
析出を防止するようにしたから、直接焼入後の状
態において、微細で粒界析出のないマルテンサイ
ト基地組織を有し延性―脆性遷移温度の低い安定
した靭性を具備するステンレス鋼を得ることがで
き、従来のマルテンサイト系ステンレス鋼特有の
靭性の不安定さという欠点を解消するこができる
という非常に優れた効果を有する。
[Table] As shown in Table 4, in the case of methods 31 to 47 of the present invention, the austenite crystal grain size is extremely fine with No. 8.6 to 9.1, and the crystal grain size of conventional methods 31 to 34 is very fine. It is significantly better than 6.2 to 6.5, and the ductile-brittle transition temperature is also considerably lower. On the other hand, in Comparative Method 31, slight grain boundary precipitation occurs due to slow cooling in the carbide precipitation temperature range, and Comparative Method 32
In these cases, the recrystallization after working is incomplete because the hot rolling is rapidly cooled, and the ductile-brittle transition temperature is not as low as that obtained by the method of the present invention. Note that the C content of the martensitic stainless steel used in this example and the rolling method are such that the carbide precipitation temperature range is set to a cooling rate higher than blast cooling, thereby achieving a stably low ductile-brittle transition temperature. can be obtained. Similarly good results were also obtained when cooling up to 900°C using a combination of heat retention and slow cooling. In each of the above examples, as the temperature division of the cooling method, the slow cooling period until the end of recrystallization is 900°C.
Based on the above, we have shown an example where the cooling temperature range to prevent grain boundary precipitation of carbides is 900 to 600°C, and then the temperature range for cooling to room temperature is 600°C or less. It goes without saying that it can be changed as appropriate depending on the chemical composition of the martensitic stainless steel used, and that it may be desirable to change it. As explained above, according to this invention,
By making use of recrystallization induced by hot working to refine the structure, and then adjusting the cooling rate to prevent grain boundary precipitation of carbides, in the state after direct quenching, fine and grain boundary It is possible to obtain a stainless steel that has a martensitic matrix structure without precipitation and stable toughness with a low ductile-brittle transition temperature, eliminating the drawback of unstable toughness peculiar to conventional martensitic stainless steels. It has a very good effect of being able to do this.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の直接焼入方法における好まし
い冷却曲線の一例を示す説明図である。
The drawing is an explanatory diagram showing an example of a preferable cooling curve in the direct quenching method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 マルテンサイト系ステンレス鋼を熱間加工
し、再結晶開始温度以上の温度で加工を終了して
再結晶を終えるまで保熱し、徐冷しまたは保熱と
徐冷を組合せ、炭化物の析出温度域を当該炭化物
の析出が回避される速度で冷却し、次いでマルテ
ンサイト変態させることによつて微細で粒界析出
のないマルテンサイト基地組織を有し延性―脆性
遷移温度の低いステンレス鋼を得ることを特徴と
するマルテンサイト系ステンレス鋼の直接焼入方
法。
1. Hot working martensitic stainless steel, finishing the working at a temperature higher than the recrystallization start temperature, retaining heat until recrystallization is completed, and cooling slowly or by combining heat retention and slow cooling to obtain a carbide precipitation temperature range. By cooling the steel at a rate that avoids the precipitation of carbides and then transforming it into martensitic material, it is possible to obtain a stainless steel with a fine martensitic base structure without grain boundary precipitation and a low ductile-brittle transition temperature. Direct quenching method for martensitic stainless steel.
JP486882A 1982-01-18 1982-01-18 Direct hardening method Granted JPS58123822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP486882A JPS58123822A (en) 1982-01-18 1982-01-18 Direct hardening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP486882A JPS58123822A (en) 1982-01-18 1982-01-18 Direct hardening method

Publications (2)

Publication Number Publication Date
JPS58123822A JPS58123822A (en) 1983-07-23
JPS6364496B2 true JPS6364496B2 (en) 1988-12-12

Family

ID=11595647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP486882A Granted JPS58123822A (en) 1982-01-18 1982-01-18 Direct hardening method

Country Status (1)

Country Link
JP (1) JPS58123822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458134A (en) * 2015-11-17 2016-04-06 攀钢集团江油长城特殊钢有限公司 Forging method of tungsten-containing martensitic stainless steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567151B1 (en) * 1984-07-04 1986-11-21 Ugine Aciers METHOD FOR MANUFACTURING MARTENSITIC STAINLESS STEEL BARS OR MACHINE WIRE AND CORRESPONDING PRODUCTS
JPH01230714A (en) * 1988-03-09 1989-09-14 Nippon Steel Corp Manufacture of high carbon martensitic stainless steel containing fine carbide
KR102395730B1 (en) * 2016-04-22 2022-05-09 아뻬랑 Method for manufacturing martensitic stainless steel parts from sheets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ENGLISH TRANSTATION=1976 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458134A (en) * 2015-11-17 2016-04-06 攀钢集团江油长城特殊钢有限公司 Forging method of tungsten-containing martensitic stainless steel

Also Published As

Publication number Publication date
JPS58123822A (en) 1983-07-23

Similar Documents

Publication Publication Date Title
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JPH10265846A (en) Production of thermally refined high tensile strength steel plate by continuous casting excellent in toughness
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPS6364496B2 (en)
JPS6214606B2 (en)
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JPH04358023A (en) Production of high strength steel
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP5412915B2 (en) Ferrite-pearlite rolled non-heat treated steel
JP3214731B2 (en) Method for producing non-heat treated steel bar with excellent low temperature toughness
JPS6137333B2 (en)
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
JPH08283838A (en) Production of low yield ratio, high ductility steel excellent in strength, toughness and ductility
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
JP3320958B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JPH0229727B2 (en) DORIRUKARAAYOBOKONOSEIZOHOHO
JPH10280036A (en) Wire rod for high strength bolt excellent in strength and ductility and its production