JPH0727493A - Heat transfer pipe for heat exchanger - Google Patents

Heat transfer pipe for heat exchanger

Info

Publication number
JPH0727493A
JPH0727493A JP17072093A JP17072093A JPH0727493A JP H0727493 A JPH0727493 A JP H0727493A JP 17072093 A JP17072093 A JP 17072093A JP 17072093 A JP17072093 A JP 17072093A JP H0727493 A JPH0727493 A JP H0727493A
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
heat
transfer tube
transfer pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17072093A
Other languages
Japanese (ja)
Inventor
Omihito Wada
臣仁 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP17072093A priority Critical patent/JPH0727493A/en
Publication of JPH0727493A publication Critical patent/JPH0727493A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To enable use of a pipe-fixed plate type heat exchanger by a method wherein a part of a heat transfer pipe is formed of a short pipe which is made of shape memory material, and incorporated into the heat exchanger in a state that prestress is being given in a direction reverse to heat stress generated during operation. CONSTITUTION:A heat transfer pipe 10 to be incorporated in a linear bronze 1 having no expansive joints is formed by a short pipe 11 a part of which is made of shape memory material. Before operation, the heat transfer pipe 10 is incorporated in a heat exchanger C in a state that prestress is being given in a direction reverse to heat stress generated during the operation. In detail, as the heat transfer pipe 10 has a larger heat expansion amount than the bronze 1, at a switching point from non-operation state to operation state, compression stress is generated in the heat transfer pipe 10. Accordingly, when the heat transfer pipe 10 is incorporated in the heat exchanger C, prestress is given so that tension stress may be generated. By this, there is no need to provide the heat exchanger with bronze made expansion joints, whereby a pipe-fixed plate type heat exchanger can be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火力発電プラント、化
学プラントあるいは原子力発電プラント等で用いられる
熱交換器の伝熱管に関し、特に固定管板式熱交換器に組
み込まれる伝熱管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube for a heat exchanger used in a thermal power plant, a chemical plant, a nuclear power plant or the like, and more particularly to a heat transfer tube incorporated in a fixed tube plate type heat exchanger.

【0002】[0002]

【従来の技術】シェルアンドチューブ型の熱交換器に
は、伝熱管の端部を支持する管板が、胴の両端に溶接あ
るいはその他の方法によって固定された、いわゆる固定
管板式熱交換器がある。この種の熱交換器にあっては、
胴側流体と管側流体の温度および伝熱管を構成する材料
と胴を構成する材料の熱膨張係数の違い等によって、運
転時において胴と伝熱管との間に熱膨張差が生じ、それ
らの構成部材に多大な熱応力が発生する場合がある。
2. Description of the Related Art A shell-and-tube type heat exchanger is a so-called fixed tube plate type heat exchanger in which tube plates supporting the ends of heat transfer tubes are fixed to both ends of a body by welding or other methods. is there. In this type of heat exchanger,
Due to the temperature of the body-side fluid and the tube-side fluid and the difference in thermal expansion coefficient between the material forming the heat transfer tube and the material forming the body, a difference in thermal expansion occurs between the body and the heat transfer tube during operation. A large amount of thermal stress may occur in the constituent members.

【0003】このため、そのような多大な熱応力の発生
を防止すベく、図3に示すような熱交換器が開発されて
いる。同図において、符号1は胴、2は外周にフイン2
aが取り付けられた直線状の伝熱管、3は伝熱管2の両
端に取り付けられたフランジ、4は胴側の流体入口、5
は胴側の流体出口、6は管側の流体入口、7は管側の流
体出口、8は架台である。前記胴1の略中央部には外方
に膨出して形成された伸縮継手1aが設けられている。
また、胴1の両端にはフランジ部1b、1bが設けら
れ、これらフランジ部1b、1bは前記伝熱管2の両端
に取り付けられたフランジ3に固定されている。
For this reason, a heat exchanger as shown in FIG. 3 has been developed in order to prevent the occurrence of such a great thermal stress. In the figure, reference numeral 1 is a body, 2 is a fin 2 on the outer circumference.
a is a linear heat transfer tube, 3 is a flange attached to both ends of the heat transfer tube 2, 4 is a fluid inlet on the shell side, 5
Is a fluid outlet on the body side, 6 is a fluid inlet on the tube side, 7 is a fluid outlet on the tube side, and 8 is a mount. An expansion joint 1a formed to bulge outward is provided at a substantially central portion of the body 1.
Further, flanges 1b and 1b are provided at both ends of the body 1, and these flanges 1b and 1b are fixed to flanges 3 attached to both ends of the heat transfer tube 2.

【0004】前記構成の熱交換器では、管側の流体入口
6から供給した流体Aを伝熱管2を通過させる際に、胴
側の流体入口4から供給した流体Bと熱的に接触させ
て、管側の流体Aを所定温度まで加熱する。また、胴側
流体Bと管側流体Aの温度および伝熱管2を構成する材
料と胴1を構成する材料の熱膨張係数の違い等によっ
て、運転時において胴1と伝熱管2との間に熱膨張差が
生じるが、この熱膨張差は、胴1の伸縮継手1aによっ
て吸収され、胴1および伝熱管2等には過大な熱応力は
発生しない。
In the heat exchanger having the above-mentioned structure, when the fluid A supplied from the fluid inlet 6 on the tube side is passed through the heat transfer tube 2, it is brought into thermal contact with the fluid B supplied from the fluid inlet 4 on the shell side. , The fluid A on the tube side is heated to a predetermined temperature. Further, due to the temperature of the body fluid B and the tube side fluid A, the difference in the thermal expansion coefficient between the material forming the heat transfer tube 2 and the material forming the body 1, and the like, there is a gap between the body 1 and the heat transfer tube 2 during operation. Although a difference in thermal expansion occurs, this difference in thermal expansion is absorbed by the expansion joint 1a of the case 1, and excessive heat stress does not occur in the case 1, the heat transfer tube 2, and the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た熱交換器では、胴側流体Bとして高温高圧の流体を用
いる場合、胴1のみならず伸縮継手1aの板厚もそれら
の流体圧力に耐え得るよう厚く設定しなければならず、
この場合、吸収できる伸縮量が小さくなるので伸縮継手
1aとして機能しなくなり、伸縮継手が使用できないこ
とが考えられる。したがって、固定管板式構造の熱交換
器は使用できず、U字型あるいは遊動型の熱交換器等に
変換せざるを得ないが、そのような熱交換器は固定式熱
交換器に比べてコスト高である。
However, in the above heat exchanger, when a high temperature and high pressure fluid is used as the body fluid B, not only the body 1 but also the plate thickness of the expansion joint 1a can withstand those fluid pressures. You have to set it thick,
In this case, since the amount of expansion and contraction that can be absorbed becomes small, it does not function as the expansion joint 1a, and it is conceivable that the expansion joint cannot be used. Therefore, a fixed tube plate type heat exchanger cannot be used and must be converted to a U-shaped or floating type heat exchanger. However, such a heat exchanger is compared to a fixed type heat exchanger. The cost is high.

【0006】本発明は上記事情に鑑みてなされたもので
あり、その目的とするところは、熱交換器の胴の伸縮継
手を不要にし、また伸縮継手の使用ができない高温、高
圧の胴側流体を用いる場合においても固定管板式構造の
熱交換器の使用が可能となる熱交換器の伝熱管を提供す
ることにある。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to eliminate the need for an expansion joint of a heat exchanger barrel and to use a high-temperature, high-pressure cylinder-side fluid in which the expansion joint cannot be used. It is an object of the present invention to provide a heat transfer tube of a heat exchanger that enables the use of a heat exchanger having a fixed tube plate type structure even when using.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
めの、本願発明では、伝熱管の一部が形状記憶材料製の
短管で構成され、かつ運転中に生じる熱応力とは反対方
向のプレストレスが与えられた状態で熱交換器に組み込
まれている構成とした。
In order to achieve such an object, in the present invention, a part of the heat transfer tube is composed of a short tube made of a shape memory material, and the heat transfer tube has a direction opposite to the thermal stress generated during operation. It was configured to be incorporated in the heat exchanger in a prestressed state.

【0008】[0008]

【作用】本願発明の伝熱管が組み込まれた熱交換器にお
いて通常の運転状態になると、例えば、伝熱管の熱膨張
量が胴のそれよりも大きい場合には、伝熱管は予め導入
されたプレストレスによる引張応力から圧縮応力に転ず
る。胴の方は逆に圧縮応力から引張応力に転ずる。しか
し、運転状態におけるそれらに生じる応力の大きさは、
運転前の状態においてプレストレスが導入されない場合
に比べて、初期に存在した反対方向の応力分だけ小さく
なる。
When the heat exchanger incorporating the heat transfer tube of the present invention enters a normal operating state, for example, when the thermal expansion amount of the heat transfer tube is larger than that of the shell, the heat transfer tube is pre-introduced. It changes from tensile stress due to stress to compressive stress. On the other hand, the body changes from compressive stress to tensile stress. However, the magnitude of the stresses that occur in them under operating conditions is
Compared with the case where no prestress is introduced in the state before operation, the stress is reduced by the amount of the stress in the opposite direction that was initially present.

【0009】以下、本発明にかかる伝熱管を図1及び図
2を参照して説明する。なお、これらの図において前記
した従来例と同一構成要素には同一符号を付してその説
明を省略する。
A heat transfer tube according to the present invention will be described below with reference to FIGS. 1 and 2. In these figures, the same components as those of the conventional example described above are designated by the same reference numerals and the description thereof will be omitted.

【0010】伸縮継手を有しない直線状の胴1内に組み
込まれる伝熱管10は、その一部が形状記憶材料製の短
管11で構成されている。短管11を構成する形状記憶
材料は、例えば高温側と低温側で結晶の構造が著しく異
なり、例えば低温側でそれ自身の形状に塑性変形を加え
ても、一定の温度以上に達すると元の形状に戻ってしま
う性質を持つものである。
The heat transfer tube 10 incorporated in the linear case 1 having no expansion joint is partially composed of a short tube 11 made of a shape memory material. The shape memory material forming the short tube 11 has a significantly different crystal structure on the high temperature side and the low temperature side, for example, even if plastic deformation is applied to its own shape on the low temperature side, when the temperature exceeds a certain temperature, It has the property of returning to its shape.

【0011】そして、この伝熱管10は運転前において
運転中に生じる熱応力とは反対方向のプレストレスが与
えられた状態で熱交換器Cに組み込まれている。具体的
には、通常、伝熱管10は胴1よりも熱膨張量が大きい
ので、運転前の状態から運転状態に変わるとき伝熱管1
0には圧縮応力が生じる。したがって、伝熱管10が熱
交換器Cに組み込まれるときは引張応力が生じるように
プレストレスが与えられる。
The heat transfer tube 10 is incorporated in the heat exchanger C in a state in which a prestress in the direction opposite to the thermal stress generated during the operation is applied before the operation. Specifically, since the heat transfer tube 10 usually has a larger thermal expansion amount than the case 1, the heat transfer tube 1 is changed from the state before operation to the operation state.
At 0, compressive stress occurs. Therefore, when the heat transfer tube 10 is incorporated into the heat exchanger C, prestress is applied so that tensile stress is generated.

【0012】前記伝熱管10を、運転前において運転中
に生じる熱応力とは反対方向のプレストレスが与えられ
た状態で熱交換器Cに組み込む方法について説明する。
図1に示すように、まず、板状の形状記憶材料13の両
端を溶接して短管11を作り、この形状記憶材料の変態
温度以下の温度域において、短管11に軸線に沿って引
張荷重を与えて塑性変形させる。そして、この塑性変形
させた短管11を伝熱管10の一部に組み込む。つま
り、短管11の両端を伝熱管構成材11a、11bの端
部に溶接し、それらが一本のパイプ状となるように形成
する。
A method for incorporating the heat transfer tube 10 into the heat exchanger C in a state in which a prestress in the direction opposite to the thermal stress generated during the operation before the operation is applied will be described.
As shown in FIG. 1, first, both ends of a plate-shaped shape memory material 13 are welded to form a short tube 11, and the short tube 11 is stretched along the axis in a temperature range below the transformation temperature of the shape memory material. Apply load to cause plastic deformation. Then, the plastically deformed short tube 11 is incorporated into a part of the heat transfer tube 10. That is, both ends of the short tube 11 are welded to the ends of the heat transfer tube constituent members 11a and 11b so that they are formed into a single pipe shape.

【0013】前記のようにして作った伝熱管10の両端
にフランジ3を固定し、該フランジ3を胴1のフランジ
部1bに固定することによって、伝熱管10を熱交換器
C内に組み込む。なお、この状態では伝熱管10にプレ
ストレスは与えられていない。
The heat transfer tube 10 is assembled in the heat exchanger C by fixing the flanges 3 to both ends of the heat transfer tube 10 produced as described above and fixing the flanges 3 to the flange portion 1b of the case 1. In this state, the heat transfer tube 10 is not prestressed.

【0014】そして、熱交換器Cに組み込まれた伝熱管
10に対して、該伝熱管の変態点を越えるように加熱す
る(変態点が常温よりも低い場合には冷却する)。これ
により、伝熱管10は引張加工前の形状に戻り、この結
果、伝熱管10に引張応力が生じるようにプレストレス
が与えられる。これと同時に、胴1には圧縮応力が生じ
る。以上の方法によって、熱交換器Cに組み込まれた伝
熱管10にプレストレスを与えることができる。
Then, the heat transfer tube 10 incorporated in the heat exchanger C is heated so as to exceed the transformation point of the heat transfer tube (when the transformation point is lower than room temperature, it is cooled). As a result, the heat transfer tube 10 returns to the shape before the tensile work, and as a result, the heat transfer tube 10 is prestressed so that a tensile stress is generated. At the same time, a compressive stress is generated in the body 1. By the above method, the heat transfer tube 10 incorporated in the heat exchanger C can be prestressed.

【0015】前記伝熱管10を備えた熱交換器Cにおい
て通常の運転状態になり、例えば胴側の流体入口4およ
び管側の流体入口6からそれぞれ流体A、Bが導入され
ると、伝熱管10及び胴1の温度が上昇する。このと
き、伝熱管10の熱膨張が胴1のそれよりも大きいの
で、伝熱管10は予め導入されたプレストレスによる引
張応力圧縮応力に転ずる。一方、胴1の方は、逆に圧縮
応力から引張応力に転ずる。しかし、それらの運転状態
における応力の大きさは、運転前にプレストレスが導入
されず応力が全くない場合に比べて、初期に存在した反
対向きの応力の分だけ小さくなる。このため、プレスト
レスの値を適宜設定することにより、熱交換器の胴の伸
縮継手を不要にし、また伸縮継手の使用ができない高
温、高圧の胴側流体を用いる場合においても固定管板式
構造の熱交換器の使用が可能となる。
When the heat exchanger C equipped with the heat transfer tube 10 is in a normal operating state and fluids A and B are introduced from the fluid inlet 4 on the shell side and the fluid inlet 6 on the tube side, respectively, the heat transfer tube The temperature of 10 and the body 1 rises. At this time, the thermal expansion of the heat transfer tube 10 is larger than that of the case 1, so that the heat transfer tube 10 turns into tensile stress and compressive stress due to pre-stress introduced in advance. On the other hand, in the case of the body 1, on the contrary, the compressive stress changes to the tensile stress. However, the magnitude of the stress in those operating states becomes smaller by the amount of the opposite stress that was initially present than in the case where no prestress was introduced before the operation and there was no stress. Therefore, by appropriately setting the prestress value, the expansion joint of the body of the heat exchanger becomes unnecessary, and even when using the high temperature and high pressure side fluid that cannot be used for the expansion joint, the fixed tube plate structure A heat exchanger can be used.

【0016】なお、上記実施例では、伝熱管10の熱膨
張量が胴1のそれよりも大きい場合を例にとって説明し
たが、これに限られることなく、逆に伝熱管10の熱膨
張量が胴1のそれよりも小さい場合にも、本発明は適用
可能である。この場合、プレストレスの方向は前記実施
例とは逆に、運転前の熱交換器Cへ組付状態において伝
熱管10に圧縮応力が生じるように、形状記憶合金製の
短管11に対し予め圧縮加工を施せばよい。
In the above embodiment, the case where the heat expansion amount of the heat transfer tube 10 is larger than that of the case 1 has been described as an example. However, the heat expansion amount of the heat transfer tube 10 is not limited to this. The present invention can be applied even when it is smaller than that of the case 1. In this case, the direction of the prestress is opposite to that of the above-described embodiment, so that the compressive stress is generated in the heat transfer tube 10 in the assembled state to the heat exchanger C before the operation so that the short tube 11 made of the shape memory alloy is preliminarily set. It may be compressed.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、伝
熱管の一部が形状記憶材料製の短管で構成され、かつ運
転中に生じる熱応力とは反対方向のプレストレスが与え
られた状態で熱交換器に組み込まれているから、通常の
運転状態になると、例えば、伝熱管の熱膨張量が胴のそ
れよりも大きい場合、伝熱管は予め導入されたプレスト
レスによる引張応力から圧縮応力に転じ、胴の方は逆に
圧縮応力から引張応力に転ずることとなり、それらの運
転状態における応力の大きさは運転前の状態においてプ
レストレスが導入されない場合に比べて、初期に存在し
た反対方向の応力分だけ小さくなる。このため、プレス
トレスの値を適宜設定することにより、熱交換器の胴の
伸縮継手を不要にすることができ、また伸縮継手の使用
ができない高温、高圧の胴側流体を用いる場合において
も固定管板式構造の熱交換器の使用が可能となる等の優
れた効果を奏する。
As described above, according to the present invention, a part of the heat transfer tube is composed of a short tube made of a shape memory material, and a prestress in the direction opposite to the thermal stress generated during operation is applied. Since it is installed in the heat exchanger in a state where it is in a normal operating state, for example, when the thermal expansion amount of the heat transfer tube is larger than that of the shell, the heat transfer tube is It turned into compressive stress, and the body changed from compressive stress to tensile stress, and the magnitude of the stress in those operating conditions existed earlier than in the case where prestress was not introduced before operating. It becomes smaller by the amount of stress in the opposite direction. Therefore, by setting the prestress value appropriately, it is possible to eliminate the need for expansion joints on the shell of the heat exchanger, and to fix them even when using high-temperature, high-pressure fluid on the shell side, where expansion joints cannot be used. It has excellent effects such as the use of a heat exchanger having a tube plate structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のかかる伝熱管の一実施例の製作手順を
示す工程図である。
FIG. 1 is a process drawing showing a manufacturing procedure of an embodiment of such a heat transfer tube of the present invention.

【図2】本発明にかかる伝熱管を組み込んだ熱交換器の
断面図である。
FIG. 2 is a cross-sectional view of a heat exchanger incorporating the heat transfer tube according to the present invention.

【図3】従来の熱交換器の一例を示す断面図である。FIG. 3 is a sectional view showing an example of a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1 胴 4 胴側の流体入口 5 胴側の流体出口 6 管側の流体入口 7 管側の流体出口 10 伝熱管 11 形状記憶合金製の短管 C 熱交換器 1 Body 4 Body-side fluid inlet 5 Body-side fluid outlet 6 Tube-side fluid inlet 7 Tube-side fluid outlet 10 Heat transfer tube 11 Short pipe made of shape memory alloy C Heat exchanger

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 伝熱管の一部が形状記憶材料製の短管で
構成され、かつ、運転中に生じる熱応力とは反対方向の
プレストレスが与えられた状態で熱交換器に組み込まれ
ていることを特徴とする熱交換器の伝熱管。
1. A part of a heat transfer tube is formed of a short tube made of a shape memory material, and the heat transfer tube is incorporated into a heat exchanger under a prestress in a direction opposite to a thermal stress generated during operation. A heat transfer tube of a heat exchanger characterized by being.
JP17072093A 1993-07-09 1993-07-09 Heat transfer pipe for heat exchanger Withdrawn JPH0727493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17072093A JPH0727493A (en) 1993-07-09 1993-07-09 Heat transfer pipe for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17072093A JPH0727493A (en) 1993-07-09 1993-07-09 Heat transfer pipe for heat exchanger

Publications (1)

Publication Number Publication Date
JPH0727493A true JPH0727493A (en) 1995-01-27

Family

ID=15910150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17072093A Withdrawn JPH0727493A (en) 1993-07-09 1993-07-09 Heat transfer pipe for heat exchanger

Country Status (1)

Country Link
JP (1) JPH0727493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538890A (en) * 2014-12-22 2017-12-28 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH Intercooler assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538890A (en) * 2014-12-22 2017-12-28 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH Intercooler assembly

Similar Documents

Publication Publication Date Title
US4377894A (en) Method of lining inner wall surfaces of hollow articles
US4332073A (en) Method of producing multiple-wall composite pipes
CN100549472C (en) The black box that is used for materials having different thermal expansion coefficient
JP2556825B2 (en) Metal sealing element
US6286556B1 (en) High-pressure fuel injection pipe for diesel engine
US4246959A (en) Method and apparatus for isolation of external loads in a heat exchanger manifold system
EP0004696B1 (en) Ultra high vacuum seal arrangement
US4283079A (en) Ultra high vacuum seal arrangement
US4724293A (en) Method of making a pressure vessel
JPH0727493A (en) Heat transfer pipe for heat exchanger
JPH0522158B2 (en)
GB2079204A (en) Methods of Securing a Tube in the Bore of a Wall
JPS6161037B2 (en)
US3830529A (en) Expansion joint for pipes
JPH10103325A (en) Method for fastening flange by bolt
JPH02125194A (en) Leakage preventing device for connection section
KR100535707B1 (en) Double pipe for high pressure and temperature
JPS6118118B2 (en)
JPH0451866Y2 (en)
JPS5857253B2 (en) How to line odd-shaped materials
JPS6362992A (en) Low residual stress type pipe body connecting structure
SU1032324A1 (en) Method of fixing pipe in opening of double tube plate of heat exchanger
JPH0464794A (en) Leak preventing structure for weld joint part of tube
JPS5819416B2 (en) Triple pipe manufacturing method
JPS636595Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003