JPH0684538B2 - Method and apparatus for forming carbon thin film - Google Patents
Method and apparatus for forming carbon thin filmInfo
- Publication number
- JPH0684538B2 JPH0684538B2 JP20755586A JP20755586A JPH0684538B2 JP H0684538 B2 JPH0684538 B2 JP H0684538B2 JP 20755586 A JP20755586 A JP 20755586A JP 20755586 A JP20755586 A JP 20755586A JP H0684538 B2 JPH0684538 B2 JP H0684538B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- carbon
- counter electrode
- thin film
- vacuum chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 A.産業上の利用分野 本発明は、ケミカルスパツタ法により基板上にダイヤモ
ンド及びアモルフアスダイヤモンド炭素薄膜を形成する
方法及びその装置の改良に関し、特に生起されたプラズ
マの紫外線を炭素薄膜を形成すべき基板から遮蔽し、良
質の炭素薄膜を形成する方法及びその装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an improved method for forming a diamond and amorphous diamond carbon thin film on a substrate by a chemical sputtering method and an apparatus therefor, and more particularly, to a plasma generated by the method. The present invention relates to a method and an apparatus for forming a good quality carbon thin film by shielding ultraviolet rays from a substrate on which a carbon thin film is to be formed.
B.発明の概要 本発明は、第1に、低圧励気ガス雰囲気の真空室内にお
いてカーボンターゲツトと対向電極との間に直流電圧を
印加してプラズマを生起させ、真空室内に配置した基板
上に炭素薄膜を形成するスパツタ法において、 前記プラズマの紫外線を前記基板から遮蔽した状態で行
うことにより、 広い光学ギヤツプを持ち、また紫外可視吸光スペクトル
より算出したBand tailが急峻で、半導体材料として使
用するのに適したアモルフアス状炭素膜を得ることがで
きるようにし、 第2に、低圧励気ガス雰囲気の真空室内にカーボンター
ゲツトと対向電極とを設け、両者間に直流電圧を印加し
てプラズマを生起させるようにすると共に、真空室内に
炭素薄膜を形成すべき基板を配置するようにしたスパツ
タ装置において、 前記基板の保持部を対向電極の反カーボンターゲツト側
に設け、プラズマから生じる紫外線を対向電極により基
板から遮蔽するようにスパツタ装置を構成することによ
り、 上記のようなアモルフアス状炭素膜の形成方法を実施す
るための構造簡単なスパツタ装置を提供するものであ
る。B. Outline of the Invention The first aspect of the present invention is to apply a DC voltage between a carbon target and a counter electrode in a vacuum chamber of a low-pressure excited gas atmosphere to generate a plasma, and to generate a plasma on a substrate placed in the vacuum chamber. In the sputtering method for forming a carbon thin film, by carrying out the state where the ultraviolet rays of the plasma are shielded from the substrate, it has a wide optical gap, and the band tail calculated from the ultraviolet-visible absorption spectrum is steep, and it is used as a semiconductor material. And a carbon target and a counter electrode are provided in a vacuum chamber of a low-pressure excited gas atmosphere, and a DC voltage is applied between them to generate plasma. In the sputter device in which the substrate on which the carbon thin film is to be formed is placed in the vacuum chamber, the holders of the substrates are paired. A simple structure for carrying out the method for forming an amorphous carbon film as described above is provided on the side opposite to the carbon target of the counter electrode, and the sputtering device is configured to shield the ultraviolet rays generated from the plasma from the substrate by the counter electrode. The present invention provides a simple sputter device.
C.従来の技術 従来、ダイヤモンド及びアモルフアスダイヤモンド状炭
素膜の形成方法として炭化水素(水素希釈)のグロー放
電分解法、マイクロ波放電分解法及び水素によるカーボ
ンのケミカルスパツタ法等が知られている。C. Conventional Technology Conventionally, glow discharge decomposition method of hydrocarbon (hydrogen dilution), microwave discharge decomposition method, chemical sputtering method of carbon with hydrogen, etc. are known as methods for forming diamond and amorphous diamond-like carbon film. There is.
D.発明が解決しようとする問題点 上記従来の方法による場合には、何れもプラズマを生起
させるため、紫外線が発生する。この紫外線は、放電に
より一部分解した炭化水素種の分解を促進する作用を行
うと考えられる。従つて、紫外線の良く当つた基板は茶
褐色を呈するのに対し、紫外線の当たりの少ない基板は
薄黄色乃至無色透明となる。しかし、紫外線が当たるか
否かにより炭素膜の成長速度に変化は認められない。こ
のような状況から、一つの条件で成膜した場合、スパツ
タ装置内の基板の設置位置により特性の異なつた炭素膜
が形成されてしまう。そこで、スパツタ装置内の基板の
保持部を回転させるようにし、基板の設置位置の違いに
よる炭素膜の特性の違いを除去することが考えられる
が、紫外線が当る位置にあるときに形成された炭素膜と
当たらない位置にあるときに形成された炭素膜との特性
の異なる多重の層を持つた炭素膜となつてしまうという
問題点がある。D. Problems to be Solved by the Invention In any of the conventional methods described above, ultraviolet rays are generated because plasma is generated. It is considered that the ultraviolet rays act to accelerate the decomposition of hydrocarbon species that are partially decomposed by the discharge. Therefore, while a substrate that is exposed to ultraviolet rays is dark brown, a substrate that is exposed to less ultraviolet light is light yellow to colorless and transparent. However, no change is observed in the growth rate of the carbon film depending on whether or not it is exposed to ultraviolet rays. Under such circumstances, when a film is formed under one condition, a carbon film having different characteristics will be formed depending on the installation position of the substrate in the sputtering device. Therefore, it is conceivable to rotate the substrate holding part in the sputtering device to eliminate the difference in the characteristics of the carbon film due to the difference in the installation position of the substrate. There is a problem that a carbon film having a plurality of layers having different characteristics from the carbon film formed when it is not in contact with the film is formed.
従つて、基板の位置の変化による膜質の差をなくすに
は、なるべく基板に紫外線が当たらないようにしなけれ
ばならない、本発明は、基板に対して紫外線を遮蔽する
ようにして上記従来の問題点を解決しようとするもので
ある。Therefore, in order to eliminate the difference in film quality due to the change in the position of the substrate, it is necessary to prevent the substrate from being exposed to ultraviolet rays as much as possible. Is to solve.
E.問題点を解決するための手段 本発明においては、上記従来の問題点を解決するため、
低圧励気ガス雰囲気の真空室内においてカーボンターゲ
ツトと対向電極との間に直流電圧を印加してプラズマを
生起させ、真空室内に配置した基板上に炭素薄膜を形成
するスパツタ法において、前記プラズマの紫外線を前記
基板から遮蔽した状態で行うようにした。E. Means for Solving Problems In the present invention, in order to solve the above conventional problems,
In a sputtering method in which a DC voltage is applied between a carbon target and a counter electrode in a vacuum chamber of a low-pressure excited gas atmosphere to generate plasma, and a carbon thin film is formed on a substrate placed in the vacuum chamber, ultraviolet rays of the plasma are used. Was carried out in a state of being shielded from the substrate.
また、上記方法を実施するため、低圧励気ガス雰囲気の
真空室内にカーボンターゲツトと対向電極とを設け、両
者間に直流電圧を印加してプラズマを生起させるように
すると共に、真空室内に炭素薄膜を形成すべき基板を配
置するようにしたスパツタ装置において、前記基板の保
持部を対向電極の反カーボンターゲツト側に設け、プラ
ズマから生じる紫外線を対向電極により基板から遮蔽す
るようにした。Further, in order to carry out the above method, a carbon target and a counter electrode are provided in a vacuum chamber of a low-pressure excited gas atmosphere, a DC voltage is applied between them to generate plasma, and a carbon thin film is provided in the vacuum chamber. In the sputtering apparatus in which the substrate to be formed is placed, the holding portion of the substrate is provided on the side opposite to the carbon target of the counter electrode, and the ultraviolet rays generated from the plasma are shielded from the substrate by the counter electrode.
F.作用 本発明においては、真空室内を低圧励気ガス雰囲気と
し、この真空室内に設けられたカーボンターゲツトと対
向電極との間に直流電圧を印加してプラズマを生起さ
せ、カーボンターゲツトを分解して対向電極の後ろ側に
設置された基板上に炭素薄膜を形成する。この間プラズ
マからは紫外線が放射されるが、この紫外線は対向電極
遮られて基板上には照射されない。従つて、均質、透明
で広い光学的エネルギーギヤツプを持つたアモルフアス
状炭素薄膜を形成することができる。F. Action In the present invention, the vacuum chamber is a low-pressure excited gas atmosphere, a direct current voltage is applied between the carbon target and the counter electrode provided in this vacuum chamber to generate plasma, and the carbon target is decomposed. A carbon thin film is formed on the substrate placed behind the counter electrode. During this time, ultraviolet rays are emitted from the plasma, but the ultraviolet rays are blocked by the counter electrode and are not irradiated onto the substrate. Therefore, an amorphous carbon thin film having a uniform, transparent and wide optical energy gap can be formed.
G.実施例 図について本発明の実施例を説明する。G. Example An example of the present invention will be described with reference to the drawings.
第1図にこの実施例において用いるスパツタ装置を示
す。同図において、1は真空室で、この真空室1は、排
気バルブ2、雰囲気ガスである水素ガスの導入バルブ3
を備えている。真空室1内の中央には、マグネトロン付
きターゲツトホルダ電極4が設けられ、その上部に円形
のターゲツト5が保持されている。6は絶縁部材、7は
シールド部材である。円形の対向電極8はターゲツト5
に対向してこれと同心的に設置され、これら両者間には
直流電圧が印加されるようになつている。基板保持部9
は、対向電極8の反ターゲツト5側(後方に)位置し
て、対向電極8と同心の円環状を成している。そして、
炭素膜を形成すべき基板10は基板保持部9上に装着され
ている。FIG. 1 shows a sputter device used in this embodiment. In the figure, 1 is a vacuum chamber, and this vacuum chamber 1 includes an exhaust valve 2 and an inlet valve 3 for introducing hydrogen gas as an atmospheric gas.
Is equipped with. A magnetron-equipped target holder electrode 4 is provided in the center of the vacuum chamber 1, and a circular target 5 is held above the target holder electrode 4. Reference numeral 6 is an insulating member, and 7 is a shield member. The circular counter electrode 8 is the target 5
Is installed concentrically with this and a DC voltage is applied between them. Substrate holding unit 9
Is located on the side opposite (to the rear of) the target electrode 5 of the counter electrode 8 and has an annular shape concentric with the counter electrode 8. And
The substrate 10 on which the carbon film is to be formed is mounted on the substrate holder 9.
しかして、上記スパツタ装置を用いて基板10上に炭素薄
膜を形成した具体的実施例を以下に説明する。Then, a specific example in which a carbon thin film is formed on the substrate 10 by using the above sputtering device will be described below.
この実施例において用いたスパツタ装置は、真空室1の
直径を300mm、基板保持部9の外径を250mmとし、ターゲ
ツト5、対向電極8間の寸法11を30mm、対向電極8、基
板10間の寸法12を150mmとしたものである。そして、基
板保持部9上に石英ガラス製の基板10を8枚セツトし、
拡散ポンプを用いて先ず2.67×10-5Pa(2×10-7Torr)
まで真空室1内を排気した後、ガス導入バルブ3を調整
して水素ガスを流量5cc/min(マスプロコントローラに
よりコントロール)で導入し、排気バルブ2を調節して
26.7Pa(0.2Torr)に保つ、そして、ターゲツト5、対
向電極8間に直流電圧を印加し、400V−1.2Aで放電を行
い。カーボンターゲツト5(Φ75)を水素プラズマでス
パツタする。このとき、基板保持部9は120℃に保つ。
そして、上記条件で、対向電極8の直径を変化させ、対
向電極8径/ターゲツト5径の比を0〜2まで7種設定
して夫々5時間スパツタした結果、石英ガラス基板10上
に形成された炭素膜の厚さは、対向電極8径の変化に拘
りなく略500nmであつた。そして、夫々生成した炭素膜
の紫外可視吸光スペクトルより光学的エネルギーギヤツ
プ(E0)を算出した結果を第2図に示す。図中○印は実
際の測定点で、実線は測定点を結んだものである。この
図表から明らかなように、対向電極8径/ターゲツト5
径(Φ75)の比が小さい場合には基板保持部9の中央部
と周辺部とで30%のバラツキがあるが、0.7以上になる
と、このバラツキは5%以内となり、かつE0が大きな値
をとるようになる。Sputtered apparatus used in this embodiment, the diameter of the vacuum chamber 1 300 mm, the outer diameter of the substrate holder 9 and 250 mm, Tagetsuto 5, 30 mm dimensions 1 1 between the counter electrode 8, the counter electrode 8, between the substrate 10 The dimensions 1 and 2 are 150 mm. Then, eight quartz glass substrates 10 are set on the substrate holder 9,
2.67 × 10 -5 Pa (2 × 10 -7 Torr) using a diffusion pump
After exhausting the inside of the vacuum chamber 1, adjust the gas introduction valve 3 to introduce hydrogen gas at a flow rate of 5 cc / min (controlled by the mass production controller) and adjust the exhaust valve 2.
It was maintained at 26.7 Pa (0.2 Torr), and a DC voltage was applied between the target 5 and the counter electrode 8 to discharge at 400V-1.2A. Carbon target 5 (Φ75) is sputtered with hydrogen plasma. At this time, the substrate holder 9 is kept at 120 ° C.
Then, under the above conditions, the diameter of the counter electrode 8 was changed, the ratio of the counter electrode 8 diameter / the target 5 diameter was set to 7 kinds from 0 to 2, and each was sputtered for 5 hours. As a result, it was formed on the quartz glass substrate 10. The thickness of the carbon film was about 500 nm regardless of the change in the diameter of the counter electrode 8. The results of calculating the optical energy gap (E 0 ) from the UV-visible absorption spectra of the carbon films respectively generated are shown in FIG. In the figure, the circles are the actual measurement points, and the solid line is the connection of the measurement points. As is clear from this chart, the counter electrode 8 diameter / target 5
When the ratio of the diameter (Φ75) is small, there is a variation of 30% between the central portion and the peripheral portion of the substrate holding portion 9, but when it is 0.7 or more, this variation is within 5% and E 0 is a large value. Will be taken.
なお、11を20mm〜50mmまで変化させ、また12を100mm〜1
70mmまで変化させても上記結果に変化は認められなかつ
た。Note that 1 1 is changed from 20 mm to 50 mm, and 1 2 is changed from 100 mm to 1 mm.
No change was observed in the above results even when the length was changed to 70 mm.
H.発明の効果 以上のように、特許請求の範囲第(1)項に記載の発明
においては、低圧励気ガス雰囲気の真空室内においてカ
ーボンターゲツトと対向電極との間に直流電圧を印加し
てプラズマを生起させ、真空室内に配置した基板上に炭
素薄膜を形成するスパツタ法において、前記プラズマの
紫外線を前記基板から遮蔽した状態で行うようにしたた
め、形成される炭素膜が紫外線の影響を受けず、従つ
て、透明で広い光学ギヤツプを持ち、また紫外可視吸光
スペクトルより算出したBand tailが急峻で、半導体材
料として使用するのに適したアモルフアス状炭素膜を得
ることができるという効果を奏する。H. Effect of the Invention As described above, in the invention described in claim (1), the DC voltage is applied between the carbon target and the counter electrode in the vacuum chamber of the low-pressure excited gas atmosphere. In the sputtering method in which plasma is generated and a carbon thin film is formed on a substrate placed in a vacuum chamber, the ultraviolet rays of the plasma are shielded from the substrate, so that the formed carbon film is affected by the ultraviolet rays. Therefore, it has an effect that an amorphous carbon film suitable for use as a semiconductor material can be obtained because it has a transparent and wide optical gear and has a steep band tail calculated from the UV-visible absorption spectrum.
また、特許請求の範囲の第(3)項に記載の発明におい
ては、上記のようなアモルフアス状炭素膜を得るための
構造簡単なスパツタ装置を提供することができるという
効果を奏する。Further, in the invention described in claim (3), there is an effect that it is possible to provide a sputtering device having a simple structure for obtaining the amorphous carbon film as described above.
図面は本発明の実施例を示すもので、第1図はスパツタ
装置の概略的断面図、第2図は炭素膜の紫外可視吸光ス
ペクトルより光学的エネルギーギヤツプ(E0)を算出し
た結果を示す図表である。 1……真空室、5……ターゲツト、8……対向電極、9
……基板保持部、10……基板。The drawings show the embodiments of the present invention. FIG. 1 is a schematic sectional view of a sputtering device, and FIG. 2 is a result of calculating an optical energy gap (E 0 ) from an ultraviolet-visible absorption spectrum of a carbon film. FIG. 1 ... Vacuum chamber, 5 ... Target, 8 ... Counter electrode, 9
…… Board holder, 10 …… Board.
Claims (4)
ーボンターゲツトと対向電極との間に直流電圧を印加し
てプラズマを生起させ、真空室内に配置した基板上に炭
素薄膜を形成するスパツタ法において、前記プラズマの
紫外線を前記基板から遮蔽した状態で行うことを特徴と
する炭素薄膜の形成方法。1. A sputtering method for forming a carbon thin film on a substrate placed in a vacuum chamber by applying a DC voltage between a carbon target and a counter electrode in the vacuum chamber of a low pressure gas atmosphere to generate a plasma. A method for forming a carbon thin film, which is performed in a state where the ultraviolet rays of the plasma are shielded from the substrate.
を特徴とする特許請求の範囲第(1)項に記載の炭素薄
膜の形成方法。2. The method for forming a carbon thin film according to claim 1, wherein hydrogen is used as the low-pressure excitation gas.
ターゲツトと対向電極とを設け、両者間に直流電圧を印
加してプラズマを生起させるようにすると共に、真空室
内に炭素薄膜を形成すべき基板を配置するようにしたス
パツタ装置において、前記基板の保持部を対向電極の反
カーボンターゲツト側に設け、プラズマから生じる紫外
線を対向電極により基板から遮蔽したことを特徴とする
炭素薄膜の形成装置。3. A carbon target and a counter electrode are provided in a vacuum chamber of a low pressure gas atmosphere, a DC voltage is applied between them to generate plasma, and a carbon thin film should be formed in the vacuum chamber. A sputtering apparatus in which a substrate is arranged, wherein a holding portion of the substrate is provided on the side opposite to the carbon target of the counter electrode, and ultraviolet rays generated from plasma are shielded from the substrate by the counter electrode.
の直径との比を0.7以上としたことを特徴とする特許請
求の範囲第(3)項に記載の炭素薄膜の形成装置。4. A carbon thin film forming apparatus according to claim 3, wherein the ratio of the diameter of said counter electrode to the diameter of the carbon target is 0.7 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20755586A JPH0684538B2 (en) | 1986-09-03 | 1986-09-03 | Method and apparatus for forming carbon thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20755586A JPH0684538B2 (en) | 1986-09-03 | 1986-09-03 | Method and apparatus for forming carbon thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6362866A JPS6362866A (en) | 1988-03-19 |
JPH0684538B2 true JPH0684538B2 (en) | 1994-10-26 |
Family
ID=16541672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20755586A Expired - Lifetime JPH0684538B2 (en) | 1986-09-03 | 1986-09-03 | Method and apparatus for forming carbon thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0684538B2 (en) |
-
1986
- 1986-09-03 JP JP20755586A patent/JPH0684538B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6362866A (en) | 1988-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4525382A (en) | Photochemical vapor deposition apparatus | |
US4096026A (en) | Method of manufacturing a chromium oxide film | |
JPH05175135A (en) | Optical cvd apparatus | |
JP3263142B2 (en) | Apparatus for processing oxide coatings applied on carriers | |
JPH0684538B2 (en) | Method and apparatus for forming carbon thin film | |
EP0054189A1 (en) | Improved photochemical vapor deposition method | |
US5112647A (en) | Apparatus for the preparation of a functional deposited film by means of photochemical vapor deposition process | |
JPS649727B2 (en) | ||
JPH0697075A (en) | Plasma cleaning of thin film deposition chamber | |
RU2100477C1 (en) | Process of deposition of films of hydrogenized silicon | |
Fuchs et al. | Polymer photoablation under windowless VUV hydrogen or helium discharge lamp | |
JPS61216318A (en) | Photo chemical vapor deposition device | |
JP2608456B2 (en) | Thin film forming equipment | |
JPH11258206A (en) | Method and device for evaluating photocatalyst | |
JPH01223723A (en) | Semiconductor manufacturing equipment | |
JPS60178622A (en) | Manufacture of semiconductor device | |
JPS6046372A (en) | Thin film forming method | |
JPS61183919A (en) | Deposited film forming unit | |
JPS59209642A (en) | Vapor phase formation of thin film | |
JPH09246259A (en) | Method and apparatus to form a thin film | |
JPH0419702B2 (en) | ||
JPH0637705B2 (en) | Equipment for thin film production by direct excitation vapor deposition | |
JP2625107B2 (en) | Manufacturing method of exposure mask | |
JPH0356046Y2 (en) | ||
JPS6161665B2 (en) |