JPS61246328A - Heat treatment of metal material - Google Patents

Heat treatment of metal material

Info

Publication number
JPS61246328A
JPS61246328A JP8721385A JP8721385A JPS61246328A JP S61246328 A JPS61246328 A JP S61246328A JP 8721385 A JP8721385 A JP 8721385A JP 8721385 A JP8721385 A JP 8721385A JP S61246328 A JPS61246328 A JP S61246328A
Authority
JP
Japan
Prior art keywords
coil
tube
stress
metal material
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8721385A
Other languages
Japanese (ja)
Inventor
Kunio Enomoto
榎本 邦夫
Shinji Sakata
信二 坂田
Tasuku Shimizu
翼 清水
Hidetoshi Takehara
武原 秀俊
Yasukata Tamai
玉井 康方
Isao Sugihara
杉原 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8721385A priority Critical patent/JPS61246328A/en
Publication of JPS61246328A publication Critical patent/JPS61246328A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To prevent effectively stress corrosion cracking and fatigue fracture, by induction heating the inner part of metal material while cooling the surface thereof at the side where induction heating coil is provided, in heat treatment of metal material by the coil. CONSTITUTION:A heating coil 4 connected to a transformer 3 for induction heating is provided to inner surface of a welded zone 2 for connecting tubes 1 and 1a, the zone 2 is positioned almost at the center of the coil 4, and a coolant 5 is jetted to the inner surface of the tube at the vicinity of the part 2 from the coil 4 itself. AC having a suitable frequency is passed to the coil 4 through the transformer 3, to generate heat at the inner surface and the inner part of the tubes 1, 1a in which the coil 4 is set. In this case, even if inner surface is cooled, the outer surface is heated by heat generation of inner part, becomes to higher temp. than inner surface and the tensile stress is generated at the inner surface. After the stress exceeds the yield stress of tube material, the electricity conduction is stopped and the cooling of tube inner surface is stopped if the tube is cooled thoroughly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は金属体の誘導加熱処理方法に係り、特に配管溶
接部の内外表面または何れか一方の表面の溶接残留応力
緩和に好適な熱処理方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an induction heating treatment method for a metal body, and particularly to a heat treatment method suitable for relieving welding residual stress on the inner and outer surfaces or either surface of a pipe weld. .

〔発明の背景〕[Background of the invention]

従来の配管溶接残留応力緩和のための誘導加熱処理とし
て、特許第95732号がある。これは加熱コイルを設
けていない側の表面を冷却しながら誘導加熱を行なうも
のである。これによれば加熱コイルを設けていない側、
即ち、冷却しt側の残留応力は緩和されるが、加熱コイ
ルを設けた側の残留応力緩和は全くできないという欠点
があつt。
There is Japanese Patent No. 95732 as a conventional induction heating treatment for relieving residual stress in pipe welding. This performs induction heating while cooling the surface on the side where no heating coil is provided. According to this, the side where the heating coil is not installed,
That is, although the residual stress on the cooling side is relaxed, the residual stress on the side where the heating coil is provided cannot be relaxed at all.

〔発明の目的〕[Purpose of the invention]

本発明の目的は溶接部等に存在する引張残留応力を緩和
するための誘導加熱処理方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an induction heating treatment method for alleviating tensile residual stress existing in welded parts and the like.

〔発明の概要〕[Summary of the invention]

一般に、金属表面に圧縮応力を残留させるには内部はで
きるだけ弾性状態のままで表面を機械的または熱的方法
で引張塑性変形させればよい。本発明はこれを効率よく
達成する方法として、誘導加熱コイルを設けた側の表面
全常に冷却しながら金属体内部を誘導加熱することを考
案したものである。この発明は、誘導加熱が金属表面の
熱伝達で行なわれるのではなく、金属自身の内部発熱に
よって行なわれることに着目しkものである。
Generally, in order to cause compressive stress to remain on a metal surface, the surface may be mechanically or thermally deformed by tensile plasticity while the interior remains as elastic as possible. The present invention has devised a method of efficiently achieving this by inductively heating the inside of the metal body while constantly cooling the entire surface on which the induction heating coil is provided. This invention focuses on the fact that induction heating is not performed by heat transfer on the metal surface, but by internal heat generation of the metal itself.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例として、配管内面の溶接残留応力を行な
う場合について説明する。
As an example of the present invention, a case will be described in which welding residual stress is applied to the inner surface of a pipe.

第1図において、管1及び1aを接続する溶接部2の内
面には誘導加熱用トランス3に接続され元加熱コイル4
が設けられている。この加熱コイル4はそれ自身から管
内面冷却用の冷却剤5を噴出できるようになっている。
In Fig. 1, a heating coil 4 is connected to an induction heating transformer 3 on the inner surface of a welded part 2 connecting the pipes 1 and 1a.
is provided. This heating coil 4 is capable of ejecting a coolant 5 for cooling the inner surface of the tube from itself.

トランス3には誘導電流を発生させるための電流供給用
ケーブル6と加熱位置制御用ロッド7が連結して設けて
あり、ケーブル6は電源8につながれている。9は冷却
剤供給用チューブである。管内外面には温度監視用セン
サ10.toaが取付けられている。7は加熱位置決め
装置11に連結されている。チューブ9は冷却剤送給装
置12に連通連結されている。
A current supply cable 6 for generating an induced current and a heating position control rod 7 are connected to the transformer 3, and the cable 6 is connected to a power source 8. 9 is a coolant supply tube. Temperature monitoring sensors 10 are installed on the inner and outer surfaces of the tube. toa is installed. 7 is connected to a heating positioning device 11. Tube 9 is communicatively connected to coolant delivery device 12 .

さらに、管内表面とトランス3.コイル4の間隙を最適
にするためにガイドローラ13.138がトランス3や
コイル4に設けである。
Furthermore, the inner surface of the pipe and the transformer 3. In order to optimize the gap between the coils 4, guide rollers 13 and 138 are provided on the transformer 3 and the coil 4.

まず位置決め装置11とロッド7により溶接部2がほぼ
コイル4の中央に位置するように位置決めを行表い、弁
14を開き、冷却剤送給装置12を起動し、冷却剤5金
溶接部2の近傍の管内面に噴出させる。ケーブル6、チ
ューブ9はトランス3、コイル4の位置決めのためにも
柔軟でかつ、たるみを有することが必要である。
First, positioning is performed using the positioning device 11 and the rod 7 so that the welded part 2 is located approximately at the center of the coil 4, the valve 14 is opened, the coolant feeding device 12 is started, and the coolant 5 is placed in the gold welded part 2. It is ejected onto the inner surface of the tube near the. The cable 6 and tube 9 need to be flexible and have slack in order to position the transformer 3 and coil 4.

位置を決めして冷却金開始したら、電源8及びトランス
3によりコイル4に交流電流全通電する。
After determining the position and starting cooling, the coil 4 is fully energized with alternating current by the power source 8 and transformer 3.

通電を行なうとコイル4金セツトされた部分の管1.1
aには誘導電流が誘起され、管は電気抵抗を有するため
に(誘導電流)” X (を気抵抗)なる熱が発生する
。この電流はコイル4をセットしである側の管内表面が
最も高く、これ’eIc+とすれば内表面からXだけ管
厚内に入つtところの電流1.はI x =I cB 
e−”δとなる。したがって表面発熱量をQcsとする
とXにおける発熱量Q、は次式となる。
When energized, the part of the tube 1.1 where the coil 4 gold is set
An induced current is induced in a, and since the tube has electrical resistance (induced current) x (air resistance) heat is generated. If it is high, and this is 'eIc+, then the current 1 at t, which enters the tube thickness by X from the inner surface, is I x = I cB
e-"δ. Therefore, if the surface heat generation amount is Qcs, the heat generation amount Q at X is expressed as follows.

Q x = Q c s e−”/J−−・”(1)こ
こで、δは加熱浸透深さといわれ、次式で示される。
Qx=Qcse-"/J--" (1) Here, δ is said to be the heating penetration depth, and is expressed by the following equation.

δ= 5oaov’W石下     ・・・町□(2)
ここで、μ、ρは管の比透磁本と比抵抗であり。
δ= 5oaov'W Ishishita...Town□(2)
Here, μ and ρ are the relative permeability and specific resistance of the tube.

fは3に導かれる電流の周波数である。ステンレス鋼な
どではμ〜1 ρ〜10−4Ωm程度であるからδ−,
50,3f”となる。
f is the frequency of the current introduced in 3. For stainless steel etc., it is about μ~1 ρ~10-4Ωm, so δ-,
50.3f".

(1)、(2)式よりfが高いと、すなわち高周波電流
ではXの増加につれてQ8は急激に減少し、いわゆる極
く内表面層だけが発熱することになる。例えばf=10
KHzでステンレス鋼を加熱すると表面から5■内部の
点では表面発熱量の15チ程度しか発熱しない。このよ
うな場合には発生した熱の多くは冷却剤5に奪われて、
管の温度は上昇しにくい。しかし、例えばf −200
Hzとするとx=10mの内部の点でも表面の発熱量の
60チ程度の発熱と々る。このよう々場合には内表面全
冷却しても内部発熱のために温度が上昇し、外表面は強
制冷却していない九めに内表面工υ高温となる。すなわ
ち、内面では低温、外面では高温となる温度分布が発生
することになる。このために管の内表面には引張ひずみ
が発生する。この引張ひずみが管材料の降伏ひずみを越
えるまで通電を継続する。管内面の引張ひずみが降伏ひ
ずみを越えたか否かの判断は管内外面温度全測定するこ
とによって可能であシ、温度監視用センサ10゜10a
の検出温度を監視することによって行なわれる。内表面
に引張降伏状ひずみ全発生させるに十分な内、外表面温
度差が発生したら通電を停止する。しかし、管内面の冷
却は継続し、管が完全に冷却したところで冷却剤送給装
置12を停止し、弁14金閉じる。次に、加熱位置決め
装置11によシ管1.1aからトランス3、コイル4を
取外すとこの処理は終了となる。
According to equations (1) and (2), when f is high, that is, at high frequency current, Q8 decreases rapidly as X increases, and only the so-called inner surface layer generates heat. For example f=10
When stainless steel is heated at KHz, at a point 5 cm inside from the surface, only about 15 cm of heat is generated from the surface. In such a case, most of the generated heat is taken away by the coolant 5,
The temperature of the tube is difficult to rise. But for example f -200
If it is Hz, even a point inside x=10m generates about 60 inches of the heat generated by the surface. In such cases, even if the inner surface is completely cooled, the temperature will rise due to internal heat generation, and the outer surface will reach a high temperature even though it is not forced to cool. That is, a temperature distribution occurs in which the inner surface is low temperature and the outer surface is high temperature. This generates tensile strain on the inner surface of the tube. The current is continued until this tensile strain exceeds the yield strain of the tube material. It is possible to judge whether the tensile strain on the inner surface of the tube has exceeded the yield strain by measuring all the temperatures on the inner and outer surfaces of the tube.Temperature monitoring sensor 10°10a
This is done by monitoring the detected temperature. When a temperature difference between the inner and outer surfaces is sufficient to cause a full tensile yield strain on the inner surface, the current supply is stopped. However, cooling of the inner surface of the tube continues, and when the tube is completely cooled, the coolant supply device 12 is stopped and the valve 14 is closed. Next, when the transformer 3 and the coil 4 are removed from the heating and positioning device 11, the process ends.

本処理で管内面の残留応力が緩和される原理を以下に述
べる。
The principle by which the residual stress on the inner surface of the tube is alleviated by this treatment is described below.

第2図はこの処理中の加熱コイル4がセットされている
側の管表面(以下コイル側表面)の温度Tcとその反対
側表面(以下、反スイル側表面)の温度T。及び通電並
びに冷却と時間の関係を示す。通電開始とともにToは
急激に上昇するが。
FIG. 2 shows the temperature Tc of the tube surface on the side where the heating coil 4 is set (hereinafter referred to as the coil side surface) and the temperature T of the opposite side surface (hereinafter referred to as the anti-swivel side surface) during this process. and shows the relationship between energization, cooling, and time. However, To rises rapidly with the start of energization.

Tcは強制冷却のために上昇はTo より少ない。Tc increases less than To due to forced cooling.

管の板厚内部温度分布がToとTcfr結ぶ直線分布と
すれば管内面に引張降伏ひずみε、1−起させて降伏応
力と同じ圧縮応力を残留させるに必要な温度差ΔT、は
If the temperature distribution inside the thickness of the tube is a linear distribution connecting To and Tcfr, then the temperature difference ΔT required to cause a tensile yield strain ε, 1- to occur on the inner surface of the tube and to make the same compressive stress as the yield stress remain is.

となる。ここでαは管の線膨張係数、νはポアソン比で
ある。例えばステンレス鋼についてΔT。
becomes. Here, α is the coefficient of linear expansion of the tube, and ν is Poisson's ratio. For example, ΔT for stainless steel.

を求めると、α〜17X10”’1/C1ν=0.3、
εy〜1.5X10” とするとΔT、〜212Cとな
る。温度差がΔT、に到達したところで通電全停止し、
ΔT=0になったところで冷却を停止する。ただし、冷
却は完全に冷却するところ′まで必ずしも行なう必要は
ないが、安全の丸めにΔT=θ″11で行なうことが望
ましい。
When calculating, α~17X10'''1/C1ν=0.3,
If εy~1.5X10", then ΔT is ~212C. When the temperature difference reaches ΔT, the energization is completely stopped.
Cooling is stopped when ΔT=0. However, although it is not necessary to perform the cooling to the point where it is completely cooled, it is preferable to perform the cooling at ΔT=θ″11 for safety reasons.

一方、第2図の温度挙動に対応して、応力ひずみ挙動は
第3図の如くになる。加熱コイル側の表面ではこの処理
開始とともに引張りの応力とひずみが発生し、降伏点σ
ア(A点)に達すると応力は増大せずひずみのみが増加
する。これは反コイル側の温度上昇による膨張のために
強制冷却されているコイル側表面が引張られるためであ
る。降伏点に到達後も加熱全継続するとA−Hの如くひ
ずみが増加する。B点のひずみが降伏点のひずみεアの
2倍になったところで加熱を停止する。加熱を停止する
と温度が低下するのでそれにつれて応力とひずみも低下
する。しかし、B−)A−原点のように戻るのではなく
、B点から弾性的に、す表わちO→Aに平行に低下し、
完全に冷却するとひずみはOにな夛応力は圧縮降伏応力
に等しい0点になる。一方、反コイル側表面では圧縮応
力と圧縮ひずみが生じ、O→A1→B1→C1の如くに
なる。結局この処理が終了するとコイル側の表面には圧
縮残応力(0点)が1反コイル側の表面には引張応力(
C1点)が残留することになる。
On the other hand, corresponding to the temperature behavior shown in FIG. 2, the stress strain behavior becomes as shown in FIG. 3. At the start of this process, tensile stress and strain occur on the surface of the heating coil, and the yield point σ
When reaching A (point A), stress does not increase and only strain increases. This is because the surface of the coil side, which is forcibly cooled, is stretched due to expansion due to the rise in temperature on the opposite side of the coil. If the heating is continued even after the yield point is reached, the strain increases as shown in A-H. Heating is stopped when the strain at point B becomes twice the strain εa at the yield point. When heating is stopped, the temperature decreases and the stress and strain decrease accordingly. However, B-) A- instead of returning to the origin, it falls elastically from point B, i.e. parallel to O → A,
When completely cooled, the strain becomes O and the stress reaches 0 point, which is equal to the compressive yield stress. On the other hand, compressive stress and compressive strain occur on the anti-coil side surface, and the order becomes O→A1→B1→C1. After all, when this process is finished, there is a compressive residual stress (0 point) on the surface of the coil side, and a tensile stress (point 0) on the surface of the anti-coil side.
Point C1) will remain.

第3図では熱処理前の応力状態は初期の残留応力はOと
して原点全出発点とし九〇しかし、溶接部内外面の残留
応力は引張り降伏点と同程度であることが多い。第4図
はこのような場合について示したものである。初期状態
はP点(引張シ降伏に一致)にあシ、コイル側の表面で
は熱ひずみは全て塑性ひずみとなシ、ε=26アとなる
まで加熱してここから冷却するとP−4A−4B→Cと
なり、ξ=0となってこの処理が終了すると降伏点に等
しい圧縮応力が残留する。引張りの初期残留応力(P点
)が圧縮残留応力(0点)に緩和される。
In Fig. 3, the stress state before heat treatment is shown by assuming that the initial residual stress is O and all starting points are from the origin. However, the residual stress on the inner and outer surfaces of the weld is often about the same as the tensile yield point. FIG. 4 shows such a case. The initial state is at point P (corresponding to tensile yield), and all thermal strain on the coil side surface is plastic strain.Heating until ε = 26A and cooling from there results in P-4A-4B. →C, and when this process ends with ξ=0, a compressive stress equal to the yield point remains. The initial tensile residual stress (point P) is relaxed to compressive residual stress (point 0).

一方、反コイル側ではP点を起点として圧縮ひずみがC
=−εアの点(A1点)で応力=0となシ、ε=−2ε
アの点(B1点)で加熱を停止すると圧縮の塑性ひずみ
は生じていないからそのAte通って元のP点に戻る。
On the other hand, on the anti-coil side, the compressive strain is C starting from point P.
=-ε Stress = 0 at point A (point A1), ε=-2ε
When heating is stopped at point A (point B1), since no compressive plastic strain has occurred, the material passes through Ate and returns to the original point P.

すなわち、この場合はコイル側表面ではP点から0点に
緩和されるが1反コイル側の表面では往復とも同じ経路
を経てP点に戻るので残留応力は元のままである。
That is, in this case, the residual stress on the coil-side surface is relaxed from point P to zero point, but on the surface on the opposite coil side, the residual stress remains the same because it returns to point P through the same route in both directions.

第3.4図から分るように、初期残留応力の有無に依ら
ずコイル側の表面は圧縮残留応力となる。
As can be seen from Figure 3.4, the coil side surface has compressive residual stress regardless of whether there is initial residual stress.

残留応力全引張から圧縮に反転させると疲労破壊、腐食
損傷、腐食疲労破壊、応力腐食割れ等を容易に防止する
ことができる。特に、原子力発電プラントのオーステナ
イトステンレスm5U8304配管溶接部では応力腐食
割れに起因するトラブルが実際に生じておシ、これらに
用いるとよい結果が期待される。以上の実施例では冷却
剤全噴射しているが、管内に冷却剤を流動させて行なう
こともできる。
By reversing the total residual stress from tension to compression, fatigue failure, corrosion damage, corrosion fatigue failure, stress corrosion cracking, etc. can be easily prevented. In particular, problems caused by stress corrosion cracking have actually occurred in the welded parts of austenitic stainless steel M5U8304 piping in nuclear power plants, and good results are expected when used in these areas. In the above embodiments, the entire coolant is injected, but the coolant may also be flowed into the pipes.

次に第5図は別の実施例を示す。第1図の例と異なると
ころは、管の外面にも冷却剤5ai噴出できる冷却子1
5を供えていることである。この例は冷却材5及び5a
t−同時に噴射しながら誘導加熱するところに特徴があ
る。第6図は管の肉厚の内部における発熱分布(H曲線
)及び温度分布(1曲線)を示す。発熱は加熱コイル側
が高いので加熱コイル側の冷却は反却熱コイル側の冷却
よりも効率よく行なわなければならない。そのためには
冷却材5と58の流速、冷媒を同一とせずに、熱伝達に
差をもたせるとよい。第6図のTc及びToの温度時間
曲線は第2図のT c = tと、Tpのそれは第2図
のrf+o、、、(と同様になる。加熱コイル側及び反
別熱コイル側の表面の応力ひずみ挙動は第3図の0→A
→B→Cの如くになシ、板厚中心のそれはO→A1→B
l−+CIの如くになる。
Next, FIG. 5 shows another embodiment. The difference from the example in Fig. 1 is that the cooler 1 can spray 5ai of coolant also on the outer surface of the tube.
5 is being offered. In this example, coolants 5 and 5a
t-It is characterized by induction heating while simultaneously injecting. FIG. 6 shows the heat generation distribution (H curve) and temperature distribution (1 curve) within the wall thickness of the tube. Since heat generation is higher on the heating coil side, cooling on the heating coil side must be performed more efficiently than cooling on the reflective heating coil side. To this end, it is preferable to provide a difference in heat transfer without making the flow rates and coolants of the coolants 5 and 58 the same. The temperature-time curves of Tc and To in Fig. 6 are the same as T c = t in Fig. 2, and that of Tp is the same as rf + o, ... (in Fig. 2). The stress-strain behavior of is 0→A in Figure 3.
→ B → C, and the center of the board thickness is O → A1 → B
It becomes like l-+CI.

すなわち、本例によれば内外面ともに圧縮残留応力を付
与できることになる。そのために内外面ともに腐食環境
にさらされる場合、内外面ともに繰返し荷重を受ける場
合に強度向上策となる。
That is, according to this example, compressive residual stress can be applied to both the inner and outer surfaces. Therefore, it becomes a strength improvement measure when both the inner and outer surfaces are exposed to a corrosive environment, or when both the inner and outer surfaces are subjected to repeated loads.

上記の例の変形例として、管ではなく、第7図に示すよ
うに板16の片方に加熱コイル4を設置し、他方に冷却
子1st−設けて両面から冷却しながら加熱するもので
ある。効果は第4図の例と同様である。
As a modification of the above example, instead of using a tube, as shown in FIG. 7, a heating coil 4 is installed on one side of the plate 16, and a cooler 1 is installed on the other side to cool and heat from both sides. The effect is similar to the example shown in FIG.

その他の変形例として第8図に示す。この例は管の内外
面(板の両側)に加熱コイル4.48?設けて冷却剤5
.5aで冷却しながら誘導加熱を行危うものである。こ
の場合のそれぞれのコイルによる発熱分布は第9図のH
t 、Hzの曲線示す如くであり、全体としてはHt 
とHzの和、すなわち曲線Hのように板厚中心に対して
対称になるそのため残留応力改善に好適な温度分を容易
に得ることができる。また、内外部の加熱条件を変える
ことによシ、温度分布の調整ができる利点もある。
Another modification is shown in FIG. In this example, heating coils are placed on the inner and outer surfaces of the tube (on both sides of the plate). Provide coolant 5
.. It is dangerous to carry out induction heating while cooling in step 5a. In this case, the heat distribution by each coil is H in Figure 9.
As shown in the curve of t and Hz, the overall result is Ht
The sum of Hz and Hz, that is, the curve H, which is symmetrical about the center of the plate thickness, makes it easy to obtain a temperature suitable for improving residual stress. Another advantage is that the temperature distribution can be adjusted by changing the heating conditions inside and outside.

冷却しつつ加熱することが可能なのは、本発明の基本が
物体の内部発熱に着目していることによる。応用可能な
内部発熱として誘導電流の他に直接通電方式による発熱
方式がある。第10図はこれを用いた場合の実施例を示
す。残留応力全改善しようとする溶接部2を挾んで通電
用電極17゜17aIi管1.1aに直接的に取付け、
電極17゜17aは通電用ケーブル18.183にて通
電加熱設備19と接続されている。この構成において、
まず、管の内外面から冷却子15a、151)から冷却
剤5.5ak噴射させて1次に、通電を行なう。通電に
よる管厚内部の電流分布は一様分布となる。そのために
発熱分布は第11図に示すように一様な分布Hとなる。
The reason why it is possible to heat while cooling is that the present invention focuses on the internal heat generation of an object. In addition to induced current, there are heat generation methods that use direct current as applicable internal heat generation methods. FIG. 10 shows an embodiment using this. The current-carrying electrode 17° 17aIi is attached directly to the pipe 1.1a, sandwiching the welded part 2 where the total residual stress is to be improved.
The electrodes 17.degree. 17a are connected to the energizing heating equipment 19 by energizing cables 18,183. In this configuration,
First, 5.5 ak of coolant is injected from the coolers 15a, 151) from the inner and outer surfaces of the tube, and then electricity is supplied. The current distribution within the tube thickness due to energization becomes a uniform distribution. Therefore, the heat generation distribution becomes a uniform distribution H as shown in FIG.

しかし、表面は冷却されているので内・外表面で低温、
管厚中心部で高温となる温度分布Tが発生する。中心温
度と表面温度の差が(3)式を満足すれば内・外表面の
残留応力は圧縮応力に改善させることができる。この発
明の特徴は発熱分布は一様なことであシ、温度差を発生
させ易いことである。
However, since the surface is cooled, the temperature is low on the inner and outer surfaces.
A temperature distribution T occurs in which the temperature is high at the center of the pipe thickness. If the difference between the center temperature and the surface temperature satisfies equation (3), the residual stress on the inner and outer surfaces can be improved to compressive stress. The feature of this invention is that the heat generation distribution is uniform, and temperature differences are likely to occur.

〔発明の効果〕〔Effect of the invention〕

本発明によれば加熱コイルを設置した側の引張り残留応
力を軽減できるので応力腐食割れや疲労破壊を効果的に
防止することができる。
According to the present invention, the tensile residual stress on the side where the heating coil is installed can be reduced, so stress corrosion cracking and fatigue fracture can be effectively prevented.

特に、組み立が完了しt配管、あるいは供用中の配管で
加熱コイル及び冷却子の設置が限定的なものに対しても
用いることができ、適用範囲が広い。
In particular, it can be used for T-pipes that have been assembled, or for piping that is in service but with limited installation of heating coils and coolers, and has a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本構成図、第2図は未発明実施中の
温度〜時間曲線図、第3図は本発明の実施中の応力ひず
み挙動図、第4図は第3図を補足する応力ひずみ挙動図
、第5図は本発明の応用例の構成図、第6図は本発明の
応用例の発熱分布と温度分布を示す図、第7図は本発明
の別の応用例を示す図、第8図は本発明の変形例を示す
構成図、第9図は本発明の変形例の発熱分布と温度分布
を示す図、第10図は本発明のさらに他の変形例を示す
構成図、第11図は第10図の例における発熱分布と温
度分布を示す図である。 1.1a・・・管、2・・・溶接部、3・・・誘導加熱
用トランス、4 、+ 48・・・加熱コイル、5,5
a・・・冷却剤、15・・・冷却子。 第 1 巳 コイlL4醍11ヒ反、コイ1シ4醍りの−a月【(4
〔挙動筒4巳 細XpIl=gl、Y長すT〜省爬;力が゛め1鳴イト
第 S因 1α  5 1因
Figure 1 is a basic configuration diagram of the present invention, Figure 2 is a temperature-time curve diagram during implementation of the invention, Figure 3 is a stress-strain behavior diagram during implementation of the invention, and Figure 4 supplements Figure 3. Fig. 5 is a diagram showing the configuration of an application example of the present invention, Fig. 6 is a diagram showing the heat generation distribution and temperature distribution of an application example of the invention, and Fig. 7 is a diagram showing another application example of the invention. 8 is a configuration diagram showing a modified example of the present invention, FIG. 9 is a diagram showing heat generation distribution and temperature distribution of a modified example of the present invention, and FIG. 10 is a diagram showing still another modified example of the present invention. The configuration diagram, FIG. 11, is a diagram showing the heat generation distribution and temperature distribution in the example of FIG. 10. 1.1a...Pipe, 2...Welded part, 3...Induction heating transformer, 4, +48...Heating coil, 5,5
a...coolant, 15...cooler. 1st Snake Koi lL 4 Daiji 11 Hitan, Koi 1 Shi 4 Daiji no -a Month [(4
[Behavior cylinder 4 narrow XpIl=gl, Y length T ~ saving; force is ゛me 1 sound 1st S factor 1α 5 1 factor

Claims (1)

【特許請求の範囲】 1、誘導加熱コイルを用いた金属材の熱処理において、
前記加熱コイルを設けた側の金属材表面を静止冷媒また
は流動冷媒のいずれかによつて冷却しながら、同時に前
記加熱コイルに通電を行ない、金属材の加熱コイル側表
面に引張降伏ひずみ以上の引張ひずみを生ぜせしめた後
に通電のみを停止し、冷却は金属材が完全に冷却するま
で継続することを特徴とする金属材の熱処理方法。 2、特許請求の範囲の第1項において、加熱コイルを設
けていない側に冷却子を設けて金属材表面を加熱コイル
を設けた側と同様に冷却することを特徴とする金属材の
熱処理方法。 3、特許請求の範囲の第1項において、金属材の両面と
もに加熱コイルを設け両面ともに冷却しながら加熱を行
なうことを特徴とする金属材の熱処理方法。
[Claims] 1. In heat treatment of metal materials using an induction heating coil,
While the surface of the metal material on the side where the heating coil is provided is cooled with either a stationary refrigerant or a flowing refrigerant, the heating coil is simultaneously energized to create a tensile force greater than the tensile yield strain on the surface of the metal material on the heating coil side. A method for heat treatment of metal materials, characterized in that only energization is stopped after strain is generated, and cooling is continued until the metal materials are completely cooled. 2. A method for heat treatment of a metal material according to claim 1, characterized in that a cooler is provided on the side where the heating coil is not provided to cool the surface of the metal material in the same way as on the side where the heating coil is provided. . 3. A method for heat treatment of a metal material according to claim 1, characterized in that heating coils are provided on both sides of the metal material and heating is performed while cooling both surfaces.
JP8721385A 1985-04-23 1985-04-23 Heat treatment of metal material Pending JPS61246328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8721385A JPS61246328A (en) 1985-04-23 1985-04-23 Heat treatment of metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8721385A JPS61246328A (en) 1985-04-23 1985-04-23 Heat treatment of metal material

Publications (1)

Publication Number Publication Date
JPS61246328A true JPS61246328A (en) 1986-11-01

Family

ID=13908650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8721385A Pending JPS61246328A (en) 1985-04-23 1985-04-23 Heat treatment of metal material

Country Status (1)

Country Link
JP (1) JPS61246328A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046108A (en) * 2005-08-10 2007-02-22 Toshiba Corp Method and apparatus for controlling temperature of outer surface at high-frequency induction heating time
JP2010185141A (en) * 2009-02-11 2010-08-26 Boeing Co:The Hardened titanium structure used in transmission apparatus
JP2016079466A (en) * 2014-10-17 2016-05-16 株式会社ジェイテクト Heat treatment apparatus and method
JP2019035155A (en) * 2018-11-05 2019-03-07 株式会社ジェイテクト Heat treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046108A (en) * 2005-08-10 2007-02-22 Toshiba Corp Method and apparatus for controlling temperature of outer surface at high-frequency induction heating time
JP2010185141A (en) * 2009-02-11 2010-08-26 Boeing Co:The Hardened titanium structure used in transmission apparatus
JP2016079466A (en) * 2014-10-17 2016-05-16 株式会社ジェイテクト Heat treatment apparatus and method
US10538821B2 (en) 2014-10-17 2020-01-21 Jtekt Corporation Heat treatment apparatus and heat treatment method
US11319605B2 (en) 2014-10-17 2022-05-03 Jtekt Corporation Heat treatment apparatus and heat treatment method
JP2019035155A (en) * 2018-11-05 2019-03-07 株式会社ジェイテクト Heat treatment method

Similar Documents

Publication Publication Date Title
JP4599250B2 (en) High-frequency induction heating outer surface temperature control method and control device
JP3649223B2 (en) Heat treatment method and heat treatment apparatus for piping system
CN112725572B (en) Main and auxiliary induction heating local heat treatment method
US20090065494A1 (en) Systems and methods for providing localized heat treatment of gas turbine components
JP5023995B2 (en) Heat-resistant material testing equipment and test piece
JPS61246328A (en) Heat treatment of metal material
Avery et al. Fatigue behavior of stainless steel sheet specimens at extremely high temperatures
US9044831B2 (en) Method of joining part having high fatigue strength
JPS61217531A (en) Cooling method for steel strip
JPS5817807B2 (en) Heat treatment method for piping
US4588869A (en) Method for relieving residual stresses by controlling weld heat input
Hirohata et al. Residual stress reduction of fillet box welded joints by local heating using induction heating device
CN206279243U (en) Austenitic stainless steel pressure piping weld joint stable heat treatment system
SE8403928D0 (en) HEAT TREATMENT PROCEDURE FOR A PIPE PIPE
JPH03219023A (en) Method and apparatus for strengthening pressure proof of metal-made hollow structure, and pressure proof hollow structure made with this method and method for using the same under pressure proof condition
RU2533403C2 (en) Method for electrophysical processing of welded joints in metal structures
JPS58210123A (en) Heat treatment of clad steel pipe
JP2014016306A (en) Airtightness evaluation test apparatus for oil well pipe joint
JPS62153733A (en) Preparation of test tube for stress corrosion cracking
CN109355487B (en) Chisel annealing treatment equipment and annealing process method
JPS55110728A (en) Improvement of residual stress in outside of steel pipe
JPH064652U (en) Crack progress prediction device
Barton et al. Effect of temperature on the high strain-rate fracture characteristics of ductile metals
Lu et al. Criteria for Heated Band Width Based on Through-thickness Temperature Distribution Numerical Study on Local PWHT of Butt Welded Pipe (Report 1)
JPS60131923A (en) Heat treatment of weld zone of double-walled pipe