JPS6363797B2 - - Google Patents

Info

Publication number
JPS6363797B2
JPS6363797B2 JP16858980A JP16858980A JPS6363797B2 JP S6363797 B2 JPS6363797 B2 JP S6363797B2 JP 16858980 A JP16858980 A JP 16858980A JP 16858980 A JP16858980 A JP 16858980A JP S6363797 B2 JPS6363797 B2 JP S6363797B2
Authority
JP
Japan
Prior art keywords
inner tube
tube member
ceramic material
members
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16858980A
Other languages
Japanese (ja)
Other versions
JPS5794185A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16858980A priority Critical patent/JPS5794185A/en
Publication of JPS5794185A publication Critical patent/JPS5794185A/en
Publication of JPS6363797B2 publication Critical patent/JPS6363797B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明はセラミツク材料を用いた管状部品に関
する。 一般にセラミツク材料は耐熱性、耐食性、耐摩
耗性、電気絶縁性にすぐれ、各種の部品に使用さ
れている。そして、たとえば高温の蒸気設備等に
おいて、流通管内に電気ヒータを収容し、この電
気ヒータに通電して発熱させるとともにこの流通
管内に水を流し、上記電気ヒータにより加熱して
高温の蒸気を発生させる装置では、上記流通管は
耐熱性と電気絶縁性を要求されるためセラミツク
材料が使用される。しかし、セラミツク材料は熱
衝撃に弱いため、たとえば上記の如き装置で流通
管内に低温の水が流入したような場合には温度が
急激に変化し、熱衝撃によつてセラミツク材材製
の流通管にクラツクを生じ、この流通管が破損す
ることがあつた。このため、従来はセラミツク材
料で内管部材を形成し、この内管部材の外周に
SUS316オーステナイト系ステンレス鋼で形成し
た補強部材を焼ばめ等により締付嵌合し、セラミ
ツク材料製の内管部材にあらかじめ圧縮力を与え
ておき、この内管部材にクラツクが発生するのを
防止し、また万一クラツクが発生した場合でもこ
のクラツクの進行を防止して破損を防止するよう
に構成していた。しかし、セラミツク材料
(Al2O3…99%,SiO2他…1%)の熱膨張率はた
とえば306℃付近で6.8×10-6/℃であるのに対
し、上記の如きSUS316オーステナイト系ステン
レス鋼の熱膨張率は16.2×10-6/℃であり、セラ
ミツク材料の熱膨張率より大きい。このため、温
度の上昇によつて生じる補強部材の熱膨張が内管
部材の熱膨張より大となり、温度の上昇に伴つて
補強部材による内管部材の締付けが弱くなる。そ
してある温度に達すると内管部材の締付が零とな
り、これ以上温度が上昇すると補強部材の内面と
内管部材の外周面との間に間隙が生じ、補強部材
が補強の役をなさなくなる。また、このような流
通管に圧力検出用の孔等が形成されている場合に
は、上述の如く内管部材と補強部材との間に間隙
が生じると内部の流体がこの間隙を通つて外部に
漏洩してしまう等の不具合を生じる。このため、
このような構造のものは使用温度に限界があつ
た。この使用温度の上限を高くするには内管部材
の外径と補強部材の内径との寸法差を大きくし、
内管部材の初期の圧縮力を大きくしておればよい
ものであるが、内管部材の初期の圧縮力を大きく
するとこれに対応して補強部材の引張応力が大き
くなり、この引張応力が補強部材を形成する
SUS316オーステナイト系ステンレス鋼の塑性変
形域に達するともはやそれ以上内管部材の締付力
を増すことはできなくなり、結局内管部材与える
圧縮力にも限界があり、使用温度の上限をあまり
高くすることができない不具合があつた。 本発明は以上の事情にもとづいてなされたもの
で、その目的とするところは使用温度の上限を高
くすることができるセラミツク材料を用いた管状
部品を得ることにある。 以下本発明を図面に示す一実施例にしたがつて
説明する。この一実施例は本発明の管状部品を高
温蒸気設備の加熱部の流通管に用いたものであつ
て、まずこの設備の全体の構成を説明する。図中
1は発熱部であつて、2はその外筒である。そし
てこの外筒2内には流通管3が設けられている。
そしてこの流通管3内には発熱源として管状の通
電発熱体4が収容されている。そしてこの通電発
熱体4の両端は電源装置5に接続され、この電源
装置5から上記通電発熱体4に電流が流され、こ
の通電発熱体4が発熱するとともに上記流通管3
の下端から水が供給され、この供給された水は流
通管3内を上昇しながら通電発熱体4により加熱
され、沸騰して高温の蒸気となるように構成され
ている。そして、この蒸気は流通管3の上端部か
ら蒸気ドラム6内に送られるように構成されてい
る。そして、この蒸気ドラム6内上部にはスパー
ジヤ7が設けられ、このスパージヤ7から低温の
水が散布され、蒸気ドラム6内に送られて来た蒸
気を凝縮して水とするように構成されている。そ
して、この蒸気ドラム6に溜つた水はポンプ8に
よつて熱交換器9に送られて冷却され、流量調整
弁10を介して上記スパージヤ7に供給されるよ
うに構成されている。また、この蒸気ドラム6内
に溜つた水はポンプ11によつて流量調整弁12
および冷却管13を介して上記発熱部の流通管
3の下端に供給されるように構成されている。な
お、14は蒸気ドラム6内を一定の圧力に加圧す
る加圧器である。そして、上記発熱部の流通管
3は第2図および第3図に示す如く構成されてい
る。すなわち、この流通管3は比較的短寸の筒状
をなす複数の短管部材15…を軸方向に配列して
構成されている。そして、これらの短管部材15
…はセラミツク材料Al2O3…99%,SiO2他…1%
からなる筒状の内管部材15a…と、これらの内
管部材15a…の外周に嵌合された筒状の補強部
材15b…とから構成されている。これら補強部
材15b…は上記内管部材15a…のセラミツク
材料の熱膨張率と近似した熱膨張率を有する金属
材料たとえばジルカロイ等のジルコニウム系合
金、チタン系合金から形成されている。そしてこ
れらの補強部材15b…の内径は内管部材15a
…の外径より小径に形成され、焼ばめ等により内
管部材15a…の外周に締付嵌合され、これらの
内管部材15a…に所定の圧縮力を与えている。
なお焼ばめは次のようにする。直径20mmの外側の
補強部材15bの温度を820℃に高めれば、熱膨
張により補強部材15bの内径は約1mmは大きく
なる。この状態で常温(20℃)のセラミツクの内
管部材15aに補強部材15bを装着する。ま
た、これら内管部材15a…の両端面には互に嵌
合する環状の凸部16…および凹部17…が形成
され、これら凸部16…および凹部17…が互に
嵌合してこれら短管部材15…を同心状に保持す
るように構成されている。また、これら内管部材
15a…の両端面は互に液密をもつて密着するよ
うに平滑に仕上加工が施され、これら短管部材1
5…間の液密を維持するように構成されている。
そして、最上端の短管部材15の上端面には押圧
部材18が嵌合されているとともにこの押圧部材
18はスプリング19…によつて下方に付勢さ
れ、短管部材15…を軸方向に押圧固定してい
る。また、中間部の短管部材15の内管部材15
aの周壁部には圧力検出孔20が形成されてい
る。そして、補強部材15bの周壁部には上記圧
力検出孔20に対応して圧力検出管21が取付け
られており、この圧力検出管21は上記圧力検出
孔20を介して短管部材15内すなわち流通管3
内に連通している。そして、この圧力検出管21
は圧力検出器22に接続され、この流通管3内の
圧力を検出できるように構成されている。そして
この圧力検出管21が外筒2を貫通する部分はシ
ール材23等により密封が維持されている。ま
た、この圧力検出管21は少なくとも流通管3と
外筒2との間の部分で可撓性を有し、温度上昇に
よる流通管3の軸方向の伸縮を許容するように構
成されている。 以上の如く構成された本発明の一実施例は電源
装置5から通電発熱体4に電流が流されてこの通
電発熱体4を発熱させるとともに流通管3の下端
から水が供給される。そしてこの供給された水は
流通管3内を上昇するとともに通電発熱体4によ
つて加熱されて沸騰し、306℃程度の高温の蒸気
となつて蒸気ドラム6に送られる。そして、この
水および蒸気が流通される流通管3はセラミツク
材料からなる内管部材15a…を用いた短管部材
15…を組み合せて構成されているので、充分な
耐熱性および耐食性を有し、またセラミツク材料
は電気絶縁性材料であるから、通電発熱体4に供
給した電流が流通管3を通つてバイパスして流れ
るようなことはない。そして、上記内管部材15
a…の外周に嵌合されている補強部材15b…
は、内管部材15a…に使用されているセラミツ
ク材料の熱膨張率と近似した熱膨張率を有する金
属材料たとえばジルカロイ等のジルコニウム系合
金やチタン系合金を用いてあるので、上述の如く
306℃の比較的高温の使用温度においても内管部
材15a…に充分な締付力を与えることができ、
これらの内管部材15a…のクラツク発生やクラ
ツクの進行を確実に防止することができる。すな
わち、内管部材15a…のセラミツク材料の熱膨
張率をβ1、補強部材15b…の金属材料の熱膨張
率をβ2、常温To℃における内管部材15a…の
外径をd1、補強部材15b…の内径をd2(d1>d2
とすると、ある使用温度T℃における内管部材1
5a…の外径d1′、および補強部材15b…の内
径d2′は d1′=d1{1+(T−T0)β1} …(1) d2′=d2{1+(T−T0)β2} …(2) となる。そしてある使用温度T℃において少なく
とも内管部材15a…の外周と補強部材15b…
の内面との間に間隙が形成されないようにするに
は、 d1′=d2′ …(3) でなければならない。したがつて、このような場
合の常温における補強部材15b…の内径d2は d1{1+(T−T0)β1} =d2{1+(T−T0)β2} …(4) であるから d2=d11+(T−T0)β1/1+(T−T0)β2 …(5) となる。そして、使用温度Tが上記一実施例の如
くT=306℃、また内管部材15a…のセラミツ
ク材料の306℃における熱膨張率β1をβ1=6.8×
10-6/℃、内管部材15a…の外径d1をd1=209
mmとすると、上記補強部材15b…材料に従来の
如くSUS316オーステナイト系ステンレス鋼を使
用した場合、その306℃における熱膨張率β2は β2=16.2×10-6/℃であるから上記(5)式より d2=208.44mm となる。したがつて、このような内管部材15a
…と補強部材15b…を焼ばめした場合、常温に
おいて補強部材15b…に生じる歪εは ε=d1−d2/d2=0.00269 …(6) となる。そしてこの歪εの値を第4図に示す如き
SUS316オーステナイト系ステンレス鋼の応力―
歪線図にあてはめるとこの場合の応力は約24.6
Kg/mm2となり、弾性領域を超して塑性領域に入つ
てしまう。このため、このような補強部材15b
…を焼ばめするとこの補強部材15b…が永久変
形してその内径d2が永久変形により拡径してしま
うことになり、上記常温におけるd2が実際に製作
した寸法より大となるような結果となる。このた
め、実際にこのようなものを製作して加熱すると
第5図に示す如く約180℃で内管部材15a…の
外周と補強部材15b…の内面との間に間隙が生
じてしまう。しかし、上記一実施例の如く、内管
部材15a…に使用するセラミツク材料の熱膨張
率に近似した熱膨張率を有する金属材料で補強部
材15b…を形成すると、たとえばジルカロイ
Zr…98%,Sn…1.5%,Fe…0.15%,残部Cr他)
を使用すると、306℃におけるその熱膨張率β2
β2=6.3×10-6/℃であるから、前記(5)式および
(6)式から歪εはε=0.00014となり、ジルカロイ
の縦弾性係数EはE=7.99×103Kg/mm2であるか
ら、この場合の応力は1.1Kg/mm2で充分に弾性領
域内にあり、上述の如き不具合を生じることはな
く、高温時においても内管部材15a…に充分な
締付力を与えることができる。また、チタン系合
金を用いた場合、その熱膨張率はβ2はβ2=9.45×
10-6/℃でありこの場合の応力は11.7Kg/mm2とな
り、充分に弾性領域内にあるので上記ジルカロイ
の場合と同様な高温(306℃)時においても内管
部材15a…に充分な締付力を与えることができ
る。なお、補強部材15b…に使用する金属材料
は内管部材15a…に使用するセラミツク材料の
種類や使用温度等に対応してセラミツク材料の熱
膨張率に近似した各種のものが使用できるもので
あるが、セラミツク材料の熱膨張率は大体上述の
値に近いものが多く、かつ上記ジルコニウム系合
金やチタン系合金は構造材として機械的特性のす
ぐれたものが多く開発されており、かつ耐食性等
にもすぐれるので、実際にはジルコニウム系合金
またはチタン系合金を使用することが好ましい。 なお、本発明は上記の一実施例には限定され
ず、内部に流体が流通され、かつ高温下で使用さ
れる管状部品一般に適用できるものである。 上述の如く本発明はセラミツク材料で形成され
た内管部材の外周にこのセラミツク材料の熱膨張
率に近似した熱膨張率を有する金属材料で形成し
た補強部材を締付嵌合し、内管部材に圧縮力を与
えておくものである。したがつてセラミツク材料
の長所である耐熱性、耐食性、耐摩耗性、電気絶
縁性が得られるとともにセラミツク材料で形成さ
れた内管部材に圧縮力が加えられているため熱衝
撃等によりこの内管部材にクラツク等が発生する
ことが防止され、また補強部材に使用される金属
材料の熱膨張率はセラミツク材料の熱膨張率に近
似しているため、高温時においても内管部材に充
分な締付力を与えることができ、充分な強度を確
保できる等その効果は大である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tubular component made of ceramic material. In general, ceramic materials have excellent heat resistance, corrosion resistance, wear resistance, and electrical insulation properties, and are used in various parts. For example, in high-temperature steam equipment, an electric heater is housed in a flow pipe, and the electric heater is energized to generate heat, and water is flowed through the flow pipe and heated by the electric heater to generate high-temperature steam. In this device, the flow pipe is made of ceramic material because it is required to have heat resistance and electrical insulation properties. However, ceramic materials are susceptible to thermal shock, so if, for example, low-temperature water flows into the flow pipe in the above-mentioned equipment, the temperature will change rapidly, and the thermal shock will cause the ceramic flow pipe to become damaged. This caused a crack and caused the flow pipe to break. For this reason, conventionally, the inner tube member was formed of ceramic material, and the outer periphery of this inner tube member was
A reinforcing member made of SUS316 austenitic stainless steel is tightly fitted by shrink fitting, etc., and compressive force is applied in advance to the inner tube member made of ceramic material to prevent cracks from occurring in the inner tube member. However, even if a crack were to occur, the structure was designed to prevent the crack from progressing and to prevent damage. However, the coefficient of thermal expansion of ceramic materials (Al 2 O 3 ...99%, SiO 2 and others ...1%) is, for example, 6.8 × 10 -6 /°C around 306°C, whereas the SUS316 austenitic stainless steel mentioned above The coefficient of thermal expansion of steel is 16.2×10 -6 /°C, which is greater than that of ceramic materials. Therefore, the thermal expansion of the reinforcing member caused by the rise in temperature becomes larger than the thermal expansion of the inner pipe member, and as the temperature rises, the tightening of the inner pipe member by the reinforcing member becomes weaker. When a certain temperature is reached, the tightening of the inner tube member becomes zero, and if the temperature rises any further, a gap is created between the inner surface of the reinforcing member and the outer circumferential surface of the inner tube member, and the reinforcing member no longer serves as a reinforcement. . In addition, when a pressure detection hole is formed in such a flow pipe, if a gap is created between the inner pipe member and the reinforcing member as described above, the internal fluid will pass through this gap to the outside. This may cause problems such as leakage. For this reason,
There was a limit to the operating temperature of such a structure. To increase the upper limit of this operating temperature, increase the dimensional difference between the outer diameter of the inner tube member and the inner diameter of the reinforcing member,
It is sufficient to increase the initial compressive force of the inner tube member, but if the initial compressive force of the inner tube member is increased, the tensile stress of the reinforcing member increases accordingly, and this tensile stress form a member
Once the plastic deformation range of SUS316 austenitic stainless steel is reached, it is no longer possible to increase the clamping force of the inner tube member any further, and there is a limit to the compressive force that can be applied to the inner tube member, so the upper limit of the operating temperature cannot be set too high. There was a problem that made it impossible to do so. The present invention has been made based on the above circumstances, and its object is to obtain a tubular component using a ceramic material that can increase the upper limit of the operating temperature. The present invention will be described below with reference to an embodiment shown in the drawings. In this embodiment, the tubular component of the present invention is used as a flow pipe in a heating section of a high-temperature steam facility. First, the overall structure of this facility will be explained. In the figure , 1 is a heat generating part, and 2 is its outer cylinder. A flow pipe 3 is provided inside this outer cylinder 2.
A tubular energized heating element 4 is housed within the flow pipe 3 as a heat generation source. Both ends of this energizing heating element 4 are connected to a power supply device 5, and a current is passed from this power supply device 5 to the energizing heating element 4, and this energizing heating element 4 generates heat while the above-mentioned flow pipe 3
Water is supplied from the lower end of the flow pipe 3, and the supplied water is heated by the energized heating element 4 while rising inside the flow pipe 3, and is configured to boil and turn into high-temperature steam. This steam is configured to be sent into the steam drum 6 from the upper end of the flow pipe 3. A spargeer 7 is provided in the upper part of the steam drum 6, and low-temperature water is sprayed from the spargeer 7, and the steam sent into the steam drum 6 is condensed into water. There is. The water accumulated in the steam drum 6 is sent to a heat exchanger 9 by a pump 8 to be cooled, and is then supplied to the spargeer 7 via a flow rate regulating valve 10. Also, the water accumulated in the steam drum 6 is pumped through a flow rate regulating valve 12 by a pump 11.
It is configured to be supplied to the lower end of the flow pipe 3 of the heat generating section 1 via the cooling pipe 13. Note that 14 is a pressurizer that pressurizes the inside of the steam drum 6 to a constant pressure. The flow pipe 3 of the heat generating section 1 is constructed as shown in FIGS. 2 and 3. That is, the flow pipe 3 is constructed by axially arranging a plurality of short pipe members 15 each having a relatively short cylindrical shape. And these short tube members 15
...is ceramic material Al 2 O 3 ...99%, SiO 2 and others ...1%
It is composed of cylindrical inner tube members 15a... and cylindrical reinforcing members 15b fitted to the outer periphery of these inner tube members 15a... These reinforcing members 15b are made of a metal material having a coefficient of thermal expansion similar to that of the ceramic material of the inner tube members 15a, such as a zirconium alloy such as Zircaloy, or a titanium alloy. The inner diameter of these reinforcing members 15b... is the inner diameter of the inner tube member 15a.
It is formed to have a smaller diameter than the outer diameter of the inner tube members 15a, and is tightly fitted to the outer periphery of the inner tube members 15a by shrink fitting or the like, and applies a predetermined compressive force to these inner tube members 15a.
The shrink fit should be done as follows. If the temperature of the outer reinforcing member 15b with a diameter of 20 mm is raised to 820° C., the inner diameter of the reinforcing member 15b will increase by approximately 1 mm due to thermal expansion. In this state, the reinforcing member 15b is attached to the inner tube member 15a made of ceramic at room temperature (20° C.). Furthermore, annular protrusions 16 and recesses 17 that fit into each other are formed on both end surfaces of these inner tube members 15a, and these protrusions 16 and recesses 17 fit into each other and these short It is configured to hold the tube members 15 concentrically. In addition, both end surfaces of these inner tube members 15a are finished smoothly so that they come into close contact with each other in a liquid-tight manner, and these short tube members 1
5... is configured to maintain liquid tightness between the parts.
A pressing member 18 is fitted onto the upper end surface of the short tube member 15 at the uppermost end, and this pressing member 18 is urged downward by springs 19 to move the short tube member 15 in the axial direction. It is fixed by pressure. In addition, the inner tube member 15 of the short tube member 15 in the intermediate portion
A pressure detection hole 20 is formed in the peripheral wall portion a. A pressure detection tube 21 is attached to the peripheral wall of the reinforcing member 15b in correspondence with the pressure detection hole 20, and the pressure detection tube 21 is inserted into the short tube member 15 through the pressure detection hole 20. tube 3
It communicates within. And this pressure detection tube 21
is connected to a pressure detector 22, and is configured to be able to detect the pressure inside this flow pipe 3. The portion where this pressure detection tube 21 passes through the outer cylinder 2 is kept sealed by a sealing material 23 or the like. Further, this pressure detection tube 21 has flexibility at least in a portion between the flow tube 3 and the outer cylinder 2, and is configured to allow expansion and contraction of the flow tube 3 in the axial direction due to temperature rise. In one embodiment of the present invention constructed as described above, a current is passed from the power supply device 5 to the energized heating element 4 to cause the energized heating element 4 to generate heat, and water is supplied from the lower end of the flow pipe 3. The supplied water rises in the flow pipe 3 and is heated by the energized heating element 4 to boil, and is sent to the steam drum 6 as steam at a high temperature of about 306°C. The flow pipe 3 through which this water and steam flows is constructed by combining short pipe members 15 using inner pipe members 15a made of ceramic material, so it has sufficient heat resistance and corrosion resistance. Furthermore, since the ceramic material is an electrically insulating material, the current supplied to the current-carrying heating element 4 will not bypass and flow through the flow tube 3. And the inner tube member 15
Reinforcing member 15b fitted to the outer periphery of a...
As mentioned above, since a metal material such as a zirconium alloy such as Zircaloy or a titanium alloy is used, the coefficient of thermal expansion is similar to that of the ceramic material used for the inner tube member 15a.
Sufficient tightening force can be applied to the inner tube member 15a even at a relatively high operating temperature of 306°C.
It is possible to reliably prevent the occurrence of cracks in these inner tube members 15a and the progress of the cracks. That is, the coefficient of thermal expansion of the ceramic material of the inner tube members 15a is β 1 , the coefficient of thermal expansion of the metal material of the reinforcing members 15b is β 2 , the outer diameter of the inner tube members 15a at room temperature To° C. is d 1 , and the reinforcement The inner diameter of the member 15b is d 2 (d 1 > d 2 )
Then, the inner tube member 1 at a certain operating temperature T°C
The outer diameter d 1 ′ of reinforcing member 5a and the inner diameter d 2 ′ of reinforcing member 15b are d 1 ′=d 1 {1+(T−T 01 } …(1) d 2 ′=d 2 {1+( T−T 0 ) β 2 } …(2). At a certain operating temperature T°C, at least the outer periphery of the inner tube member 15a... and the reinforcing member 15b...
In order to prevent a gap from forming between the inner surface of Therefore, the inner diameter d 2 of the reinforcing member 15b at room temperature in such a case is d 1 {1+(T-T 01 } = d 2 {1+(T-T 02 }...(4 ), so d 2 =d 1 1+(T-T 01 /1+(T-T 02 (5). The operating temperature T is T=306°C as in the above embodiment, and the coefficient of thermal expansion β 1 at 306°C of the ceramic material of the inner tube member 15a is β 1 =6.8×
10 -6 /℃, the outer diameter d 1 of the inner tube member 15a... is d 1 = 209
mm, if SUS316 austenitic stainless steel is used as the material of the reinforcing member 15b as in the past, its coefficient of thermal expansion β 2 at 306°C is β 2 =16.2×10 -6 /°C, so the above (5 ) formula, d 2 = 208.44mm. Therefore, such an inner tube member 15a
When the reinforcing member 15b is shrink-fitted to the reinforcing member 15b, the strain ε generated in the reinforcing member 15b at room temperature is ε=d 1 −d 2 /d 2 =0.00269 (6). The value of this strain ε is shown in Figure 4.
Stress in SUS316 austenitic stainless steel
When applied to the strain diagram, the stress in this case is approximately 24.6
Kg/mm 2 , which exceeds the elastic region and enters the plastic region. Therefore, such a reinforcing member 15b
When the reinforcing member 15b... is shrink-fitted, the reinforcing member 15b... will be permanently deformed and its inner diameter d2 will expand due to the permanent deformation. result. For this reason, when such a product is actually manufactured and heated, a gap is created between the outer periphery of the inner tube member 15a and the inner surface of the reinforcing member 15b at about 180° C. as shown in FIG. However, if the reinforcing members 15b are made of a metal material having a coefficient of thermal expansion close to that of the ceramic material used for the inner tube members 15a, as in the above embodiment, for example, Zircaloy
Zr…98%, Sn…1.5%, Fe…0.15%, balance Cr, etc.)
is used, its coefficient of thermal expansion β 2 at 306°C is β 2 = 6.3×10 -6 /°C, so the above formula (5) and
From equation (6), the strain ε is ε=0.00014, and the longitudinal elastic modulus E of Zircaloy is E=7.99×10 3 Kg/mm 2 , so the stress in this case is 1.1 Kg/mm 2 , which is well within the elastic region. Therefore, the above-mentioned problems do not occur, and a sufficient tightening force can be applied to the inner tube members 15a even at high temperatures. In addition, when titanium alloy is used, its coefficient of thermal expansion is β 2 = 9.45 ×
10 -6 /℃, and the stress in this case is 11.7Kg/mm 2 , which is well within the elastic range, so even at high temperatures (306℃) like in the case of Zircaloy, the inner tube member 15a has sufficient strength. Can provide tightening force. As for the metal material used for the reinforcing members 15b, various materials having a coefficient of thermal expansion close to that of the ceramic material can be used depending on the type of ceramic material used for the inner tube members 15a, the operating temperature, etc. However, the coefficient of thermal expansion of ceramic materials is generally close to the above value, and many of the zirconium alloys and titanium alloys mentioned above have been developed as structural materials with excellent mechanical properties, and have excellent corrosion resistance. In practice, it is preferable to use a zirconium alloy or a titanium alloy because of their superior properties. It should be noted that the present invention is not limited to the above-mentioned embodiment, but can be applied to general tubular parts through which fluid flows and which are used at high temperatures. As described above, in the present invention, a reinforcing member made of a metal material having a coefficient of thermal expansion close to that of the ceramic material is tightly fitted to the outer periphery of an inner tube member made of a ceramic material. This applies compressive force to the Therefore, the advantages of ceramic materials such as heat resistance, corrosion resistance, abrasion resistance, and electrical insulation properties are obtained, and since compressive force is applied to the inner tube member made of ceramic material, this inner tube may be damaged by thermal shock, etc. This prevents cracks from occurring in the member, and the coefficient of thermal expansion of the metal material used for the reinforcing member is close to that of the ceramic material, so the inner tube member can be sufficiently tightened even at high temperatures. Its effects are great, such as being able to apply force and ensure sufficient strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の一実施例を示
し、第1図は全体の概略系統図、第2図は加熱部
の縦断面図、第3図は第2図の―線に沿う断
面図である。また第4図は高温時の特性を説明す
るために用いたSUS316オーステナイト系ステレ
ンス鋼の応力―歪線図、第5図は温度の上昇に伴
う内管部材と補強部材との間の間隙の特性図であ
る。 …発熱部、3…流通管、4…通電発熱体、1
5…短管部材(管状部品)、15a…内管部材、
15b…補強部材。
Figures 1 to 3 show one embodiment of the present invention, with Figure 1 being a schematic diagram of the entire system, Figure 2 being a vertical sectional view of the heating section, and Figure 3 taken along the line - in Figure 2. FIG. Figure 4 is a stress-strain diagram of SUS316 austenitic stainless steel used to explain its characteristics at high temperatures, and Figure 5 is the characteristics of the gap between the inner tube member and reinforcing member as the temperature increases. It is a diagram. 1 ...Heating part, 3...Flow pipe, 4...Electric heating element, 1
5...Short pipe member (tubular part), 15a...Inner pipe member,
15b...Reinforcement member.

Claims (1)

【特許請求の範囲】 1 短い円筒状のセラミツク材料で形成された内
管部材と、この内管部材の側部外周に焼ばめによ
り締付嵌合されしかも306℃付近において上記セ
ラミツク材料と熱膨張率が近似するジルコニウム
系合金の円筒とからなり、306℃付近においても
上記締付が維持されしかもこれらの部材を積層し
て長い円筒形状に形成出来る管状部品。 2 内管部材の内側は四角柱状の孔であることを
特徴とする特許請求の範囲第1項記載の管状部
品。 3 内管部材の端面に積み重ねの位置決め用の凹
部が形成されてなることを特徴とする特許請求の
範囲第1項または第2項に記載の管状部品。
[Scope of Claims] 1. An inner tube member formed of a short cylindrical ceramic material, which is tightly fitted to the outer periphery of the side of the inner tube member by shrink fit, and which is heated to the above ceramic material at around 306°C. A tubular part consisting of a cylinder made of a zirconium alloy with a similar coefficient of expansion, which maintains the above-mentioned tightness even at temperatures around 306°C, and which can be formed into a long cylindrical shape by laminating these members. 2. The tubular component according to claim 1, wherein the inner side of the inner tube member is a quadrangular prism-shaped hole. 3. The tubular component according to claim 1 or 2, wherein a recess for stacking positioning is formed in the end face of the inner tube member.
JP16858980A 1980-11-29 1980-11-29 Tubular parts Granted JPS5794185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16858980A JPS5794185A (en) 1980-11-29 1980-11-29 Tubular parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16858980A JPS5794185A (en) 1980-11-29 1980-11-29 Tubular parts

Publications (2)

Publication Number Publication Date
JPS5794185A JPS5794185A (en) 1982-06-11
JPS6363797B2 true JPS6363797B2 (en) 1988-12-08

Family

ID=15870850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16858980A Granted JPS5794185A (en) 1980-11-29 1980-11-29 Tubular parts

Country Status (1)

Country Link
JP (1) JPS5794185A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175592U (en) * 1984-09-29 1986-05-21

Also Published As

Publication number Publication date
JPS5794185A (en) 1982-06-11

Similar Documents

Publication Publication Date Title
EP0632224A2 (en) Shape memory alloy pipe coupling and underwater pipes
JPS589786A (en) High frequency induction heating coil wound on joint of piping
US5350011A (en) Device and method for thermally insulating a structure to prevent thermal shock therein
JPS6363797B2 (en)
JP3628705B2 (en) Electromagnetic induction heating device
US4772336A (en) Method of improving residual stress in circumferential weld zone
JP3309573B2 (en) Shape memory alloy pipe fittings and underwater pipes
JP3994304B2 (en) Piping connection device
JP2001295970A (en) Flange part structure
JPH08136307A (en) Electrostatic capacity type electromagnetic flowmeter
Reynolds Strain-cycle phenomena in thin-wall tubing
JPH04272593A (en) Structure for connecting piping
JP2010007889A (en) Electric water heater
RU2034270C1 (en) Method for corrosion testing of samples
JPS61246328A (en) Heat treatment of metal material
JPS6411878B2 (en)
RU176792U1 (en) THERMAL SEALING COMPENSATOR
Narayanan et al. Structural design of a superheater for a central solar receiver
RU1805263C (en) Bimetal bellows compensator
JP4121752B2 (en) Piping connection structure
Chatterjee et al. EXPERIMENTAL INVESTIGATION OF THERMO-MECHANICAL DEFORMATION OF PRESSURE TUBE UNDER ACCIDENT CONDITIONS
JPH0469210B2 (en)
JPH0127805B2 (en)
JPH0727493A (en) Heat transfer pipe for heat exchanger
SU1013696A1 (en) Method of non-detachable connection of parts