JPS636440A - Sio measuring instrument and probe for analysing si of molten iron - Google Patents

Sio measuring instrument and probe for analysing si of molten iron

Info

Publication number
JPS636440A
JPS636440A JP61150868A JP15086886A JPS636440A JP S636440 A JPS636440 A JP S636440A JP 61150868 A JP61150868 A JP 61150868A JP 15086886 A JP15086886 A JP 15086886A JP S636440 A JPS636440 A JP S636440A
Authority
JP
Japan
Prior art keywords
molten iron
hot metal
sio
gas
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61150868A
Other languages
Japanese (ja)
Inventor
Tadashi Mochizuki
正 望月
Hideo Seno
瀬野 英夫
Takanori Akiyoshi
孝則 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61150868A priority Critical patent/JPS636440A/en
Publication of JPS636440A publication Critical patent/JPS636440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To excecute quick and continuous measurement of the silicon content in a molten iron tapped from a blast furnace at the blast furnace hearth by detecting the IR light generated from the molten iron and measuring the content of the SiO generated from the molten iron. CONSTITUTION:The molten iron 9a advances into a probe body 17 when a nichrome wire sheathed fine tube heater 21 is heated by conducting electricity thereto and the bottom end of the probe body 17 is inserted into the molten iron 9. An SiO-contg. gas is thereupon released from the molten iron 9a when a carrier gas is blown from a gas feed pipe 20 into the molten iron 9a. The gas enters a cell 14 from the inside of the probe body 17 and is discharged through a discharge pipe 22. The IR light emitted from a light emitting source 15 emerges to the outside from a transparent window 16 and is inputted through a condenser lens 1, a chopper 2, and narrow band-pass filters 3, 4 of a measuring instrument 8 to pyroelectric type IR detecting elements 5, 6. A signal processing part 7 measures the absorption intensity of the SiO and determines the content of the Si in the molten iron.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は高炉から出銑された溶銑中のシリコン含有率
を高炉鋳床において迅速かつ連続的に測定しうるSiO
測定装置及びプローブに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is an SiO method that enables rapid and continuous measurement of silicon content in hot metal tapped from a blast furnace in a blast furnace cast bed.
This invention relates to a measuring device and a probe.

〔従来の技術〕[Conventional technology]

溶銑中のシリコンの分析法としては、レーザー発光法、
ス・ぐ−り発光法、微粒子生成法、イオンセンサー法、
固体試料の迅速分析法などが知られている。レーデ−発
光法はレーザーを用いて溶銑成分を蒸発、励起し、分光
分析する方法であシ、スノヤーク発光法は溶銑のス/4
−り光を光ファイバーで伝送して分光分析する方法であ
る。微粒子生成法はガスバブリング等により溶銑の微粒
子を生成し、その微粒子を搬送してrcp発光法で分析
する方法であり、イオンセンサー法は固体電解質を用い
て活量を測定し、含有率を求める方法である。
Methods for analyzing silicon in hot metal include laser emission method,
Su-Guri luminescence method, particle generation method, ion sensor method,
Rapid analysis methods for solid samples are known. The Lehde luminescence method uses a laser to evaporate and excite the hot metal components, and performs spectroscopic analysis.
- This is a method of transmitting light through optical fibers and performing spectroscopic analysis. The particle generation method is a method in which fine particles of hot metal are generated by gas bubbling, etc., and the particles are transported and analyzed using the RCP emission method.The ion sensor method uses a solid electrolyte to measure the activity and determine the content. It's a method.

また、固体試料の迅速分析法は固体サンプルを採取後ス
・9−り発光分析法、螢光X線分析法、熱起電力法、透
磁率法等で分析する方法である。
Further, a rapid analysis method for a solid sample is a method in which a solid sample is collected and then analyzed by a 9-slide emission spectrometry, a fluorescent X-ray spectroscopy, a thermoelectromotive force method, a magnetic permeability method, or the like.

−方、溶銑中のシリコンは酸素と反応してSiO等の酸
化ケイ素を生成する。生成したSiOは出銑時の溶銑温
度(約1500℃)において10−2〜10−4mug
の高い蒸気圧を有し、溶銑から蒸発する。このsIOガ
ス量は溶銑中のシリコン濃度と比例関係にあり、溶銑か
ら発生する5IO3iを連続的に測定することKより溶
銑中のシリコンを連続的に分析することが可能である。
- On the other hand, silicon in hot metal reacts with oxygen to produce silicon oxides such as SiO. The generated SiO is 10-2 to 10-4 mg at the hot metal temperature (approximately 1500℃) during tapping.
It has a high vapor pressure and evaporates from hot metal. The amount of sIO gas is proportional to the silicon concentration in the hot metal, and by continuously measuring 5IO3i generated from the hot metal, it is possible to continuously analyze the silicon in the hot metal.

このSiOガスは自然発生し、Si0生成のためにプロ
ーブ等の特殊な設備を必要としないところから低コスト
で測定できるという利点がある。
This SiO gas is naturally generated and has the advantage that it can be measured at low cost without requiring special equipment such as a probe for SiO generation.

810を高温物体、例えば高炉内の溶融物から発光され
た赤外光を光源として赤外スペクトルを測定することに
より定量する方法が報告されている。
A method has been reported for quantifying 810 by measuring the infrared spectrum using infrared light emitted from a high-temperature object, such as a molten material in a blast furnace, as a light source.

この310の赤外線吸収スペクトルの測定には通常回折
格子型の赤外分光光度計やフーリエ変換型の赤外分光光
度計が用いられていた。
A diffraction grating type infrared spectrophotometer or a Fourier transform type infrared spectrophotometer has usually been used to measure the infrared absorption spectrum of 310.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

レーザー発光法は装置全体が大きく、装置のコ□ ストが高いという問題があった。また、高炉鋳床に設置
する場合には温度、震動等に関する対策が必要であった
。ス/?−り発光法も装置のコストが高いことに加え、
溶銑面の安定化が必要で高炉鋳床溶銑樋における直接分
析には適さないことも問題であった。微粒子生成法は装
置が大型で装置のコスト及び運転費のいずれもが高価で
あった。イオンセンサー法は分析精度が悪く、消耗型で
あるため連続分析には適さず、また運転費が高い等の問
題があった。固体の迅速分析法はサンプリングや試料の
前処理に時間を要し、分析に長時間を要していた。分析
装置にスノ9−り発光分析装置や螢光X線分析装置を用
いた場合にはこれらは大型で高価であることも問題であ
った。
The problem with the laser emission method is that the entire device is large and the cost of the device is high. Additionally, when installing in a blast furnace casthouse, measures against temperature, vibration, etc. were required. vinegar/? - In addition to the high equipment cost of the luminescence method,
Another problem was that it required stabilization of the hot metal surface, making it unsuitable for direct analysis in the hot metal trough of a blast furnace casthouse. The fine particle generation method requires large equipment and is expensive both in equipment cost and operating cost. The ion sensor method has problems such as poor analysis accuracy, consumable method, and therefore not suitable for continuous analysis, and high operating costs. Rapid analysis methods for solids require time for sampling and sample pretreatment, and require a long time for analysis. When a snow emission spectrometer or a fluorescent X-ray spectrometer is used as an analysis device, there is a problem that these devices are large and expensive.

また、SlOの赤外線吸収スペクトルの測定に用いられ
ていた回折格子型やフーリエ変換型の赤外分光光度計は
大型で高価であり、さらに測定環境の整備等も必要であ
って、オンライン分析計としては適していなかった。
In addition, the diffraction grating type and Fourier transform type infrared spectrophotometers used to measure the infrared absorption spectrum of SlO are large and expensive, and also require preparation of the measurement environment, so they cannot be used as online analyzers. was not suitable.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれらの問題点を解決する手段として、溶銑か
ら発生した赤外光を集光する集光レンズ、光を変’FA
fるチ胃ツ/4’−、fローバンドパスフィルター、焦
電型赤外線検出素子、及び信号処理部からなるStO測
定装置と溶銑から810を採取するプローブ本体に赤外
吸収セルを接続−体化したプローブを提供するものであ
る。
As a means to solve these problems, the present invention provides a condensing lens that condenses infrared light generated from hot metal, and an FA that changes the light.
An infrared absorption cell is connected to the StO measuring device consisting of fruchisutsutsu/4'-, f low band pass filter, pyroelectric infrared detection element, and signal processing unit, and the probe body that collects 810 from hot metal. The purpose of the present invention is to provide a probe with

以下、本発明の内容をまずSiO測定装置について説明
する。
Hereinafter, the content of the present invention will first be explained with respect to a SiO measuring device.

集光レンズにはゲルマニウム、セレン化亜鉛などの赤外
光透過材(より形成されたものを使用する。
The condenser lens should be made of an infrared light transmitting material such as germanium or zinc selenide.

チHツバ−には公知の光束断続器を使用する。A known beam interrupter is used for the CH tube.

配置する位置は集光レンズと赤外線検出素子の間に設け
ればよい。
It may be placed between the condenser lens and the infrared detection element.

フィルターはSiOの吸収波長を選択的に通過させるナ
ローパントノ!スフイルターを用いる。このフィルター
としては例えばゲルマニウム等の赤外光透過基板上に多
層コーティングを施したものが市販されておシ、それを
利用することができる。
The filter is a narrow pantono that selectively passes the absorption wavelength of SiO! Use a filter. As this filter, a filter made of, for example, germanium or the like on which a multilayer coating is applied on an infrared light transmitting substrate is commercially available and can be used.

それに限定されるものではなく、−般に目的波長を中心
として透過波長範囲の狭いもののなかから適宜選択する
ことができる。このフィルターは赤外線検出素子に密着
させて設けることが好ましい。
It is not limited thereto, and can be appropriately selected from those having a narrow transmission wavelength range centered around the target wavelength. This filter is preferably provided in close contact with the infrared detection element.

810は溶銑から自然蒸発してくるものを測定すればよ
い。アルゴンガス、炭酸ガス、アルゴン−酸素混合ガス
等を溶銑に吹き込んでバブリングを行なうことKよ58
10の発生量を増し、分析感度を向上させることができ
る。
810 may measure what naturally evaporates from the hot metal. Bubbling is performed by blowing argon gas, carbon dioxide gas, argon-oxygen mixed gas, etc. into hot metal.K58
10 generation amount can be increased and the analysis sensitivity can be improved.

上記の装置を使用するにあたっては、測定場所により高
温、ヒーーム等の対環境対策あるl/−1は温度変化、
スラグ等の影響を排除する安定化対策を施すことが必要
な場合もある。本発明者はこのような場合に有効なプロ
ーブを案出した。次に、このプローブ建ついて説明する
When using the above equipment, there are environmental measures such as high temperature and heat depending on the measurement location.
It may be necessary to take stabilization measures to eliminate the effects of slag, etc. The present inventor has devised a probe that is effective in such cases. Next, the construction of this probe will be explained.

このプローブは本体とその上端に接続された赤外吸収セ
ルからなる。
This probe consists of a main body and an infrared absorption cell connected to its upper end.

プローブ本体は下端に溶銑導入口を設け、その近傍には
搬送ガスの送気管を接続する。溶銑導入口はプローブ本
体の底面のほか側面に設けることもできる。また、その
数も1個所に限らず、複数個所に設けてもよい。この導
入口VcFi溶銑へ挿入する際に上層のスラグが入らな
いように鉄箔などを貼っておくことが好ましい。搬送ガ
スは溶銑からSiOを抽出、搬送するものであり、Ar
、 co2゜Ar−02+ coなどが用いられる。搬
送ガスの送気管はガスを溶銑に吹込める位置に接続する
The probe body has a hot metal inlet at its lower end, and a carrier gas supply pipe is connected to the vicinity thereof. The hot metal inlet can be provided on the side surface of the probe body in addition to the bottom surface. Further, the number of the holes is not limited to one, but may be provided at multiple places. It is preferable to cover the inlet with iron foil or the like so that the upper layer slag does not enter when the VcFi hot metal is inserted into the inlet. The carrier gas extracts and transports SiO from hot metal, and Ar
, co2°Ar-02+ co, etc. are used. The carrier gas air pipe is connected to a position where the gas can be blown into the hot metal.

赤外吸収セルは円管、角管等の管状とし、その−端には
赤外光源を設ける。赤外光源は加熱により赤外光を効率
よく発光するものであればよく、例えばアルミナ等が運
車である。この光源は赤外吸収セル内に設けることが好
ましいが、セル外に設けてもよい。後者の場合には赤外
光透過窓を赤外光源側端部にも設ける。赤外吸収セルの
測光側端部には赤外光透過窓を設ける。この窓は例えば
KBr、 KCl、 Ge等の板体で形成すればよい。
The infrared absorption cell has a tubular shape such as a circular tube or a square tube, and an infrared light source is provided at the lower end of the cell. The infrared light source may be any material that efficiently emits infrared light by heating, such as alumina or the like. This light source is preferably provided within the infrared absorption cell, but may also be provided outside the cell. In the latter case, an infrared light transmitting window is also provided at the end on the infrared light source side. An infrared light transmission window is provided at the photometric side end of the infrared absorption cell. This window may be formed of a plate of KBr, KCl, Ge, etc., for example.

赤外吸収セルの赤外光源近傍及び赤外光透過窓近傍には
これらを保護するためのガス送気管を接続する。
A gas supply pipe is connected to the vicinity of the infrared light source and the infrared light transmitting window of the infrared absorption cell to protect them.

このガスには特別な事情がなければ前記の搬送ガスと同
じガスを用いればよい。赤外吸収セルにはこれらのガス
の排気管を接続する必要がある。排気管にプローブ本体
から導入される搬送ガスが赤外技収セルを相当距離通っ
てから排出されるようにプローブ本体接続部からなるべ
く離して設けるのがよい。この排気管は複数設けること
もできる。
Unless there are special circumstances, the same gas as the carrier gas described above may be used as this gas. It is necessary to connect exhaust pipes for these gases to the infrared absorption cell. It is preferable to provide the exhaust pipe as far away from the probe body connection portion as possible so that the carrier gas introduced from the probe body passes through the infrared cell for a considerable distance before being exhausted. A plurality of these exhaust pipes can also be provided.

該セルにはそのほか溶銑から発生した蒸気がそこでal
!縮しないようにヒーターなどを設けることができる。
In addition to this cell, steam generated from hot metal is also
! A heater or the like can be installed to prevent shrinkage.

本発明のSIo装置は、炉外に出た溶銑の310を測定
するにとどまらず、高炉羽口より炉内からの赤外光を直
接測定してレースウェイ中のSin濃度を求めて溶銑中
の31含有量を求めることも可能である。また、ナロー
バンドパスフィルターの透過特性を変えることKより、
SiO以外のもの例えばSO2,CO,Co2等の溶融
物放出ガスを測定することもできる。
The SIo device of the present invention not only measures 310 of hot metal that has come out of the furnace, but also directly measures infrared light from inside the furnace through the blast furnace tuyere to determine the Sin concentration in the raceway. It is also possible to determine the 31 content. In addition, by changing the transmission characteristics of the narrow bandpass filter,
It is also possible to measure melt emitted gases other than SiO, such as SO2, CO, Co2, etc.

〔作用〕[Effect]

SlO測定装置においては、SiOの振動により一定波
長のエネルギーを失なった赤外光が集光レンズによって
集光される。この赤外光はチヲッパーに!る変調を受け
、ナローバンドパスフィルターによって上記の特定波長
部分が焦電型赤外線検出素子へ検知され、信用処理部で
増幅、演算処理、バックグラウンド処理等が行なわれて
SiO濃度信号を得ることができる。
In the SlO measuring device, infrared light that has lost energy at a certain wavelength due to the vibration of SiO is focused by a condensing lens. This infrared light is great! The above-mentioned specific wavelength portion is detected by the pyroelectric infrared detection element using a narrow band pass filter, and amplification, arithmetic processing, background processing, etc. are performed in the trust processing section to obtain a SiO concentration signal. .

また、プローブにおいては、導入口からプローブ本体下
部に進入してきた溶銑に搬送ガスを吹き込むことKよっ
てSiOを溶銑から抽出する。抽出されたSiOは搬送
ガスによりプローブ本体から赤−外吸収セルに入り、排
気管から排出される。赤外光は光源から発せられてセル
内の該SiO蒸気部を通過し、赤外光透過窓から出て測
光される。該測光には前記SiOi定装置を用いること
が好ましいがその他の赤外線吸収スペクトル測定装置を
用いることもできる。
Furthermore, in the probe, SiO is extracted from the hot metal by blowing a carrier gas into the hot metal that has entered the lower part of the probe body from the inlet. The extracted SiO enters the infrared absorption cell from the probe body by the carrier gas and is discharged from the exhaust pipe. Infrared light is emitted from a light source, passes through the SiO vapor portion within the cell, exits through an infrared light transmission window, and is photometered. Although it is preferable to use the SiOi determination device described above for the photometry, other infrared absorption spectrum measuring devices can also be used.

〔実施例〕〔Example〕

本発明の一実施例である溶銑Si分分析用Sl測測定装
置概要を第1図に示す。
FIG. 1 shows an outline of a Sl measuring device for analyzing the Si content of hot metal, which is an embodiment of the present invention.

同図に示すように、この装置は集光レンズ1゜チョッノ
?  2、ナローパントノやスフイルター3゜4、焦電
型赤外線検出素子5.6、及び信号処理部7からなって
いる。六ローバンドパスフィルター及び焦電赤外線検出
素子は一方は810モニター用であシ、他方はバックダ
ラウント5モニター用である。
As shown in the figure, this device uses a condenser lens of 1°? 2. It consists of a narrow pantono and a filter 3.4, a pyroelectric infrared detection element 5.6, and a signal processing section 7. One of the six low band pass filters and the pyroelectric infrared detection element is for the 810 monitor, and the other is for the back-down 5 monitor.

この装置8を用いて溶銑9のSiOを測定している状態
の平面図を第3図にそして側面図を第4図に示す。この
装置は高炉鋳床のスキンマー部に設置され、10は高炉
大樋を、11はスキンマー部をそして12はスラグ、酸
化層をそれぞれ示している。溶銑上層のスラグや酸化層
12が分離された溶銑9から放射された赤外線を反射ミ
ラー13で集光し、これを前記の装置8で測定してSi
Oを求めた。得られた結果と別途化学分析法で測定した
シリコン含有率との関係を第5図に示す。同図に示すよ
うに両者間には良好な相関関係が認められた。
FIG. 3 shows a plan view of the apparatus 8 used to measure SiO in hot metal 9, and FIG. 4 shows a side view thereof. This device is installed in the skinmer part of a blast furnace casthouse, and 10 shows the blast furnace gutter, 11 shows the skinmer part, and 12 shows the slag and oxidized layer. The infrared rays emitted from the hot metal 9 from which the slag and oxide layer 12 in the upper layer of the hot metal have been separated are collected by the reflecting mirror 13, and measured by the device 8 described above.
I asked for O. FIG. 5 shows the relationship between the obtained results and the silicon content measured separately by a chemical analysis method. As shown in the figure, a good correlation was observed between the two.

この例においては、溶銑からの赤外光を一旦反射ミラー
13で集光してこれを本発明の装置8で測定するように
しているが、測定装置8を溶銑面に向けて設置し、直接
測定することも可能であった。
In this example, the infrared light from the hot metal is once focused by the reflecting mirror 13 and then measured by the device 8 of the present invention, but the measuring device 8 is installed facing the hot metal surface and directly It was also possible to measure

次K、溶銑Si分析用プローブの一例を第2図に示す。An example of a probe for analyzing hot metal Si is shown in Fig. 2.

このセルは赤外吸収セル14の一端に赤外光の発光源1
5が配置され、他端には赤外線透過窓16が設けられて
いる。また、このセル14にはSiO抽出プローブ本体
17が接続されている。このプローブ本体17は下端を
溶銑9に浸漬するようになっており、該浸漬部18には
溶銑9の導入口19が開口されかつ導入された溶銑9&
に搬送ガスを吹込む送気管20が接続されている。セル
14にはさらにこれを加熱するヒーター21、排気管2
2、発光源15を保護するためのガスの送気管23、赤
外線透過窓16を保護するためのガスの送気管24など
が適宜取付けられる。発光源はアルミナが使用され、赤
外光透過窓にはKBrが使用されている。このプローブ
の使用方法としては、ニクロム線シース細管ヒーター2
1に電気を通じて加熱し、プローブ本体17の下端を溶
銑9に挿入するとプローブ本体17内に溶銑9&が進入
して来る。そこで、搬送ガスをこの溶銑91に吹込むと
SiO含有ガスが溶銑9aから放出され、プローブ本体
17内からセル14に入り排気管22を通って排出され
る。発光源15から発せられた赤外光は透過窓16から
外へ出て前記の測定装置8で810吸収強度が測定され
、溶銑中のSI含有量を求めることができる。
This cell has an infrared light emitting source 1 at one end of an infrared absorption cell 14.
5 is arranged, and an infrared transmitting window 16 is provided at the other end. Further, an SiO extraction probe main body 17 is connected to this cell 14. The lower end of the probe body 17 is immersed in the hot metal 9, and the immersion part 18 has an inlet 19 for the hot metal 9 and the introduced hot metal 9 &
An air supply pipe 20 for blowing carrier gas is connected to. The cell 14 is further equipped with a heater 21 for heating it, and an exhaust pipe 2.
2. A gas supply pipe 23 for protecting the light emitting source 15, a gas supply pipe 24 for protecting the infrared transmitting window 16, etc. are installed as appropriate. Alumina is used for the light emitting source, and KBr is used for the infrared light transmitting window. How to use this probe is as follows: Nichrome wire sheath capillary heater 2
When the probe body 17 is heated by electricity and the lower end of the probe body 17 is inserted into hot metal 9, the hot metal 9& enters into the probe body 17. Therefore, when a carrier gas is blown into the hot metal 91, SiO-containing gas is released from the hot metal 9a, enters the cell 14 from within the probe body 17, and is discharged through the exhaust pipe 22. The infrared light emitted from the light source 15 exits through the transmission window 16, and the 810 absorption intensity is measured by the measuring device 8, so that the SI content in the hot metal can be determined.

〔発明の効果〕〔Effect of the invention〕

本発明のSiO測定装置は構造が簡単であり小型にする
ことができる。軽量であるところから持ち運びが簡単で
あり、操作も容易である。精度が高く、測定を迅速に行
なうことができる。また、安価に製造することが可能で
ある。
The SiO measuring device of the present invention has a simple structure and can be made small. Since it is lightweight, it is easy to carry and easy to operate. It has high accuracy and can perform measurements quickly. Moreover, it can be manufactured at low cost.

また、プローブを用いることにより、前記の対環境対策
及び安定化対策を果たすとともに、赤外線吸収層厚が増
すことKより分析感度をさらに向上させることができる
Further, by using a probe, the above-mentioned environmental protection and stabilization measures can be achieved, and the analytical sensitivity can be further improved by increasing the thickness of the infrared absorption layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である装置の構成の概要を示
す平面図であシ、第2図はこの装置へ赤外光を送る赤外
吸収セルの一例の構成の概要を示す側面図である。第3
図はこの装置を使用している状態を示す平面図であり第
4図は側面図である。 第5図は本発明の装置を用いて得られた測定結果と従来
法による測定結果の相関関係を示す図である。 1・・・集光レンズ、2・・・チ雪ツバ−13,4・・
・ナローバンド・母スフイルター、5,6・・・焦x型
赤外線検出素子、7・・・信号処理部。
FIG. 1 is a plan view showing an overview of the configuration of a device that is an embodiment of the present invention, and FIG. 2 is a side view showing an overview of the configuration of an example of an infrared absorption cell that sends infrared light to this device. It is a diagram. Third
The figure is a plan view showing the state in which this device is used, and FIG. 4 is a side view. FIG. 5 is a diagram showing the correlation between the measurement results obtained using the apparatus of the present invention and the measurement results obtained by the conventional method. 1...Condensing lens, 2...Chiyuki brim-13, 4...
- Narrow band/mother filter, 5, 6... Focused x-type infrared detection element, 7... Signal processing section.

Claims (2)

【特許請求の範囲】[Claims] (1)溶銑から発生した赤外光を集光する集光ミラー、
光を変調するチョッパー、ナローバンドパスフィルター
、焦電型赤外線検出素子、及び信号処理部からなるSi
O測定装置
(1) A condensing mirror that condenses infrared light generated from hot metal;
Si consists of a chopper that modulates light, a narrow bandpass filter, a pyroelectric infrared detection element, and a signal processing section.
O measuring device
(2)下端に溶銑導入口を有するプローブ本体の上端に
管状の赤外吸収セルを接続し、該セルの一端に赤外光源
を設けるとともに他端には赤外光透過窓を設け、前記溶
銑導入口近傍には搬送ガスを溶銑に吹込む送気管を接続
し、赤外吸収セルの前記赤外光源及び赤外光透過窓近傍
にはこれらを保護するためのガス送気管をそれぞれ接続
し、さらにこれらのガスの排気管を接続してなる溶銑S
i分析用プローブ
(2) A tubular infrared absorption cell is connected to the upper end of the probe body having a hot metal inlet at the lower end, an infrared light source is provided at one end of the cell, and an infrared light transmitting window is provided at the other end, and the hot metal An air pipe for blowing carrier gas into the hot metal is connected near the inlet, and a gas air pipe for protecting the infrared light source and the infrared light transmitting window of the infrared absorption cell is connected, respectively. Furthermore, the hot metal S made by connecting these gas exhaust pipes
i-analysis probe
JP61150868A 1986-06-27 1986-06-27 Sio measuring instrument and probe for analysing si of molten iron Pending JPS636440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61150868A JPS636440A (en) 1986-06-27 1986-06-27 Sio measuring instrument and probe for analysing si of molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150868A JPS636440A (en) 1986-06-27 1986-06-27 Sio measuring instrument and probe for analysing si of molten iron

Publications (1)

Publication Number Publication Date
JPS636440A true JPS636440A (en) 1988-01-12

Family

ID=15506134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150868A Pending JPS636440A (en) 1986-06-27 1986-06-27 Sio measuring instrument and probe for analysing si of molten iron

Country Status (1)

Country Link
JP (1) JPS636440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277327A (en) * 2001-03-15 2002-09-25 Mitsubishi Heavy Ind Ltd Temperature measuring method in fusion furnace and temperature-gas concentration simultaneous measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165172U (en) * 1982-04-27 1983-11-02 デルタ工業株式会社 Automotive window regulator
JPS61129089U (en) * 1985-01-30 1986-08-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165172U (en) * 1982-04-27 1983-11-02 デルタ工業株式会社 Automotive window regulator
JPS61129089U (en) * 1985-01-30 1986-08-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277327A (en) * 2001-03-15 2002-09-25 Mitsubishi Heavy Ind Ltd Temperature measuring method in fusion furnace and temperature-gas concentration simultaneous measuring method

Similar Documents

Publication Publication Date Title
Panne et al. Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy
Yalçin et al. Influence of ambient conditions on the laser air spark
US5490728A (en) Non-contact optical techniques for measuring surface conditions
US5769540A (en) Non-contact optical techniques for measuring surface conditions
US6780378B2 (en) Method for measuring concentrations of gases and vapors using controlled flames
EP3011310B1 (en) System for analyzing mercury
WO1992019944A1 (en) Non-contact optical techniques for measuring surface conditions
US3692415A (en) Photometric analyzer employing fiber optic light transmitting means
JPH07280730A (en) Method and equipment to determine concentration of gas
JP5204078B2 (en) Gas component measuring device in piping and flue for exhaust gas component measurement
KR20070043690A (en) Non-contact exhaust gas measurement by means of ftir spectroscopy on metallurgical plants
US5559333A (en) Apparatus of non-dispersive infrared analyzer
JPS6312938A (en) Gas analyzer and gas analyzing method
US20010034065A1 (en) Method and device for detecting mercury
EP1468271A1 (en) Method for monitoring and controlling the high temperature reducing combustion atmosphere
WO2011064806A2 (en) Method and apparatus for measurements of luminous isotropic radiation as obtained by means of laser spectroscopy techniques, in particular for sub- micrometric particulate measurements
Ertaş et al. Novel traps and atomization techniques for flame AAS
US5714759A (en) Optical system with an extended, imaged source
JPS636440A (en) Sio measuring instrument and probe for analysing si of molten iron
JPS6361143A (en) System for measuring gas concentration distribution
JP2000180356A (en) Infrared spectrum analyser
JPS62188919A (en) Method and instrument for direct emission analysis by multistage laser excitation
JPH1183734A (en) Gas detector and gas detecting method
JP2006133234A (en) Slug temperature measuring method and measuring device
JPH0211097B2 (en)