JP2002277327A - Temperature measuring method in fusion furnace and temperature-gas concentration simultaneous measuring method - Google Patents

Temperature measuring method in fusion furnace and temperature-gas concentration simultaneous measuring method

Info

Publication number
JP2002277327A
JP2002277327A JP2001073311A JP2001073311A JP2002277327A JP 2002277327 A JP2002277327 A JP 2002277327A JP 2001073311 A JP2001073311 A JP 2001073311A JP 2001073311 A JP2001073311 A JP 2001073311A JP 2002277327 A JP2002277327 A JP 2002277327A
Authority
JP
Japan
Prior art keywords
temperature
melting furnace
gas
wavelength
gas concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001073311A
Other languages
Japanese (ja)
Inventor
Akira Noma
野間  彰
Ichiro Yamashita
一郎 山下
Jun Nakagawa
潤 中川
Keita Inoue
敬太 井上
Tetsuo Sato
鉄雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001073311A priority Critical patent/JP2002277327A/en
Publication of JP2002277327A publication Critical patent/JP2002277327A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a temperature measuring method in a fusion furnace and a temperature-gas concentration simultaneous measuring method capable of measuring the temperature of an object erosive at high temperature across thick dust, and measuring the gas concentration in a thick dust atmosphere. SOLUTION: A window 8 is provided on the fusion furnace 1, and infrared light emitted from the liquid surface of slag 2 in the fusion furnace 1 through the window 8 is condensed by a condensing lens 9. Of infrared light condensed by the condensing lens 9, radiation energy at two or more spots are detected in a wavelength region under no influence of gas by a Fourier transform type infrared detector 10, and the temperature is measured from the radiation energy at two or more spots.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融炉における温
度計測法および温度・ガス濃度同時計測法に関する。
The present invention relates to a method for measuring temperature in a melting furnace and a method for simultaneously measuring temperature and gas concentration.

【0002】[0002]

【従来の技術】従来、下水汚泥、都市ごみ、及び産業廃
棄物などの焼却灰(粉体無機物)は、その資源化、減容
化、及び無害化等を図るため、灰溶融炉によって溶融さ
れ、スラグとして取り出されている。このような灰溶融
炉内のスラグの温度および炉内のガス濃度を検出するた
めに、従来では、次のような方法で検出を行っていた。
2. Description of the Related Art Conventionally, incinerated ash (powder inorganic material) such as sewage sludge, municipal solid waste, and industrial waste has been melted in an ash melting furnace in order to recover the resources, reduce the volume, and render it harmless. , Has been taken out as slag. In order to detect the temperature of the slag in the ash melting furnace and the gas concentration in the furnace, detection has conventionally been performed by the following method.

【0003】温度を検出するためには、浸漬型熱電対を
用いる方法が行われている。この方法は、浸漬型熱電対
を灰溶融炉内のスラグの内部に漬けて行っている。温度
を検出する方法としては、他にも放射温度計を用いる方
法があるが、炉内が高煤塵雰囲気であるため、通常の放
射温度計では、強度が不充分で計測が不可能である。
In order to detect the temperature, a method using an immersion type thermocouple has been used. In this method, an immersion thermocouple is immersed in slag in an ash melting furnace. As a method for detecting the temperature, there is another method using a radiation thermometer. However, since the inside of the furnace is in a high dust atmosphere, the intensity cannot be measured with a normal radiation thermometer due to insufficient strength.

【0004】一方、ガス濃度を検出するためには、通
常、吸引法と呼ばれる方法が採用されている。この方法
は、灰溶融炉に内部に続く貫通孔を開け、この貫通孔を
通して内部のガスを吸引ポンプによりサンプル管に吸引
し、そのガスを分析する方法である。
On the other hand, to detect the gas concentration, a method called a suction method is usually employed. This method is a method in which a through-hole is formed in the ash melting furnace, and the gas inside the ash melting furnace is sucked into a sample tube by a suction pump through the through-hole, and the gas is analyzed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記温
度を検出するために、浸漬型熱電対を用いる方法では、
高温スラグによる浸食性が強く、浸漬型熱電対の耐久性
が数時間と短くなり、その都度、交換を余儀なくされ、
不経済であった。また、ガス濃度を検出するために、吸
引法と呼ばれる方法では、炉内が高煤塵雰囲気下である
ため、サンプル管が数分で詰まり、検出を行うことが出
来なかった。
However, in order to detect the above-mentioned temperature, the method using an immersion type thermocouple has the following disadvantages.
The erosion by hot slag is strong, and the durability of the immersion type thermocouple is shortened to several hours, and every time it has to be replaced,
It was uneconomic. In addition, in a method called a suction method for detecting the gas concentration, the sample tube was clogged in a few minutes because the inside of the furnace was under a high dust atmosphere, and detection could not be performed.

【0006】本発明は、上記課題を解決し、高煤塵越し
に、高温で浸食性の対象物温度を計測できるとともに、
高煤塵雰囲気下でガス濃度を計測できる溶融炉における
温度計測法および温度・ガス濃度同時計測法を提供する
ことを目的とする。
[0006] The present invention solves the above-mentioned problems, and can measure the temperature of a high-temperature erodable object over high dust.
It is an object of the present invention to provide a temperature measurement method and a simultaneous temperature / gas concentration measurement method in a melting furnace capable of measuring a gas concentration under a high dust atmosphere.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するため、溶融炉に窓を設けるとともに、該窓を通し
て該溶融炉内のスラグ液面から発する赤外光を集光レン
ズによって集光し、該集光レンズで集光した赤外光をフ
ーリエ変換型赤外検出器によって、ガスの影響のない波
長領域で少なくとも2箇所以上の輻射エネルギーを検出
し、該2箇所以上の輻射エネルギーから温度を計測する
ことにある。また、本発明は、溶融炉に窓を設けるとと
もに、該窓を通して該溶融炉内のスラグ液面から発する
赤外光を集光レンズによって集光し、該集光レンズで集
光した赤外光をフーリエ変換型赤外検出器によって、ガ
スの影響のない波長領域で少なくとも2箇所以上の輻射
エネルギーを検出し、該2箇所以上の輻射エネルギーか
ら温度を計測するとともに、所定の波長の吸収エネルギ
ーからガス濃度を計測することにある。さらに、本発明
は、上記ガスの影響のない波長領域として、3.2〜4
μmまたは7.7〜12μmの範囲を用いて輻射エネル
ギーを検出することにある。またさらに、COの吸収エ
ネルギーを検出する波長として4.2〜5.1μmの範
囲を用いたことにある。また、CO2の吸収エネルギー
を検出する波長として4.2〜4.7μmまたは12.
5〜20μmの範囲を用いたことにある。さらに、H2
Oの吸収エネルギーを検出する波長として2.4〜3.
2μmまたは5〜7.7μmの範囲を用いたことにあ
る。
According to the present invention, in order to solve the above-mentioned problems, a melting furnace is provided with a window, and infrared light emitted from a slag liquid surface in the melting furnace through the window is collected by a condenser lens. The infrared light condensed by the condenser lens is detected by a Fourier transform infrared detector at least at two or more radiant energies in a wavelength region not affected by gas, and the radiant energies at the two or more radiant energy are detected. To measure temperature from Further, the present invention provides a melting furnace having a window, through which the infrared light emitted from the slag liquid level in the melting furnace is condensed by a condenser lens, and the infrared light condensed by the condenser lens By using a Fourier transform infrared detector, at least two or more radiant energies are detected in a wavelength region not affected by the gas, and the temperature is measured from the radiant energies of the two or more places, and the absorption energy of a predetermined wavelength is measured. It is to measure gas concentration. Furthermore, the present invention provides a wavelength range not affected by the gas as described above, which is 3.2 to 4
The purpose of the present invention is to detect radiant energy using μm or a range of 7.7 to 12 μm. Further, the present invention uses a range of 4.2 to 5.1 μm as a wavelength for detecting the absorption energy of CO. Further, the wavelength for detecting the absorption energy of CO 2 is 4.2 to 4.7 μm or 12.
The range of 5 to 20 μm has been used. In addition, H 2
The wavelength for detecting the absorption energy of O is 2.4 to 3.
2 μm or a range of 5 to 7.7 μm.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら詳細に説明する。図1は、本発明の溶融
炉における温度計測法および温度・ガス濃度同時計測法
に用いる装置の概念図である。図2は、フーリエ変換型
赤外検出器によってスラグから検出される単位波長当た
りの放射エネルギー密度の分布図である。図3はガス吸
収のある場合の分布図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a conceptual diagram of an apparatus used for a temperature measuring method and a simultaneous temperature / gas concentration measuring method in a melting furnace of the present invention. FIG. 2 is a distribution diagram of radiant energy density per unit wavelength detected from slag by a Fourier transform infrared detector. FIG. 3 is a distribution diagram when gas is absorbed.

【0009】図1において、灰溶融炉1の内部には、下
水汚泥、都市ごみ、及び産業廃棄物などの焼却灰(粉体
無機物)が溶融されて、スラグ2として溜められてい
る。灰溶融炉1は、耐火材(レンガ、キャスタ)によっ
て、有底円筒状に形成された炉本体3を有しており、炉
本体3の下部側面には、溶融されたスラグ2及び排ガス
4を抜き出す出滓口5が設けられている。また、炉本体
3の上下部には、図示しない直流電源装置に接続された
主電極6と炉底電極7が配設され、主電極6には、図示
しない窒素ガス発生装置から窒素ガスが供給されるよう
に構成されており、投入された焼却灰を高温プラズマで
加熱して溶融するようになっている。
In FIG. 1, incinerated ash (powder inorganic substance) such as sewage sludge, municipal solid waste, and industrial waste is melted and stored as slag 2 in an ash melting furnace 1. The ash melting furnace 1 has a furnace main body 3 formed in a bottomed cylindrical shape by a refractory material (brick, caster), and a molten slag 2 and an exhaust gas 4 are provided on a lower side surface of the furnace main body 3. An extraction port 5 is provided. Further, a main electrode 6 and a furnace bottom electrode 7 connected to a DC power supply (not shown) are provided in the upper and lower portions of the furnace main body 3, and nitrogen gas is supplied to the main electrode 6 from a nitrogen gas generator (not shown). The incinerated ash is heated by high-temperature plasma and melted.

【0010】上記灰溶融炉1の炉本体3には、天井部に
窓8が設けられており、この窓8に対応してZnSe製
集光レンズ9が炉本体3の外部に設けられている。この
集光レンズ9は、スラグ2表面から発せられる赤外光を
集光して、フーリエ変換型赤外検出器(FTIR)10
に供給し、パソコン11で演算してスラグ液面温度およ
び炉内ガス中のCOなどのガス濃度を計測するものであ
る。本発明は、フーリエ変換型赤外検出器10を用い
て、灰溶融炉1内のスラグ温度およびガス濃度を検出す
るものである。
The furnace body 3 of the ash melting furnace 1 is provided with a window 8 in the ceiling, and a ZnSe condenser lens 9 is provided outside the furnace body 3 corresponding to the window 8. . The condensing lens 9 condenses infrared light emitted from the surface of the slug 2 and forms a Fourier transform infrared detector (FTIR) 10
And calculates by the personal computer 11 to measure the slag liquid surface temperature and the concentration of gas such as CO in the furnace gas. The present invention detects a slag temperature and a gas concentration in the ash melting furnace 1 using the Fourier transform infrared detector 10.

【0011】次に、温度およびガス濃度を計測する方法
を説明する。本発明で使用するフーリエ変換型赤外検出
器10の原理は、赤外光の輻射を取込み、ビームスプリ
ッタによって固定鏡と移動鏡の方向に分け、これら固定
鏡と移動鏡によってそれぞれ反射させて、これら反射光
を互いに干渉させて、周波数が変調した光を検出し、フ
ーリエ変換により各周波数の信号強度を分析することに
より、各波長ごとのエネルギーを検出器によって検出す
るもので、熱源からの光を分析した場合には、図2に示
すような単位波長当たりの放射エネルギー密度を表す分
布曲線が得られる。この分布曲線は、縦軸に単位波長当
たりの輻射エネルギー(W/m3)を、横軸に波長(μ
m)をとったもので、単位波長当たりの放射エネルギー
密度(ε・τ=1を仮定)を表わしたものである。曲線
の形から温度を推定することができる。推定の際には、
プランクの式をカーブフィットさせる方法や、2波長以
上の強度比を用いるなどの方法が考えられる。
Next, a method for measuring the temperature and the gas concentration will be described. The principle of the Fourier transform type infrared detector 10 used in the present invention is to take in the radiation of infrared light, divide it into a fixed mirror and a moving mirror by a beam splitter, and reflect these by the fixed mirror and the moving mirror, respectively. The reflected light interferes with each other to detect light whose frequency is modulated, and by analyzing the signal intensity of each frequency by Fourier transform, the energy for each wavelength is detected by a detector. Is obtained, a distribution curve representing radiant energy density per unit wavelength as shown in FIG. 2 is obtained. In this distribution curve, the vertical axis represents radiant energy per unit wavelength (W / m 3 ), and the horizontal axis represents wavelength (μm).
m), and represents the radiant energy density per unit wavelength (assuming ε · τ = 1). The temperature can be estimated from the shape of the curve. When estimating,
A method of curve fitting the Planck equation or a method of using an intensity ratio of two or more wavelengths is conceivable.

【0012】スラグ2の温度は、この分布曲線からガス
の影響のない長波長領域の少なくとも2点以上の輻射エ
ネルギーを検出して、その比から計測する。図2のEλ
1と、Eλ2の2点は、1000Kの波形の約6.5μm
と7.5μmの波長の点で計測することを示したもの
で、このEλ1と、Eλ2の比からスラグ温度を計測す
る。複数の波長のエネルギー比を用いることで煤塵の影
響で強度が低下しても計測が可能である。各波長でのエ
ネルギーはプランクの式から求めることができる。本実
施例においてはガス成分がCO,CO2,H2Oなので、
ガスの影響のない波長領域としては、3.2〜4μmま
たは7.7〜12μmの範囲があり、この範囲を用いて
輻射エネルギーを検出する。
The temperature of the slag 2 is measured from the distribution curve by detecting at least two radiant energies in a long wavelength region free from the influence of gas. Eλ in FIG.
1 and Eλ 2 are approximately 6.5 μm of the waveform at 1000K.
And the measurement at the point of a wavelength of 7.5 μm, and the slag temperature is measured from the ratio of Eλ 1 to Eλ 2 . By using the energy ratio of a plurality of wavelengths, measurement can be performed even if the intensity is reduced due to the influence of dust. The energy at each wavelength can be obtained from Planck's equation. In this embodiment, since the gas components are CO, CO 2 , and H 2 O,
There is a range of 3.2 to 4 μm or 7.7 to 12 μm as a wavelength range which is not affected by gas, and radiant energy is detected using this range.

【0013】また、ガス濃度を検出するには、ガスによ
る吸収からガス濃度を計測する。プランクの式でのフィ
ッティング曲線とガス吸収スペクトルでの計測エネルギ
ーの差から求める。CO,CO2等赤外領域に吸収スペ
クトルがあるガスであれば計測が可能である。具体的に
は、図2の分布曲線で波形が極端に下がった場所での所
定の波長の吸収エネルギーから、CO、CO2等のガス
濃度を検出する。COの吸収エネルギーを検出する波長
としては、4.2〜5.1μmの範囲を用いて検出す
る。また、CO2の吸収エネルギーを検出する波長とし
ては、4.2〜4.7μmまたは12.5〜20μmの
範囲を用いて検出する。さらに、H2Oの吸収エネルギ
ーを検出する波長としては、2.4〜3.2μmまたは
5〜7.7μmの範囲を用いて検出する。
Further, to detect the gas concentration, the gas concentration is measured from the absorption by the gas. It is determined from the difference between the fitting curve in the Planck equation and the measured energy in the gas absorption spectrum. It is possible to measure any gas having an absorption spectrum in the infrared region such as CO and CO 2 . Specifically, the concentration of gas such as CO or CO 2 is detected from the absorption energy of a predetermined wavelength at a location where the waveform is extremely lowered in the distribution curve of FIG. Detection is performed using a wavelength in the range of 4.2 to 5.1 μm as a wavelength for detecting the absorption energy of CO. In addition, as a wavelength for detecting the absorption energy of CO 2 , detection is performed using a range of 4.2 to 4.7 μm or 12.5 to 20 μm. Further, the wavelength for detecting the absorption energy of H 2 O is detected using a range of 2.4 to 3.2 μm or 5 to 7.7 μm.

【0014】ガス濃度は、波長によってガス成分が検出
されるので、図2のガス吸引のある場合を図3に表す。
このように縦軸に輻射強度(W/m3)、横軸に波長
(μm)をとって表した図3に示すように、ランバート
・ベールの法則から、Ea′=Ea・exp(−αx)
が解析される(α:吸収係数、x:光路長)。Eaおよ
びEa′は煤塵によって減衰するが、その割合は同じで
あるため式中では煤塵の影響はキャンセルされ、高煤塵
下でのガス濃度計測が可能となる。
As for the gas concentration, the gas component is detected according to the wavelength, and FIG. 3 shows the case where the gas is sucked as shown in FIG.
As shown in FIG. 3 in which the ordinate represents the radiation intensity (W / m 3 ) and the abscissa represents the wavelength (μm), according to Lambert-Beer's law, Ea ′ = Ea · exp (−αx )
Is analyzed (α: absorption coefficient, x: optical path length). Ea and Ea 'are attenuated by dust, but their proportions are the same, so the effect of dust is canceled out in the equation, and gas concentration measurement under high dust is possible.

【0015】上記実施の形態によれば、フーリエ変換型
赤外検出器10を用いることにより、分布曲線からガス
の影響のない長波長領域の少なくとも2点以上の輻射エ
ネルギーを検出して、その比から計測するので、高煤塵
越しに高温で侵食性の対象物温度を確実に計測すること
ができる。また、フーリエ変換型赤外検出器10を用い
ることにより、吸収エネルギーからガス濃度が検出され
るので、高煤塵雰囲気下で確実にガス濃度が検出でき、
非接触であるため装置の耐久性の向上を図ることができ
る。さらに、温度の計測から同時にガス濃度も計測でき
るので、作業性が良好である。
According to the above embodiment, the use of the Fourier transform infrared detector 10 detects at least two or more radiant energies in a long wavelength region free from the influence of gas from the distribution curve, and determines the ratio of the radiant energies. Therefore, it is possible to reliably measure the temperature of a high-temperature and erosive target object through high dust. In addition, by using the Fourier transform infrared detector 10, the gas concentration is detected from the absorbed energy, so that the gas concentration can be reliably detected under a high dust atmosphere.
Since there is no contact, the durability of the device can be improved. Further, since the gas concentration can be measured simultaneously with the measurement of the temperature, the workability is good.

【0016】なお、本発明は、上記実施の形態のみに限
定されるものではなく、例えば、上記実施の形態では、
灰溶融炉について説明したが、他の溶融炉に適用するこ
とも可能である。また、検出するガス濃度は、CO,C
2に限らず他のガス濃度の検出に用いることも可能で
ある。さらに、フーリエ変換型赤外検出器10として
は、特別な構造のものでなく、一般に用いられているも
のを使用できることは言うまでもない。その他、本発明
の要旨を変更しない範囲内で適宜変更して実施し得るこ
とは勿論である。
It should be noted that the present invention is not limited to only the above embodiment, and for example, in the above embodiment,
Although the ash melting furnace has been described, it can be applied to other melting furnaces. The gas concentrations to be detected are CO, C
It is also possible to use the detection of other gas concentration is not limited to O 2. Furthermore, it goes without saying that the Fourier transform infrared detector 10 does not have a special structure but may be a commonly used one. In addition, it is needless to say that the present invention can be appropriately changed and implemented within the scope of the present invention.

【0017】[0017]

【発明の効果】以上述べたように、本発明による溶融炉
における温度計測法および温度・ガス濃度同時計測法に
よれば以下のような効果を奏する。請求項1において、
溶融炉に窓を設けるとともに、該窓を通して該溶融炉内
のスラグ液面から発する赤外光を集光レンズによって集
光し、該集光レンズで集光した赤外光をフーリエ変換型
赤外検出器によって、ガスの影響のない波長領域で少な
くとも2箇所以上の輻射エネルギーを検出し、該2箇所
以上の輻射エネルギーから温度を計測するので、フーリ
エ変換型赤外検出器を用いることにより、分布曲線から
ガスの影響のない長波長領域の少なくとも2点以上の輻
射エネルギーを検出して、その比から計測することがで
きることから、高煤塵越しに高温で侵食性の対象物温度
を確実に計測することができる。請求項2において、溶
融炉に窓を設けるとともに、該窓を通して該溶融炉内の
スラグ液面から発する赤外光を集光レンズによって集光
し、該集光レンズで集光した赤外光をフーリエ変換型赤
外検出器によって、ガスの影響のない波長領域で少なく
とも2箇所以上の輻射エネルギーを検出し、該2箇所以
上の輻射エネルギーから温度を計測するとともに、所定
の波長の吸収エネルギーからガス濃度を計測するので、
フーリエ変換型赤外検出器を用いることにより、吸収エ
ネルギーからガス濃度が検出できることから、高煤塵雰
囲気下で確実にガス濃度が検出でき、かつ耐久性の向上
を図ることができる。さらに、温度の計測から同時にガ
ス濃度も計測できるので、作業性が良好である。
As described above, the temperature measuring method and the simultaneous temperature / gas concentration measuring method in the melting furnace according to the present invention have the following effects. In claim 1,
A window is provided in the melting furnace, and infrared light emitted from the slag liquid level in the melting furnace is condensed by the condensing lens through the window, and the infrared light condensed by the condensing lens is converted to a Fourier transform infrared light. The detector detects at least two or more radiant energies in a wavelength range not affected by the gas, and measures the temperature from the radiant energies at the two or more places. Since the radiant energy of at least two or more points in the long wavelength region without the influence of gas can be detected from the curve and the ratio can be measured, the temperature of the erosive object at high temperature over high dust can be reliably measured. be able to. In Claim 2, while providing a window in the melting furnace, the infrared light emitted from the slag liquid level in the melting furnace through the window is collected by a condenser lens, and the infrared light collected by the condenser lens is A Fourier transform infrared detector detects at least two or more radiant energies in a wavelength range not affected by the gas, measures the temperature from the radiant energies at the two or more radiant energies, and detects the gas from the absorbed energy at a predetermined wavelength. Since the concentration is measured,
Since the gas concentration can be detected from the absorbed energy by using the Fourier transform infrared detector, the gas concentration can be reliably detected in a high dust atmosphere and the durability can be improved. Further, since the gas concentration can be measured at the same time as the temperature measurement, workability is good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による温度・ガス濃度同時
計測法に用いる装置を示す概念図である。
FIG. 1 is a conceptual diagram showing an apparatus used for a simultaneous temperature / gas concentration measurement method according to an embodiment of the present invention.

【図2】プランクの輻射則の式およびフーリエ変換型赤
外検出器を用いて表された単位波長当たりの放射エネル
ギー密度の分布曲線を示す図である。
FIG. 2 is a diagram showing a distribution curve of radiant energy density per unit wavelength expressed using Planck's radiation law equation and a Fourier transform infrared detector.

【図3】図2のガス吸収のある場合の分布曲線を示す図
である。
FIG. 3 is a diagram showing a distribution curve in a case where there is gas absorption in FIG. 2;

【符号の説明】[Explanation of symbols]

1 灰溶融炉 2 スラグ 3 炉本体 4 排ガス 5 出滓口 6 主電極 7 炉底電極 8 窓 9 集光レンズ 10 フーリエ変換型赤外検出器(FTIR) 11 パソコン DESCRIPTION OF SYMBOLS 1 Ash melting furnace 2 Slag 3 Furnace main body 4 Exhaust gas 5 Slag outlet 6 Main electrode 7 Furnace bottom electrode 8 Window 9 Condensing lens 10 Fourier transform infrared detector (FTIR) 11 Personal computer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01J 5/02 G01J 5/02 K G01N 21/35 G01N 21/35 Z (72)発明者 中川 潤 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 井上 敬太 神奈川県横浜市中区錦町12番地 三菱重工 業株式会社横浜製作所内 (72)発明者 佐藤 鉄雄 神奈川県横浜市中区錦町12番地 三菱重工 業株式会社横浜製作所内 Fターム(参考) 2G059 AA01 BB01 BB20 CC04 CC09 EE10 EE11 FF06 HH01 JJ11 MM01 2G066 AA04 AC01 AC11 BA22 BA30 BC15 3K062 AA23 AB03 AC01 BA02 BB01 BB02 CA03 CB03 DA23 DA24 DA27 DA40 4K056 AA05 BA02 BB08 CA20 FA11 FA12 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) G01J 5/02 G01J 5/02 K G01N 21/35 G01N 21/35 Z (72) Inventor Jun Nakagawa Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd.Hiroshima R & D Co., Ltd. (72) Inventor Keita Inoue 12 Nishikicho, Naka-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Heavy Industries, Ltd.Yokohama Works (72) Inventor Tetsuo Sato, Kanagawa 12F, Nishikicho, Naka-ku, Yokohama-shi, Japan Mitsubishi Heavy Industries, Ltd. Yokohama Works F-term (reference) 2G059 AA01 BB01 BB20 CC04 CC09 EE10 EE11 FF06 HH01 JJ11 MM01 2G066 AA04 AC01 AC11 BA22 BA30 BC15 3K062 AA23 AB03 AC02 DA24 DA27 DA40 4K056 AA05 BA02 BB08 CA20 FA11 FA12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶融炉に窓を設けるとともに、該窓を通
して該溶融炉内のスラグ液面から発する赤外光を集光レ
ンズによって集光し、該集光レンズで集光した赤外光を
フーリエ変換型赤外検出器によって、ガスの影響のない
波長領域で少なくとも2箇所以上の輻射エネルギーを検
出し、該2箇所以上の輻射エネルギーから温度を計測す
ることを特徴とする溶融炉における温度計測法。
1. A window is provided in a melting furnace, and infrared light emitted from a slag liquid level in the melting furnace is condensed by a condenser lens through the window, and the infrared light condensed by the condenser lens is condensed by the condenser lens. Temperature measurement in a melting furnace characterized by detecting at least two or more radiant energies in a wavelength range not affected by a gas by a Fourier transform infrared detector and measuring the temperature from the radiant energies at the two or more radiant energies. Law.
【請求項2】 溶融炉に窓を設けるとともに、該窓を通
して該溶融炉内のスラグ液面から発する赤外光を集光レ
ンズによって集光し、該集光レンズで集光した赤外光を
フーリエ変換型赤外検出器によって、ガスの影響のない
波長領域で少なくとも2箇所以上の輻射エネルギーを検
出し、該2箇所以上の輻射エネルギーから温度を計測す
るとともに、所定の波長の吸収エネルギーからガス濃度
を計測することを特徴とする溶融炉における温度・ガス
濃度同時計測法。
2. A melting furnace is provided with a window, and infrared light emitted from the slag liquid level in the melting furnace is condensed by the condensing lens through the window, and the infrared light condensed by the condensing lens is With a Fourier transform infrared detector, at least two or more radiant energies are detected in a wavelength region not affected by the gas, a temperature is measured from the two or more radiant energies, and a gas is detected from the absorption energy of a predetermined wavelength. A method for simultaneous measurement of temperature and gas concentration in a melting furnace, characterized by measuring the concentration.
【請求項3】 上記ガスの影響のない波長領域として、
3.2〜4μmまたは7.7〜12μmの範囲を用いて
輻射エネルギーを検出することを特徴とする溶融炉にお
ける温度計測法。
3. A wavelength region not affected by the gas,
A temperature measurement method in a melting furnace, wherein radiation energy is detected using a range of 3.2 to 4 μm or 7.7 to 12 μm.
【請求項4】 COの吸収エネルギーを検出する波長と
して4.2〜5.1μmの範囲を用いたことを特徴とす
る請求項2または3に記載の溶融炉における温度・ガス
濃度同時計測法。
4. The method for simultaneously measuring temperature and gas concentration in a melting furnace according to claim 2, wherein a wavelength in the range of 4.2 to 5.1 μm is used as a wavelength for detecting the absorption energy of CO.
【請求項5】 CO2の吸収エネルギーを検出する波長
として4.2〜4.7μmまたは12.5〜20μmの
範囲を用いたことを特徴とする請求項2または3に記載
の溶融炉における温度・ガス濃度同時計測法。
5. The temperature in the melting furnace according to claim 2, wherein a wavelength in the range of 4.2 to 4.7 μm or 12.5 to 20 μm is used as a wavelength for detecting the absorption energy of CO 2. -Simultaneous gas concentration measurement method.
【請求項6】 H2Oの吸収エネルギーを検出する波長
として2.4〜3.2μmまたは5〜7.7μmの範囲
を用いたことを特徴とする請求項2または3に記載の溶
融炉における温度・ガス濃度同時計測法。
6. The melting furnace according to claim 2, wherein the wavelength for detecting the absorption energy of H 2 O is in the range of 2.4 to 3.2 μm or 5 to 7.7 μm. Simultaneous measurement of temperature and gas concentration.
JP2001073311A 2001-03-15 2001-03-15 Temperature measuring method in fusion furnace and temperature-gas concentration simultaneous measuring method Pending JP2002277327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073311A JP2002277327A (en) 2001-03-15 2001-03-15 Temperature measuring method in fusion furnace and temperature-gas concentration simultaneous measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073311A JP2002277327A (en) 2001-03-15 2001-03-15 Temperature measuring method in fusion furnace and temperature-gas concentration simultaneous measuring method

Publications (1)

Publication Number Publication Date
JP2002277327A true JP2002277327A (en) 2002-09-25

Family

ID=18930755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073311A Pending JP2002277327A (en) 2001-03-15 2001-03-15 Temperature measuring method in fusion furnace and temperature-gas concentration simultaneous measuring method

Country Status (1)

Country Link
JP (1) JP2002277327A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120093194A1 (en) * 2010-10-15 2012-04-19 Lawrence Livermore National Security, Llc Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy
JP2014095664A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Temperature detection method, temperature detection device and program
JP2017058370A (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method for measuring temperature of measured object, temperature of powder dust and concentration of powder dust
WO2017047376A1 (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method of measuring temperature of an object to be measured, dust temperature and dust concentration
JP2018040534A (en) * 2016-09-07 2018-03-15 Jfeエンジニアリング株式会社 Waste gasification melting apparatus and waste gasification melting method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636440A (en) * 1986-06-27 1988-01-12 Nippon Kokan Kk <Nkk> Sio measuring instrument and probe for analysing si of molten iron
JPH02213731A (en) * 1989-02-14 1990-08-24 Hitachi Metals Ltd Method and device for measuring molten metal temperature
JPH08152360A (en) * 1994-11-29 1996-06-11 Matsushita Electric Ind Co Ltd Radiation-temperature measuring device
JPH08247850A (en) * 1995-03-08 1996-09-27 Hitachi Zosen Corp Temperature measuring method and device for molten slug in ash fusion furnace
WO1998025129A1 (en) * 1996-12-03 1998-06-11 Graham Thomas Consultants Limited Method and apparatus for the imaging of gases
JP2000146950A (en) * 1998-11-12 2000-05-26 Kawasaki Steel Corp Method and apparatus for analysis of slug

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636440A (en) * 1986-06-27 1988-01-12 Nippon Kokan Kk <Nkk> Sio measuring instrument and probe for analysing si of molten iron
JPH02213731A (en) * 1989-02-14 1990-08-24 Hitachi Metals Ltd Method and device for measuring molten metal temperature
JPH08152360A (en) * 1994-11-29 1996-06-11 Matsushita Electric Ind Co Ltd Radiation-temperature measuring device
JPH08247850A (en) * 1995-03-08 1996-09-27 Hitachi Zosen Corp Temperature measuring method and device for molten slug in ash fusion furnace
WO1998025129A1 (en) * 1996-12-03 1998-06-11 Graham Thomas Consultants Limited Method and apparatus for the imaging of gases
JP2000146950A (en) * 1998-11-12 2000-05-26 Kawasaki Steel Corp Method and apparatus for analysis of slug

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120093194A1 (en) * 2010-10-15 2012-04-19 Lawrence Livermore National Security, Llc Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy
US8608375B2 (en) * 2010-10-15 2013-12-17 Lawrence Livermore National Security, Llc Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy
JP2014095664A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Temperature detection method, temperature detection device and program
JP2017058370A (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method for measuring temperature of measured object, temperature of powder dust and concentration of powder dust
WO2017047376A1 (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method of measuring temperature of an object to be measured, dust temperature and dust concentration
KR20180054700A (en) * 2015-09-16 2018-05-24 미츠비시 마테리알 가부시키가이샤 A method of measuring the temperature of the object to be measured, the temperature of the dust, and the concentration of the dust
US10852195B2 (en) 2015-09-16 2020-12-01 Mitsubishi Materials Corporation Method of measuring temperature of an object to be measured, dust temperature and dust concentration
KR102522447B1 (en) 2015-09-16 2023-04-14 유비이 미츠비시 시멘트 가부시키가이샤 How to measure the temperature of the object to be measured, the temperature of the dust, and the concentration of the dust
JP2018040534A (en) * 2016-09-07 2018-03-15 Jfeエンジニアリング株式会社 Waste gasification melting apparatus and waste gasification melting method

Similar Documents

Publication Publication Date Title
Pickering et al. Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques
US6183127B1 (en) System and method for the real time determination of the in situ emissivity of a workpiece during processing
JP4948347B2 (en) Immersion lance for analysis of melts and liquids
JPH07280730A (en) Method and equipment to determine concentration of gas
WO2002063284A2 (en) Method and apparatus for in-process liquid analysis by laser induced plasma spectroscopy
KR970705742A (en) AUTOMATIC GAIN CONTROL FOR INFRARED RADIATION PYROMETER
KR100407025B1 (en) Apparatus and method for detecting an end point of a cleaning process
JP2002277327A (en) Temperature measuring method in fusion furnace and temperature-gas concentration simultaneous measuring method
JP2014102140A (en) Laser type oxygen gas analyzer
Scheuschner et al. In-situ thermogr phic monitoring of the laser metal deposition process
JP2015227828A (en) Laser type oxygen analyzer
JP2810790B2 (en) Direct chemical analysis of molten metal
Yang et al. Pulsed thermography with laser beam homogenizing for thickness prediction of thin semi-transparent thermal barrier coatings
JPH0933431A (en) Detector for carbon dioxide and detection thereof
Panjan et al. Optodynamic study of multiple pulses micro drilling
JPH0450734A (en) Noncontact heating device for surface of body accompanied by temperature measurement
JP2006084442A (en) Method for measuring thermophysical property of thin film and micro-area
JP4709430B2 (en) Concentration measuring device
KR102582749B1 (en) A laser beam shaping device that irradiates a square beam-shaped laser for heat treatment of mct workpieces
JP2006300819A (en) Method and analyzer for laser emission spectrochemical analysis for molten metal
JP2004271537A (en) Method for measuring temperature of molten slag
JP2001249049A (en) Method for measuring temperature of molten slag
CN214749784U (en) Absorption spectrum detection device for material micro-area
JPH11344314A (en) Film thickness measuring device
JP2003215028A (en) Method and apparatus for detecting chemical substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101119