JPS6362866A - Method and device for forming thin carbon film - Google Patents

Method and device for forming thin carbon film

Info

Publication number
JPS6362866A
JPS6362866A JP20755586A JP20755586A JPS6362866A JP S6362866 A JPS6362866 A JP S6362866A JP 20755586 A JP20755586 A JP 20755586A JP 20755586 A JP20755586 A JP 20755586A JP S6362866 A JPS6362866 A JP S6362866A
Authority
JP
Japan
Prior art keywords
counter electrode
carbon
substrate
vacuum chamber
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20755586A
Other languages
Japanese (ja)
Other versions
JPH0684538B2 (en
Inventor
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP20755586A priority Critical patent/JPH0684538B2/en
Publication of JPS6362866A publication Critical patent/JPS6362866A/en
Publication of JPH0684538B2 publication Critical patent/JPH0684538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a good-quality thin carbon film on a base plate by shielding ultraviolet rays of plasma from the base plate in case of causing plasma between a carbon target and a counter electrode in a vacuum chamber having the gaseous atmosphere exhausted at low pressure. CONSTITUTION:Plural pieces of circular base plates 10 made of quartz glass are set on an annular holding part 9 of the base plates in a vacuum chamber 1 and heated. Simultaneously the inside of the vacuum chamber 1 is exhausted and held at the prescribed pressure by regulating a valve 3 and introducing gaseous H2. Then electrical discharge is performed by impressing DC voltage between a circular carbon target 5 and a similarly shaped counter electrode 8 to sputter the carbon target 5 with hydrogen plasma. The ratio of the diameter of the counter electrode 8 to the diameter of the target 5 is regulated to about >=0.75 and such a state that hydrogen plasma and ultraviolet rays are shielded from the base plate 10 is formed. Thereby an amorphous thin carbon film which is homogeneous and transparent and has a broad optical energy gap is formed on the base plate 10.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、ケミカルスパッタ法により基板上にダイヤモ
ンド及びアモルファスダイヤモンド炭素薄膜を形成する
方法及びその装置の改良に関し、特に生起されたプラズ
マの紫外線l炭素薄膜を形成すべき基板から遮蔽し、良
質の炭素薄膜を形成する方法及びその装置【関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for forming diamond and amorphous diamond carbon thin films on a substrate by chemical sputtering, and an improvement in the apparatus thereof, and in particular to an improvement in the method and apparatus for forming diamond and amorphous diamond carbon thin films on substrates by chemical sputtering. A method and apparatus for forming a high quality carbon thin film by shielding the carbon thin film from a substrate on which it is to be formed.

B0発明の概要 本発明は、第1に、低圧励気ガス雰囲気の真空室内にお
いてカーボンターゲットと対向電極との間に直流電圧な
印加してプラズマl生起させ、真空室内に配置した基板
上に炭素薄膜を形成するスパッタ法において、 前記プラズマの紫外線ン前記基板から遮蔽し友状態で行
うことにより、 広い光学ギヤツブ!持ち、また紫外可視吸光スペクトル
より算出したBand tailが急峻で、半導体材料
として使用するのに適したアモルファス状炭素膜を得る
ことができるようにし、第2に、低圧励気ガス雰囲気の
真空室内にカーボンターゲットと対向電極とを設け、両
者間に直流電圧を印加してプラズマl生起させるように
すると共に1真空富内に炭素薄膜を形成すべき基板な配
置するようKし几スパッタ装置において、前記基板の保
持部を対向電極の反カーボンターゲツト側圧設け、プラ
ズマから生じる紫外線を対向電極により基板から遮蔽す
るようにスパッタ装置な構成することにより、 上記のようなアモルファス状炭素膜の形成方法な冥施す
るための構造簡単なスパッタ装置l提供するものである
B0 Summary of the Invention The present invention firstly involves applying a DC voltage between a carbon target and a counter electrode in a vacuum chamber with a low-pressure excitation gas atmosphere to generate plasma, and depositing carbon onto a substrate placed in the vacuum chamber. In the sputtering method for forming thin films, by shielding the ultraviolet rays of the plasma from the substrate, a wide range of optical gears can be achieved. In addition, it is possible to obtain an amorphous carbon film that has a sharp band tail calculated from an ultraviolet-visible absorption spectrum and is suitable for use as a semiconductor material. In the above-mentioned sputtering apparatus, a carbon target and a counter electrode are provided, a DC voltage is applied between them to generate plasma, and a substrate on which a carbon thin film is to be formed is placed within a vacuum. The method for forming an amorphous carbon film as described above can be achieved by configuring the sputtering apparatus so that the holding part of the substrate is provided with a side pressure opposite to the carbon target of the counter electrode, and the ultraviolet rays generated from the plasma are shielded from the substrate by the counter electrode. A sputtering apparatus with a simple structure is provided.

C0従来の技術 従来、ダイヤモンド及びアモルファスダイヤモンド状炭
素膜の形成方法として炭化水素(水素希釈)のグロー放
電分解法、マイクロ波放電分解法及び水素によるカーボ
ンのケミカルスパッタ法等が知られている。
C0 Prior Art Conventionally, methods for forming diamond and amorphous diamond-like carbon films include glow discharge decomposition of hydrocarbons (hydrogen dilution), microwave discharge decomposition, and chemical sputtering of carbon using hydrogen.

D1発明が解決しようとする問題点 上記従来の方法による場合には、何れもプラズマl生起
させるため、紫外線が発生する。この紫外線は、放電に
より一部分解した炭化水素種の分解l促進する作用な行
うと考えられる。従って、紫外線の良く当つt基板は茶
褐色を呈するのに対し、紫外線の当たりの少ない基板は
薄黄色乃至無色透明となる。しかし、紫外線が当たるか
否かにより炭素膜の成長速度に変化は認められない。こ
のような状況から、一つの条件で成膜した場合、スパッ
タ装置内の基板の設置位置により特性の異なった炭素膜
が形成されてしまう。そこで、スパッタ装置内の基板の
保持部1回転させるようにし、基板の設置位置の違いに
よる炭素膜の特性の違いを除去することが考えられるが
、紫外線が当る位置にあるときに形成された炭素膜と当
たらない位置にあるときく形成された炭素膜との特性の
異なる多重の層l持った炭素膜となってしまうという問
題点がある。
D1 Problems to be Solved by the Invention In the conventional methods described above, ultraviolet rays are generated because plasma is generated. It is believed that this ultraviolet light acts to promote the decomposition of hydrocarbon species that have been partially decomposed by the discharge. Therefore, a substrate that is well exposed to ultraviolet rays has a brownish color, whereas a substrate that is less exposed to ultraviolet rays is pale yellow or colorless and transparent. However, no change was observed in the growth rate of the carbon film depending on whether or not it was exposed to ultraviolet rays. Under these circumstances, if a film is formed under one condition, a carbon film with different characteristics will be formed depending on the installation position of the substrate in the sputtering apparatus. Therefore, it is conceivable to rotate the substrate holder in the sputtering device once to eliminate differences in the characteristics of the carbon film due to differences in the installation position of the substrate. There is a problem that when the carbon film is formed at a position where it does not contact the carbon film, the carbon film has multiple layers having different characteristics.

従って、基板の位置の変化による膜質の差lなくすには
、なるべく基板に紫外線が当几らないようにしなければ
ならない、本発明は、基板に対して紫外線l遮蔽するよ
うにして上記従来の問題点l解決しようとするものであ
る。
Therefore, in order to eliminate the difference in film quality due to changes in the position of the substrate, it is necessary to prevent the substrate from being exposed to ultraviolet rays as much as possible.The present invention solves the above-mentioned conventional problem by shielding the substrate from ultraviolet rays. This is an attempt to solve point l.

E0問題点を解決する友めの手段 本発明においては、上記従来の問題点を解決するため、
低圧励気ガス雰囲気の真空室内においてカーボンターゲ
ットと対向電極との間に直流電圧を印加してプラズマl
生起させ、真空室内に配置し之基板上に炭素膜gを形成
するスパッタ法において、前記プラズマの紫外線を前記
基板から遮蔽しt状態で行うようにした。
Friendly means for solving E0 problems In the present invention, in order to solve the above conventional problems,
Plasma is generated by applying a DC voltage between the carbon target and the counter electrode in a vacuum chamber with a low-pressure excited gas atmosphere.
In the sputtering method in which a carbon film g is formed on a substrate placed in a vacuum chamber, the ultraviolet rays of the plasma are shielded from the substrate and the sputtering is carried out in the t state.

まt1上記方法l実施する定め、低圧励気ガス雰囲気の
真空室内にカーボンターゲットと対向電極とを設け、両
者間に直流電圧を印加してプラズマを生起させるようK
すると共に、真空室内に炭素薄膜を形成すべき基板を配
置するようKL、7tスパツタ装置において、前記基板
の保持部を対向電極の反カーボンターゲツト側に設け、
プラズマから生じる紫外線を対向電極により基板から遮
蔽するようにした。
To carry out the above method, a carbon target and a counter electrode are provided in a vacuum chamber with a low-pressure excitation gas atmosphere, and a DC voltage is applied between them to generate plasma.
At the same time, in the KL, 7t sputtering apparatus, a substrate on which a carbon thin film is to be formed is placed in the vacuum chamber, and a holding portion for the substrate is provided on the side opposite to the carbon target of the counter electrode,
The ultraviolet rays generated from the plasma were shielded from the substrate by the counter electrode.

20作用 本発明においては、真空室内を低圧励気ガス雰囲気とし
、この真空室内に設けられtカーボンターゲットと対向
電極との間に直流電圧を印加してプラズマな生起させ、
カーボンターゲットを分解して対向電極の後ろ側に設置
された基板上に炭素薄膜を形成する。この間プラズマか
らは紫外線が放射されるが、この紫外線は対向電極遮ら
れて基板上には照射されない。従って、均質、透明で広
い光学的エネルギーギャップを持ったアモルファス状炭
素薄膜ン形成することができる。
20 Effects In the present invention, a vacuum chamber is made into a low-pressure excitation gas atmosphere, and a DC voltage is applied between a carbon target provided in the vacuum chamber and a counter electrode to generate plasma,
The carbon target is decomposed to form a carbon thin film on the substrate placed behind the counter electrode. During this time, ultraviolet rays are emitted from the plasma, but these ultraviolet rays are blocked by the opposing electrode and are not irradiated onto the substrate. Therefore, it is possible to form an amorphous carbon thin film that is homogeneous, transparent, and has a wide optical energy gap.

G、実施例 図について本発明の詳細な説明する。G. Example DESCRIPTION OF THE DRAWINGS The invention will now be described in detail with reference to the figures.

第1図にこの実施例において用いるスパッタ装置を示す
。同図において、1は真空室で、この真空室1は、排気
パルプ2、雰囲気ガスである水素ガスの導入パルプ3を
備えている。真空室l内の中央には、マグネトロン付き
ターゲットホルダ電極4が設けられ、その上部に円形の
ターゲット5が保持されている。6は絶縁部材、7はシ
ールド部材である。円形の対向電極8はターゲット5に
対向してこれと同心的に設置され、これら両者間圧は直
流電圧が印加されるようにかつている。基板保持部9は
、対向電極8の反ターゲット5側(後方)に位置して、
対向電極8と同心の円環状l成している。そして、炭素
膜な形成すべき基板10は基板保持部9上に装着されて
いる。
FIG. 1 shows a sputtering apparatus used in this example. In the figure, 1 is a vacuum chamber, and this vacuum chamber 1 is equipped with an exhaust pulp 2 and a pulp 3 into which hydrogen gas, which is an atmospheric gas, is introduced. A target holder electrode 4 with a magnetron is provided at the center of the vacuum chamber 1, and a circular target 5 is held on top of the target holder electrode 4. 6 is an insulating member, and 7 is a shielding member. A circular counter electrode 8 is placed facing and concentrically with the target 5, and the pressure between them is such that a DC voltage is applied. The substrate holding part 9 is located on the side opposite to the target 5 (backward) of the counter electrode 8,
It has an annular shape concentric with the counter electrode 8. The substrate 10 on which a carbon film is to be formed is mounted on the substrate holder 9.

しかして、上記スパッタ装rR1用いて基板IO上に炭
素薄膜を形成した具体的実施例を以下に説明する。
A specific example in which a carbon thin film was formed on the substrate IO using the sputtering apparatus rR1 will be described below.

この実施例において用いたスパッタ装置は、真空室1の
直径を300m、基板保持部9の外径を250mとし、
ターゲット5、対向電極8間の寸法11を30vaas
対向電極8、基板10間の寸法12を1508としたも
のである。セして、基板保持部9上に石英ガラス製の基
板10を8枚セットし、拡散ポンプl用いて先ず2.6
7X11j’Pa (2X16’Torr )まで真空
室1内な排気した後、ガス導入パルプ31調整して水素
ガスl流量5cc/mtn  (マスプロコントローラ
によりコントロール)で導入し、排気パルプ2を調節し
て26.7Pa(0,2Torr) K保つ、そして、
ターゲット5、対向電極8間に直流電圧を印加し、40
0V−1,2Aで放電1行い。カーボンターゲット5(
Φ75)l水素プラズマでスパッタする。このとき、基
板保持部9は120’Cに保つ。そして、上記条件で、
対向!ff18の直径を変化させ、対向電極8径/ター
ゲツト5径の比を0〜2まで7種設定して夫々5時間ス
パッタしt結果、石英ガラス基板10上に形成され九炭
素膜の厚さは、対向電極8径の変化に拘りなく略500
nmであっ几。そして、夫々生成した炭素膜の紫外可視
吸光スペクトルより光学的エネルギーギャップ1、)夕
算出しt結果を第2図に示す。図中○印は実際の測定点
で、実線は測定点を結んだものである。この図表から明
らかなように、対向電極8径/ターゲツト5径(Φ75
)の比が小さい場合には基板保持部9の中央部と周辺部
とで30 %のバラツキがあるが、0.7以上になると
、このバラツキはsts以内となり、かっEoが大きな
値をとるようだなる。
In the sputtering apparatus used in this example, the diameter of the vacuum chamber 1 is 300 m, the outer diameter of the substrate holding part 9 is 250 m,
The dimension 11 between the target 5 and the counter electrode 8 is 30 vaas.
The dimension 12 between the counter electrode 8 and the substrate 10 is 1508. Then, eight quartz glass substrates 10 were set on the substrate holder 9, and first 2.6
After evacuating the vacuum chamber 1 to 7X11j'Pa (2X16'Torr), the gas introduction pulp 31 was adjusted to introduce hydrogen gas at a flow rate of 5cc/mtn (controlled by the mass pro controller), and the exhaust pulp 2 was adjusted to 26 Maintain .7Pa (0.2Torr) K, and
A DC voltage was applied between the target 5 and the counter electrode 8, and 40
Perform one discharge at 0V-1, 2A. Carbon target 5 (
Φ75) Sputter with hydrogen plasma. At this time, the substrate holding part 9 is maintained at 120'C. And under the above conditions,
Opposing! The diameter of the FF 18 was changed and the ratio of the diameter of the counter electrode 8 to the diameter of the target 5 was set to 7 types from 0 to 2, and sputtering was performed for 5 hours each. As a result, the thickness of the nine carbon film formed on the quartz glass substrate 10 was as follows. , approximately 500 regardless of the change in the diameter of the counter electrode 8.
It's nm. Then, the optical energy gap was calculated from the ultraviolet-visible absorption spectra of the respective produced carbon films, and the results are shown in FIG. In the figure, the ○ marks are actual measurement points, and the solid lines connect the measurement points. As is clear from this diagram, the counter electrode 8 diameter/target 5 diameter (Φ75
) is small, there will be a 30% variation between the center and peripheral parts of the substrate holding part 9, but if it is 0.7 or more, this variation will be within sts, and Eo will take a large value. Danaru.

なお、hY20■〜50閣まで変化させ、また1zkl
OOw〜170膓まで変化させても上記結果に変化は認
められなかった。
In addition, it can be changed from hY20■ to 50kaku, and 1zkl
No change was observed in the above results even when the temperature was varied from OOw to 170.

H0発明の効果 以上のように、特許請求の範囲の! (1)項に記載の
発明知おいては、低圧励気ガス雰囲気の真空室内におい
てカーボンターゲットと対向電極との間に直流電圧を印
加してプラズマI生起させ、真空室内圧配置した基板上
に炭素薄膜を形成するスパッタ法において、前記プラズ
マの紫外線を前記基板から遮蔽した状態で行うようにし
t定め、形成される炭素膜が紫外線の影9を受けず、従
って、透明で広い光学ギャップを持ち、ま友紫外可視吸
光スペクトルより算出し72Band  tailが急
峻で、半導体材料として使用するのに適しtアモルファ
ス状炭素膜を得ることができるという効果な奏する。
As described above, the effects of the H0 invention are as follows! In the invention described in item (1), plasma I is generated by applying a DC voltage between a carbon target and a counter electrode in a vacuum chamber with a low-pressure excitation gas atmosphere, and a plasma I is generated on a substrate placed under pressure in the vacuum chamber. In the sputtering method for forming a carbon thin film, it is determined that the ultraviolet rays of the plasma are shielded from the substrate, so that the formed carbon film is not affected by the shadow 9 of the ultraviolet rays, and is therefore transparent and has a wide optical gap. , the 72 band tail calculated from the UV-visible absorption spectrum is steep, and an amorphous carbon film suitable for use as a semiconductor material can be obtained.

ま念、特許請求の範囲の! (3)項に記載の発明にお
いては、上記のようなアモルファス状炭素膜な得る之め
の構造簡単々スパッタ装置を提供することができるとい
う効果夕奏する。
Seriously, the scope of the patent claims! The invention described in item (3) has the advantage that it is possible to provide a sputtering apparatus with a simple structure capable of producing an amorphous carbon film as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図はスパッタ
装置の概略的断面図、I!2図は炭素膜の紫外可視吸光
スペクトルより光学的エネルギーギャップ(Eo )を
算出し之結果を示す図表である。 1・・・真空室、5・・・ターゲット、8・・・対向電
極、9・・・基板保持部、10・・・基板。 第1図 戻県濤゛議東彩広袋箇シ断面回 第2図
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic cross-sectional view of a sputtering apparatus, I! Figure 2 is a chart showing the results of calculating the optical energy gap (Eo) from the ultraviolet-visible absorption spectrum of the carbon film. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 5... Target, 8... Counter electrode, 9... Substrate holding part, 10... Substrate. Figure 1: Return to prefecture, Hirobukuro Kashi section, Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)低圧励気ガス雰囲気の真空室内においてカーボン
ターゲツトと対向電極との間に直流電圧を印加してプラ
ズマを生起させ、真空室内に配置した基板上に炭素薄膜
を形成するスパツタ法において、前記プラズマの紫外線
を前記基板から遮蔽した状態で行うことを特徴とする炭
素薄膜の形成方法。
(1) In the sputtering method described above, a plasma is generated by applying a DC voltage between a carbon target and a counter electrode in a vacuum chamber with a low-pressure excited gas atmosphere to form a carbon thin film on a substrate placed in the vacuum chamber. 1. A method for forming a carbon thin film, the method being carried out in a state where ultraviolet rays of plasma are shielded from the substrate.
(2)前記低圧励気ガスとして水素を用いることを特徴
とする特許請求の範囲第(1)項に記載の炭素薄膜の形
成方法。
(2) The method for forming a carbon thin film according to claim (1), characterized in that hydrogen is used as the low-pressure excitation gas.
(3)低圧励気ガス雰囲気の真空室内にカーボンターゲ
ツトと対向電極とを設け、両者間に直流電圧を印加して
プラズマを生起させるようにすると共に、真空室内に炭
素薄膜を形成すべき基板を配置するようにしたスパツタ
装置において、前記基板の保持部を対向電極の反カーボ
ンターゲツト側に設け、プラズマから生じる紫外線を対
向電極により基板から遮蔽したことを特徴とする炭素薄
膜の形成装置。
(3) A carbon target and a counter electrode are provided in a vacuum chamber with a low-pressure excitation gas atmosphere, and a DC voltage is applied between them to generate plasma, and a substrate on which a carbon thin film is to be formed is placed in the vacuum chamber. A sputtering apparatus for forming a carbon thin film, characterized in that the holding portion of the substrate is provided on the side opposite to the carbon target of the counter electrode, and ultraviolet rays generated from plasma are shielded from the substrate by the counter electrode.
(4)前記対向電極の直径とカーボンターゲツトの直径
との比を0.7以上としたことを特徴とする特許請求の
範囲第(3)項に記載の炭素薄膜の形成装置。
(4) The carbon thin film forming apparatus according to claim (3), wherein the ratio of the diameter of the counter electrode to the diameter of the carbon target is 0.7 or more.
JP20755586A 1986-09-03 1986-09-03 Method and apparatus for forming carbon thin film Expired - Lifetime JPH0684538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20755586A JPH0684538B2 (en) 1986-09-03 1986-09-03 Method and apparatus for forming carbon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20755586A JPH0684538B2 (en) 1986-09-03 1986-09-03 Method and apparatus for forming carbon thin film

Publications (2)

Publication Number Publication Date
JPS6362866A true JPS6362866A (en) 1988-03-19
JPH0684538B2 JPH0684538B2 (en) 1994-10-26

Family

ID=16541672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20755586A Expired - Lifetime JPH0684538B2 (en) 1986-09-03 1986-09-03 Method and apparatus for forming carbon thin film

Country Status (1)

Country Link
JP (1) JPH0684538B2 (en)

Also Published As

Publication number Publication date
JPH0684538B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
US4324854A (en) Deposition of metal films and clusters by reactions of compounds with low energy electrons on surfaces
JPH01172572A (en) Method and apparatus for bonding ultrahard metal layer to substrate
US4525382A (en) Photochemical vapor deposition apparatus
JPS5814644B2 (en) Hikaridensouronoseizouhouhou
US4096026A (en) Method of manufacturing a chromium oxide film
US5565247A (en) Process for forming a functional deposited film
JPH05175135A (en) Optical cvd apparatus
US4762803A (en) Process for forming crystalline films by glow discharge
JPS6362866A (en) Method and device for forming thin carbon film
JPS63317676A (en) Production of thin metallic compound film having non-grained structure
JPH06151421A (en) Formation of silicon nitride thin film
JPS6046372A (en) Thin film forming method
US5175019A (en) Method for depositing a thin film
JPS63317675A (en) Plasma vapor growth device
JPS63152120A (en) Thin film formation
JPS57109952A (en) Production of photomask plate
JPH02115359A (en) Formation of compound thin film and device therefor
JPS60178622A (en) Manufacture of semiconductor device
JPS61143585A (en) Thin film forming method
JPH01212768A (en) Formation of deposited film by photochemical vapor growth method
JPS63179073A (en) Manufacture of gallium nitride film
JPS6246515A (en) Thin film forming method
JPS59209642A (en) Vapor phase formation of thin film
JPS6128443A (en) Photochemical gaseous phase growing apparatus
JPH06158304A (en) Formation of thin silicon nitride film