JPS6363728A - Highly dielectric resin - Google Patents

Highly dielectric resin

Info

Publication number
JPS6363728A
JPS6363728A JP61205907A JP20590786A JPS6363728A JP S6363728 A JPS6363728 A JP S6363728A JP 61205907 A JP61205907 A JP 61205907A JP 20590786 A JP20590786 A JP 20590786A JP S6363728 A JPS6363728 A JP S6363728A
Authority
JP
Japan
Prior art keywords
resin
titanate
capacitor
stannate
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61205907A
Other languages
Japanese (ja)
Other versions
JPH0770410B2 (en
Inventor
Masaki Adachi
正樹 安達
Koichi Yoneyama
米山 耕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61205907A priority Critical patent/JPH0770410B2/en
Publication of JPS6363728A publication Critical patent/JPS6363728A/en
Publication of JPH0770410B2 publication Critical patent/JPH0770410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title injection-moldable resin which has a high dielectric constant and can give a small high-performance capacitor, by kneading an injection-moldable resin with a specified ceramics dielectric member. CONSTITUTION:A highly dielectric resin 13 is obtained by kneading an injection- moldable resin 11 (e.g., a mixture of polybutylene terephthalate with a glass fiber) with at least one powdery or fibrous ceramics dielectric member 12 selected from among BaTiO3, BaSnO3, BaZrO3, CaZrO3, CaSnO3, SrTiO3, PbTiO3, La2O3.2TiO2, CeO2, CaTiO3, MgTiO3, Bi2(SnO3)3, Bi2(TiO3)3, NiSnO3, MgZrO3 and MgSnO3. A capacitor 20 is obtained by embedding electrodes 15 and 16 fitted with lead wires 17 and 18 in the resin 13.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はセラミックスコンデンサやフィルタなどに好適
な高誘電体樹脂に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a high dielectric resin suitable for ceramic capacitors, filters, and the like.

(従来の技術) セラミックス誘電体部材は主にコンデンサやフィルタな
どに使用されるが、例えばチタン酸バリウム(BaTi
Os)の場合につき述べると、一般に第5図に示すよう
に、板状に形成したセラミックス誘電体部材からなるセ
ラミックス素子(1)の対向面(2)、 t3)に金属
をメッキあるいは蒸着などにより被着して電極(4)、
(5)を設けてコンデンサを形成している。このような
コンデンサは第4図に示す二うに非常に多工程を経て製
品となる。略述すると、素原料である酸化チタン粉末と
炭酸バリウム粉末とを混合粉砕し、仮焼、微粉砕してチ
タン酸バリウムからなる仮焼原料を作り、これにバイン
ダ。
(Prior art) Ceramic dielectric members are mainly used for capacitors, filters, etc. For example, barium titanate (BaTi)
In the case of Os), generally, as shown in Fig. 5, metal is plated or vapor-deposited on the facing surface (2), t3) of a ceramic element (1) made of a ceramic dielectric member formed into a plate shape. deposited with an electrode (4);
(5) is provided to form a capacitor. Such a capacitor is made into a product through a very large number of steps as shown in FIG. Briefly, titanium oxide powder and barium carbonate powder, which are raw materials, are mixed and ground, calcined and finely pulverized to produce a calcined raw material made of barium titanate, and a binder is added to this.

添加物を混合して粉砕し、所定の形に成形して焼成しセ
ラミックス素子(1)を作り、これに塗布、焼付けなど
により両面に電極(4)、 <5)を被着し、これに端
子(7)、 C8)をはんだ付けした後、樹脂塗装をし
てセラミックスコンデンサが完成する。このように非常
に多工程を経るので、コストが高く、これの簡素化が要
望されている。これに対して第6図に示すように、射出
成形により熱可塑性樹脂(9)で封入した形式のものは
、製造工程は非常に簡素化されるが、樹脂自体の誘電本
書が4程度であるため静電容量Cが小さい。この不都合
を解決するため、表面積を大きくするか、もしくは電極
間隙を小さくしなければならないが、表面積を大にする
と、スペース的に問題が生じる。また電極間隙を小さく
すると、樹脂(9)がその間に充填されにくくなり、ま
た高耐電圧において使用する場合、極間をせまくすると
、リークを流が発生しやすくなる0結局このような生産
性の高い方法を用いると、小形化とか性能の向上に対し
て制約があるという不都合がある。
Additives are mixed, crushed, formed into a predetermined shape, and fired to create a ceramic element (1). Electrodes (4) (<5) are applied to both sides of this by coating and baking, and then After soldering the terminals (7) and C8), a resin coating is applied to complete the ceramic capacitor. Since this process involves a large number of steps, the cost is high, and there is a demand for simplification. On the other hand, as shown in Figure 6, the manufacturing process is greatly simplified for the type encapsulated with thermoplastic resin (9) by injection molding, but the dielectric strength of the resin itself is about 4. Therefore, the capacitance C is small. In order to solve this problem, the surface area must be increased or the electrode gap must be decreased, but increasing the surface area causes problems in terms of space. Furthermore, if the gap between the electrodes is made small, it becomes difficult for the resin (9) to be filled between them, and when used at a high withstand voltage, a narrow gap between the electrodes makes it easier for leaks to occur. If a more expensive method is used, there are disadvantages in that there are restrictions on miniaturization and performance improvement.

(発明が解決しようとする問題点) 上記したように、樹脂で封入したコンデンサは小形化、
性捕同上に制約があるという不都合があった。
(Problems to be solved by the invention) As mentioned above, capacitors sealed with resin can be made smaller and
There was an inconvenience in that there were restrictions on sexual confinement.

本発明は上述の不都合を除去するためになされたもので
、射出成形により工程の簡素化を計るとともに、小形で
性能の向上したコンデンサが得られる高誘電体樹脂を提
供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned disadvantages, and aims to provide a high dielectric resin that simplifies the process by injection molding and allows the production of a compact capacitor with improved performance.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、射出成形可能な樹脂に粉体状もしくは繊維状
のセラミックス誘電体部材を練込んだ高誘電体樹脂であ
る。
(Means for Solving the Problems) The present invention is a high dielectric resin in which a powdery or fibrous ceramic dielectric member is kneaded into an injection moldable resin.

(作用) ベースとなる射出成形可能な樹脂に、セラミックス誘電
体部材を練込むことにより樹脂単体よりもその誘電率を
著しく大としたので、射出成形(こよし生産性を高める
とともに、誘電率が高いので、樹脂の充填可能な電極間
隙を保りても小形で高性能なコンデンサが得られる。
(Function) By kneading the ceramic dielectric material into the base injection moldable resin, we have made the dielectric constant significantly higher than that of the resin alone, which increases the productivity of injection molding and also increases the dielectric constant. Since it is expensive, a small and high-performance capacitor can be obtained even if the gap between the electrodes is maintained so that resin can be filled.

(実施例) 以下、本発明の詳細を、第1図、第2図、第3図を参照
しながら実施例により説明する。
(Example) Hereinafter, details of the present invention will be described by way of an example with reference to FIGS. 1, 2, and 3.

射出成形可能な樹脂Iとして、ポリブチレンテレフタレ
ートとガラス繊維とを重量比で70:30としたPBT
GF30%を用いた。これにセラミックス誘電体部材C
Lzとしてチタン酸バリウム(BaTiO8)の粉体を
体積比でPBTGF30%とチタン酸バリウムとが第1
の実施例として90:10. 第2の実施例として80
:20.第3の実施例として70:30の割合で混合し
、本発明の実施例として3種類の高誘電体樹脂Q3を得
た。この高誘電体樹脂←Qを用いて第1図に示す封入形
のコンデンサ、すなわち高誘電体樹脂αjに電極(至)
、αeを封入し、これら電柵αs、qeに導線αη、C
1υをそれぞれ取付けたコンデンサ田を得た。
PBT with a weight ratio of polybutylene terephthalate and glass fiber of 70:30 as injection moldable resin I
GF30% was used. Ceramic dielectric member C
As Lz, barium titanate (BaTiO8) powder is used as PBTGF30% and barium titanate in volume ratio.
As an example of 90:10. 80 as a second example
:20. As a third example, three types of high dielectric resin Q3 were obtained as an example of the present invention by mixing at a ratio of 70:30. Using this high dielectric resin ← Q, we can create an encapsulated capacitor as shown in Figure 1, that is, electrodes (to) the high dielectric resin αj.
, αe, and conductive wires αη, C are enclosed in these electric fences αs, qe.
A capacitor field with 1υ attached to each was obtained.

このコンデンサ(至)の製造工程を第2図により略述す
る。第2図左側は従来例において述べたセラミックス誘
電体部材αりの粉末、すなわちチタン酸)Z IJウム
(BaTi03)の粉末(平均粒径1μ罵)を得る工程
で従来例と全く同様なので説明は省略する。次に第2図
右側に示すようにこのセラミックス誘電体部材(13の
粉末を上述したPBTGF30%のat脂α9に練込む
。この際の練込む割合は各実施例毎に相違するが、これ
は前述したとおりである。
The manufacturing process of this capacitor will be briefly described with reference to FIG. The left side of Fig. 2 shows the process for obtaining the ceramic dielectric member α powder described in the conventional example, that is, the powder (average particle size 1 μm) of titanate)ZIJium (BaTi03), which is exactly the same as the conventional example, so the explanation will not be given. Omitted. Next, as shown on the right side of Fig. 2, the powder of this ceramic dielectric member (13) is kneaded into the above-mentioned PBTGF 30% at fat α9. As mentioned above.

この練込んだ高誘電体樹脂α3を用いて射出成形により
第1図に示すコンデンサ1jが得られる。
A capacitor 1j shown in FIG. 1 is obtained by injection molding using this kneaded high dielectric resin α3.

混合物の誘電率εは一般に下記のように計算される。The dielectric constant ε of a mixture is generally calculated as follows.

toy g = X1Lay f、 4−X2Lay 
g2・・−・・・・・・ (1)(1)式でal、@、
は成分物質の誘電率、Xl、為  は成分物質の体積分
率である。
toy g = X1Lay f, 4-X2Lay
g2・・・・・・・・・ (1) In formula (1), al, @,
is the dielectric constant of the component material, Xl is the volume fraction of the component material.

さてチタン酸バリウムは第4図に示すようにその誘電率
ε、は常温で2000.120℃で10000という高
い値を示し、またPBTGF30チの樹脂の誘電率へは
常温で4である。第1図に示すコンデンサ(イ)の電極
面積5=lOd、電極間隙d = 1 cyNとし各実
施例における常温における誘電率と静電容量とを計算す
ると、第1表のようになる。
Now, as shown in FIG. 4, barium titanate has a dielectric constant ε of 2000 at room temperature and a high value of 10000 at 120° C., and the dielectric constant of PBTGF30 resin is 4 at room temperature. If the electrode area of the capacitor (a) shown in FIG. 1 is 5=lOd and the electrode gap d=1 cyN, the dielectric constant and capacitance at room temperature for each example are calculated as shown in Table 1.

第  1  表 この表に示すように本実施例の高誘電体樹脂(13を用
いたものはポリブチレンテレフタレートガラス俄維30
チからなる樹脂(Ll)単体のものに比べ静電容量が大
となる。
Table 1 As shown in this table, the high dielectric resin of this example (13) was made of polybutylene terephthalate glass fiber 30.
The capacitance is larger than that of a single resin (Ll) consisting of

なお、上述の実施例においては、セラミックス誘電体部
材鰺としてチタン酸バリウム(BaTiO,)を用いた
が、その他スズ酸バリウム(Ba Sn O,) 。
In the above embodiment, barium titanate (BaTiO,) was used as the ceramic dielectric member, but barium stannate (BaSnO,) may also be used.

ジルコン戯バリウム(BaZrOl) 、ジルコン酸カ
ルシウム(CaZrOs) 、 xズ酸カルシウム(C
aSnO3)、チタン酸ストロンチウム(S r T 
103 ) +チタン酸鉛(pb’rio、) * チ
タ7a57タ7 (La、O,,2TiO3)、酸化セ
シウム(CeO2)、チタン酸カルシfy ム(CaT
i O3)、チタン酸マグネシウム(MpTiO,) 
、スズ酸ビスマス<Bit (8nOi)s) +チタ
ン酸ビx マx (Bi、 (Ti 03)3) 。
Barium zirconate (BaZrOl), calcium zirconate (CaZrOs), calcium stannate (C
aSnO3), strontium titanate (S r T
103 ) + Lead titanate (pb'rio, ) * Titanate7a57Ta7 (La, O,,2TiO3), Cesium oxide (CeO2), Calcium titanate (CaT
iO3), magnesium titanate (MpTiO,)
, bismuth stannate<Bit (8nOi)s) + bix titanate (Bi, (Ti 03)3).

スス酸ニッケル(NiSnO,)、 ジルコン酸マグネ
シウム(M7ZrO,) 、 スズ散マクネ’y ラム
(MP Sn O3) すどを一種または複数種を選択
して練込んでもよい0またペースとなる樹脂αυも熱度
=性、熱硬化性iど射出成形可能なものならよく、セラ
ミックス8電体部材は繊維状でもよい。さらにまた本実
施例はコンデンサにつき説明したが、フィルタに適用し
てもよりよいことはもちろんである。
Nickel sulfate (NiSnO,), Magnesium zirconate (M7ZrO,), Tin powder (MP SnO3) You can select one or more types of suds and mix them in.Also, resin αυ as a paste. Any material that can be injection-molded, such as heat, thermosetting property, etc., may be used, and the ceramic 8-electroelectric member may be in the form of a fiber. Furthermore, although this embodiment has been described with reference to a capacitor, it is of course possible to apply the present invention to a filter.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の高誘電体樹脂は、射出成
形可能な樹脂にセラミックス誘電体部材を練込んで構成
したので、誘電率が窩り、射出成形も可能なので、製造
工程が簡単になり、原価低減、生産性向上に益するとこ
ろ極めて犬である。
As detailed above, the high dielectric resin of the present invention is made by kneading a ceramic dielectric member into an injection moldable resin, so the dielectric constant is uniform and injection molding is possible, so the manufacturing process is simple. This is extremely beneficial in reducing costs and improving productivity.

また従来の樹脂に比べ誘電率が大なので、コンデンサの
1電榎面積、t!極間隙ともに小さくできるので、小形
高性能なコンデンサを得ることができる。
In addition, since the dielectric constant is higher than that of conventional resins, the area of one capacitor, t! Since both the electrode gap can be made small, a compact and high-performance capacitor can be obtained.

また十分電極間隙を設定したものは耐電圧、容量ともに
大なものが得られる0
In addition, if the electrode gap is set sufficiently, a large withstand voltage and capacity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の各実施例を用いて製作したコンデンサ
の縦断面図、第2図は同じく各実施例を用いたコンデン
サの製造工程のチャート図、第3図は同じく各実施例に
用いたチタン酸バリウムの誘電率と温度との関係を示す
線図、第4図は従来のコンデンサの斜視図、第5図は同
じくコンデンサの製造工程のチャート図、第6図は同じ
くコンデンサの縦断面図である。 I・・・樹弓旨、(L3・・・セラミックス誘電体部材
。 αj・・・高誘電体樹脂。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 第2図 ダ11L(°Cン 第 3 図 ■ゴロ 第6図 圓】口 4 図 第5図
FIG. 1 is a vertical cross-sectional view of a capacitor manufactured using each embodiment of the present invention, FIG. 2 is a chart showing the manufacturing process of a capacitor using each embodiment, and FIG. Figure 4 is a perspective view of a conventional capacitor, Figure 5 is a chart showing the capacitor manufacturing process, and Figure 6 is a longitudinal cross-section of the same capacitor. It is a diagram. I...Jiyuji, (L3...Ceramic dielectric member. αj...High dielectric resin. Agent Patent attorney Noriyuki Chika Yudo Kikuo Takehana Figure 2 da 11L (°Cn 3rd) Figure ■ Grounder Figure 6 Circle] Mouth 4 Figure Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)射出成形可能な樹脂に粉体状もしくは繊維状のセ
ラミックス誘電体部材を練込んだことを特徴とする高誘
電体樹脂。
(1) A high dielectric resin characterized by kneading a powdery or fibrous ceramic dielectric member into an injection moldable resin.
(2)セラミックス誘電体部材はチタン酸バリウム(B
aTiO_3)、スズ酸バリウム(BaSnO_3)、
ジルコン酸バリウム(BaZrO_3)、ジルコン酸カ
ルシウム(CaZrO_3)、スズ酸カルシウム(Ca
SnO_3)、チタン酸ストロンチウム(SrTiO_
3)、チタン酸鉛(PbTiO_3)、チタン酸ランタ
ン(La_2O_3・2TiO_2)、酸化セシウム(
CeO_2)、チタン酸カルシウム(CaTiO_3)
、チタン酸マグネシウム(MgTiO_3)、スズ酸ビ
スマス(Bi_2(SnO_3)_3)、チタン酸ビス
マス(Bi_2(TiO_3)_3)、スズ酸ニッケル
(NiSnO_3)、ジルコン酸マグネシウム(MgZ
rO_3)、スズ酸マグネシウム(MgSnO_3)の
中の一種もしくは複数種からなることを特徴とする特許
請求の範囲第1項記載の高誘電体樹脂。
(2) The ceramic dielectric member is barium titanate (B
aTiO_3), barium stannate (BaSnO_3),
Barium zirconate (BaZrO_3), calcium zirconate (CaZrO_3), calcium stannate (Ca
SnO_3), strontium titanate (SrTiO_
3), lead titanate (PbTiO_3), lanthanum titanate (La_2O_3・2TiO_2), cesium oxide (
CeO_2), calcium titanate (CaTiO_3)
, magnesium titanate (MgTiO_3), bismuth stannate (Bi_2(SnO_3)_3), bismuth titanate (Bi_2(TiO_3)_3), nickel stannate (NiSnO_3), magnesium zirconate (MgZ
The high dielectric resin according to claim 1, characterized in that the resin is made of one or more of the following: rO_3) and magnesium stannate (MgSnO_3).
JP61205907A 1986-09-03 1986-09-03 Capacitor Expired - Lifetime JPH0770410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61205907A JPH0770410B2 (en) 1986-09-03 1986-09-03 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205907A JPH0770410B2 (en) 1986-09-03 1986-09-03 Capacitor

Publications (2)

Publication Number Publication Date
JPS6363728A true JPS6363728A (en) 1988-03-22
JPH0770410B2 JPH0770410B2 (en) 1995-07-31

Family

ID=16514728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205907A Expired - Lifetime JPH0770410B2 (en) 1986-09-03 1986-09-03 Capacitor

Country Status (1)

Country Link
JP (1) JPH0770410B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962122A (en) * 1995-11-28 1999-10-05 Hoechst Celanese Corporation Liquid crystalline polymer composites having high dielectric constant
US5965273A (en) * 1997-01-31 1999-10-12 Hoechst Celanese Corporation Polymeric compositions having a temperature-stable dielectric constant
GB2337756A (en) * 1998-05-29 1999-12-01 Nokia Mobile Phones Ltd Composite injection mouldable material; antennae
US6476774B1 (en) 1998-05-29 2002-11-05 Nokia Mobile Phones Limited Composite injection mouldable material
KR100447874B1 (en) * 2000-10-16 2004-09-08 삼화콘덴서공업주식회사 Method for Producing Dielectric Ceramic Capacitor to Couple Communication Signal in Power Line Communication
WO2009024920A3 (en) * 2007-08-20 2009-05-22 Sabic Innovative Plastics Ip High dielectric constant thermoplastic composition, methods of manufacture thereof and articles comprising the same
CN102101775A (en) * 2010-12-08 2011-06-22 汕头高新区松田实业有限公司 Low-loss high-voltage ceramic capacitor dielectric

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962122A (en) * 1995-11-28 1999-10-05 Hoechst Celanese Corporation Liquid crystalline polymer composites having high dielectric constant
US5965273A (en) * 1997-01-31 1999-10-12 Hoechst Celanese Corporation Polymeric compositions having a temperature-stable dielectric constant
GB2337756A (en) * 1998-05-29 1999-12-01 Nokia Mobile Phones Ltd Composite injection mouldable material; antennae
GB2337756B (en) * 1998-05-29 2002-08-28 Nokia Mobile Phones Ltd Composite injection mouldable material
US6476774B1 (en) 1998-05-29 2002-11-05 Nokia Mobile Phones Limited Composite injection mouldable material
KR100447874B1 (en) * 2000-10-16 2004-09-08 삼화콘덴서공업주식회사 Method for Producing Dielectric Ceramic Capacitor to Couple Communication Signal in Power Line Communication
WO2009024920A3 (en) * 2007-08-20 2009-05-22 Sabic Innovative Plastics Ip High dielectric constant thermoplastic composition, methods of manufacture thereof and articles comprising the same
CN102101775A (en) * 2010-12-08 2011-06-22 汕头高新区松田实业有限公司 Low-loss high-voltage ceramic capacitor dielectric

Also Published As

Publication number Publication date
JPH0770410B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
JPS6363728A (en) Highly dielectric resin
US20190300437A1 (en) Dielectric composition and electronic component
JPH0137350B2 (en)
GB2123400A (en) Dielectric ceramic composition
JPH0778509A (en) Orientative dielectric porcelain and manufacture thereof
CN102120698B (en) Barium zirconate-based medium and high voltage ceramic dielectric capacitor material
DE2037348C3 (en) Dielectric ceramic material
JPS63244605A (en) High dielectric strength capacitor
JPS6051207B2 (en) High dielectric constant porcelain composition
JPS6133249B2 (en)
CN102126853A (en) Barium titanate-based medium-and-high-voltage ceramic capacitor material
JPH01114014A (en) High withstand voltage capacitor
JPH0571538B2 (en)
JPS5815078A (en) High dielectric constant ceramic dielectric composition
JPS6051202B2 (en) High dielectric constant porcelain composition
JP2567914B2 (en) Ferroelectric ceramics
JP2719594B2 (en) High dielectric constant porcelain composition
JP3333017B2 (en) Dielectric ceramic composition for temperature compensation
JPH01114015A (en) High withstand voltage capacitor
JPS61237304A (en) Dielectric ceramic composition
JPS6051205B2 (en) High dielectric constant porcelain composition
JP2784864B2 (en) Dielectric porcelain and porcelain capacitor
KR940011696B1 (en) Dielectric composite for compensating the temperature
JPH0522667B2 (en)
JPS5971204A (en) Barium titanate high dielectric porcelain composition