JPH11258206A - Method and device for evaluating photocatalyst - Google Patents

Method and device for evaluating photocatalyst

Info

Publication number
JPH11258206A
JPH11258206A JP10065509A JP6550998A JPH11258206A JP H11258206 A JPH11258206 A JP H11258206A JP 10065509 A JP10065509 A JP 10065509A JP 6550998 A JP6550998 A JP 6550998A JP H11258206 A JPH11258206 A JP H11258206A
Authority
JP
Japan
Prior art keywords
surface potential
photocatalytic film
light irradiation
evaluating
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10065509A
Other languages
Japanese (ja)
Inventor
Tadashi Shimoyama
正 下山
Naoto Kimura
直人 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP10065509A priority Critical patent/JPH11258206A/en
Publication of JPH11258206A publication Critical patent/JPH11258206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for simply evaluating the capability of a photocatalyst film in a short time. SOLUTION: In a method for evaluating the ability of a photocatalyst film 2, its ability is characteristically evaluated by measuring surface potential which changes with light irradiation 3. It is preferable to compare the changes of surface potential measured with an inert gas atmosphere and an atmosphere in which oxygen and steam are present as measuring atmospheres or to compare the changes of surface potential measured with an inert gas atmosphere and an atmosphere in which an object compound to react with as measuring atmospheres. In addition, a device 1 for evaluating the capability of the photocatalyst film 2 is formed of a light source 6 for light irradiation and a surface potential measuring device 4 and is preferably provided with a container or a gas jet nozzle capable of controlling the light source 6 for light irradiation, the surface potential measuring device 4, and gas atmospheres.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光触媒膜の能力の評価方
法および評価装置および評価用に用いられる光触媒体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for evaluating the performance of a photocatalytic film and a photocatalyst used for the evaluation.

【0002】[0002]

【従来の技術】光触媒膜の能力を評価する方法として
は、膜自体を反応対象物質が存在する実験系に置き、光
を照射しながら、反応対象物質の濃度変化を調べる必要
があった。
2. Description of the Related Art As a method for evaluating the performance of a photocatalytic film, it is necessary to place the film itself in an experimental system in which a substance to be reacted is present, and to examine a change in the concentration of the substance to be reacted while irradiating light.

【0003】[0003]

【発明が解決しようとする課題】しかし、反応対象物質
が有害であったり、光触媒膜の製造行程上での品質管理
においては、様々な形状のものがあり、すべてに関して
膜自体を反応対象物質が存在する実験系に置き、光照射
による反応対象物質の濃度変化を調べることは困難であ
る。また、反応対象物と反応させ、その濃度変化を調べ
るためには、試験に長時間を費やしていた。本発明は、
従来の技術の欠点を克服し、光触媒膜の能力を簡便に短
時間で評価する技術を提供することである。
However, in the quality control of the photocatalytic film in the production process, there are various shapes, and in all cases, the film itself is formed by the reaction target material. It is difficult to examine the change in the concentration of the target substance due to light irradiation in an existing experimental system. In addition, a long time was spent on the test in order to react with a reaction target and examine a change in the concentration. The present invention
An object of the present invention is to provide a technique for overcoming the drawbacks of the conventional technique and for easily and quickly evaluating the performance of a photocatalytic film.

【0004】[0004]

【課題を解決するための手段】本発明者らは、鋭意検討
の結果、光照射とともに変化する表面電位を測定するこ
とによって、本発明を見い出すに至った。 (1)光触媒膜の能力を評価する方法において、光照射
とともに変化する表面電位を測定することによって、そ
の能力を評価することを特徴とする光触媒膜の能力の評
価方法。 (2)測定雰囲気を不活性ガス雰囲気と酸素および水蒸
気存在雰囲気とで測定した表面電位の変化を比較するこ
とにより、その能力を評価することを特徴とする前記
(1)の光触媒膜の能力の評価方法。
Means for Solving the Problems As a result of intensive studies, the present inventors have found the present invention by measuring a surface potential that changes with light irradiation. (1) A method for evaluating the ability of a photocatalytic film, wherein the ability is evaluated by measuring a surface potential that changes with light irradiation. (2) The ability of the photocatalytic film of (1) is evaluated by comparing changes in surface potential measured in an inert gas atmosphere and an atmosphere containing oxygen and water vapor as the measurement atmosphere. Evaluation methods.

【0005】(3)測定雰囲気を不活性ガス雰囲気と反
応対象化合物存在雰囲気とで測定した表面電位の変化を
比較することにより、その能力を評価することを特徴と
する前記(1)の光触媒膜の能力の評価方法。 (4)光照射用光源と表面電位測定器からなることを特
徴とする光触媒膜の能力の評価装置。 (5)光照射用光源と表面電位測定器とガス雰囲気を制
御できる容器あるいはガス噴出ノズルを備えていること
を特徴とする前記(4)の光触媒膜の能力の評価装置。 (6)前記(1)の光触媒膜の能力の評価方法に用いる
ため、あらかじめ対象とする光触媒膜の基板の少なくと
も一部分に外部から接地できる電極を形成しておくこと
を特徴とする光触媒膜の能力評価用の光触媒体。
(3) The photocatalytic film according to (1), wherein the capability is evaluated by comparing changes in surface potential measured in an inert gas atmosphere and an atmosphere in which the reaction target compound is present. How to evaluate your ability. (4) An apparatus for evaluating the performance of a photocatalytic film, comprising a light source for light irradiation and a surface potential measuring device. (5) The apparatus for evaluating the performance of a photocatalytic film according to (4), further including a light source for light irradiation, a surface potential measuring device, and a container or a gas ejection nozzle capable of controlling a gas atmosphere. (6) The photocatalytic film is characterized in that an electrode that can be grounded from the outside is formed on at least a part of the substrate of the target photocatalytic film in order to be used in the method (1) for evaluating the performance of the photocatalytic film. Photocatalyst for evaluation.

【0006】本発明の作用を以下に説明する。光触媒に
そのバンドギャップエネルギー以上のエネルギーを持つ
光を照射すると、価電子帯の電子は光励起により伝導帯
に遷る。その時、価電子帯では電子が抜けた正孔が生じ
る。いわゆる、電荷分離である。半導体である光触媒
は、その表面に表面準位が形成される。この準位は半導
体の原子配列の周期性の欠如、あるいは表面特有の原子
配列などにより生じるものである。そのため半導体の表
面近傍のバンドはその表面準位に存在する電荷と釣り合
おうとするために湾曲する。これは光励起により生じた
電子・正孔対にとっては電位勾配として働き、電子と正
孔を引き離し再結合を防ぐ。これによりn型半導体の光
触媒では表面付近には正孔が、p型半導体の光触媒では
表面付近には電子が存在するようになる。
The operation of the present invention will be described below. When the photocatalyst is irradiated with light having an energy greater than the band gap energy, electrons in the valence band shift to the conduction band by photoexcitation. At that time, holes are generated in the valence band from which electrons have escaped. This is so-called charge separation. A photocatalyst, which is a semiconductor, has a surface level formed on its surface. This level is caused by a lack of periodicity in the atomic arrangement of the semiconductor or an atomic arrangement peculiar to the surface. Therefore, the band near the surface of the semiconductor is curved in order to balance the electric charge existing at the surface level. This acts as a potential gradient for an electron-hole pair generated by photoexcitation, and separates electrons and holes to prevent recombination. As a result, holes are present near the surface of the n-type semiconductor photocatalyst, and electrons are present near the surface of the p-type semiconductor photocatalyst.

【0007】光触媒作用はこの電子あるいは正孔が表面
に吸着した化合物と作用して、反応を進めさせるもので
ある。よって反応速度は表面の単位面積あたりに存在す
る電子あるいは正孔の量に存在している。そこで、n型
半導体の場合、表面に存在する正孔量を測定すれば、光
触媒能力の判断がつく。この表面に局在した正孔あるい
は電子はその表面上の空間に電場を形成する。この空間
電場を測定すれば、局在キャリア量の度合がわかる。ま
た、不活性ガス、たとえば窒素、ヘリウム、アルゴンガ
スなど、を吹き付けながら測定を行うことにより、表面
に移動してきた正孔や電子などのキャリアを消費せず
に、生成したキャリア量がわかる。
In the photocatalysis, the electrons or holes act on the compound adsorbed on the surface to promote the reaction. Therefore, the reaction rate depends on the amount of electrons or holes existing per unit area of the surface. Therefore, in the case of an n-type semiconductor, the photocatalytic ability can be determined by measuring the amount of holes existing on the surface. Holes or electrons localized on this surface form an electric field in the space above the surface. By measuring this spatial electric field, the degree of the localized carrier amount can be determined. Further, by performing measurement while blowing an inert gas such as nitrogen, helium, or argon gas, the amount of generated carriers can be determined without consuming carriers such as holes and electrons that have moved to the surface.

【0008】これに対して、水蒸気が存在する室内雰囲
気中や反応対象化合物が存在するガス、たとえば、アル
デヒド類や芳香族化合物などを含むガス、を吹き付けな
がら同様な測定を行う。これら2つの表面電位の変化を
比較することで、表面で消費されるキャリア量を予測す
ることができる。光照射により生成するキャリア量を効
果的に測定するためには、測定対象とする光触媒膜の全
部あるいは一部の下地に、外部から接地できる電極を形
成しておくと効果的に測定が可能である。この接地した
電極は膜内部に局在した電荷、すなわち、表面に正孔が
局在する系では電子が持つ電荷、を打ち消す。それによ
り表面に局在した電荷のみが空間電場を形成し、測定可
能となる。
[0008] On the other hand, the same measurement is carried out while spraying a gas containing a compound to be reacted, such as a gas containing an aldehyde or an aromatic compound, in an indoor atmosphere where water vapor is present. By comparing these two changes in surface potential, the amount of carriers consumed on the surface can be predicted. In order to effectively measure the amount of carriers generated by light irradiation, it is possible to measure effectively if an electrode that can be grounded from the outside is formed on the entire or partial base of the photocatalytic film to be measured. is there. This grounded electrode negates the charge localized within the film, that is, the charge of electrons in a system where holes are localized on the surface. As a result, only the charges localized on the surface form a spatial electric field and can be measured.

【0009】[0009]

【発明の実施の形態】〔実施例〕以下に、本発明の実施
の形態を実施例を用いて更に詳細に検討する。厚さ0.
1mmのチタン板上5に酸化チタン膜2を形成し、サン
プルを作製した。膜2としては、ゾルゲル法により作製
した。膜厚はいずれも300nmに統一した。熱処理の
方法を1つは450℃30分、もう一つは、700℃3
0分で行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiments] Embodiments of the present invention will be described below in more detail with reference to embodiments. Thickness 0.
A titanium oxide film 2 was formed on a 1 mm titanium plate 5 to prepare a sample. The film 2 was produced by a sol-gel method. All film thicknesses were unified to 300 nm. One of the heat treatment methods is 450 ° C. for 30 minutes, and the other is 700 ° C.3
Performed at 0 minutes.

【0010】これら2種類のサンプルに対して図1の様
な実験配置1で、表面電位の変化を追った。チタン板5
を接地7し、表面電位計4のプローブ8をその光触媒膜
2に接触させ、光照射用光源6からの光3を照射しなが
らその表面電位を測定した。測定は1秒間隔に行った。
初め、サンプルを暗状態に置き、測定開始から10秒後
に光照射を開始し、30秒照射後、再び暗状態にする。
その後も測定を続け、全測定時間は300秒行った。同
様な測定を表面電位計4のプローブ8の先端から窒素を
吹き付けながら行った。その時の両者の変化を図2に示
す。なお、図2中の(a)はゾルゲル法により作製し4
50℃で焼成した酸化チタン膜の結果であり、(b)は
ゾルゲル法により作製し700℃で焼成した酸化チタン
膜の結果を示す。(a)においては、光照射を行ってい
る間及び光照射を停止した後に、大気中と窒素ガス吹き
付けとで表面電位の値に差があり、この差は空気中の酸
素や水蒸気で消費されるキャリア量であると予想でき
る。(b)においては、大気中と窒素ガス吹き付け状態
との間には差がない。
For these two types of samples, changes in surface potential were tracked in an experimental arrangement 1 as shown in FIG. Titanium plate 5
Was grounded 7, the probe 8 of the surface voltmeter 4 was brought into contact with the photocatalytic film 2, and the surface potential was measured while irradiating the light 3 from the light source 6 for light irradiation. The measurement was performed at one second intervals.
First, the sample is placed in a dark state, light irradiation is started 10 seconds after the start of the measurement, and after the irradiation for 30 seconds, the sample is returned to a dark state.
The measurement was continued thereafter, and the total measurement time was 300 seconds. The same measurement was performed while blowing nitrogen from the tip of the probe 8 of the surface electrometer 4. FIG. 2 shows the changes at the time. (A) in FIG. 2 was prepared by the sol-gel method.
It is a result of the titanium oxide film baked at 50 ° C, and (b) shows the result of the titanium oxide film produced by the sol-gel method and baked at 700 ° C. In (a), during the light irradiation and after the light irradiation is stopped, there is a difference in the value of the surface potential between the atmosphere and the blowing of the nitrogen gas, and this difference is consumed by oxygen and water vapor in the air. Can be expected. In (b), there is no difference between the atmosphere and the state of blowing nitrogen gas.

【0011】次に両サンプルの光触媒効果の確認を行っ
た。対象として、水中のジニトロフェノールの光触媒分
解反応を選んだ。500mlビーカーにジニトロフェノ
ール水溶液50mlを入れ、そのビーカーの底にサンプ
ルを上向きにして静置した。光照射用の光源としては超
高圧水銀ランプを用い、光のみによるジニトロフェノー
ルの直接分解を避けるため、紫外カットフィルタ(UV
31;波長310nmは50%透過、260nm以下は
透過せず)を通して照射した。光照射とともに水中のジ
ニトロフェノールの濃度変化を追った。結果を図3に示
す。なお、図3中の(a)はゾルゲル法により作製し4
50℃で焼成した酸化チタン膜を用いた場合の結果であ
り、(b)はゾルゲル法により作製し700℃で焼成し
た酸化チタン膜を用いた場合の結果を示す。450℃で
焼成した酸化チタン膜(a)は水中のジニトロフェノー
ルを分解したが、700℃で焼成した酸化チタン膜
(b)は分解できなかった。
Next, the photocatalytic effect of both samples was confirmed. As a target, a photocatalytic decomposition reaction of dinitrophenol in water was selected. 50 ml of an aqueous solution of dinitrophenol was placed in a 500 ml beaker, and the sample was allowed to stand at the bottom of the beaker with the sample facing upward. An ultra-high pressure mercury lamp is used as the light source for light irradiation. To avoid direct decomposition of dinitrophenol by light alone, an ultraviolet cut filter (UV
31; a wavelength of 310 nm is transmitted at 50%, and a wavelength of 310 nm or less is not transmitted). The change in the concentration of dinitrophenol in water was tracked with light irradiation. The results are shown in FIG. (A) in FIG. 3 is prepared by the sol-gel method.
The results are for the case where a titanium oxide film fired at 50 ° C. is used, and (b) shows the result when a titanium oxide film manufactured by a sol-gel method and fired at 700 ° C. is used. The titanium oxide film (a) fired at 450 ° C. decomposed dinitrophenol in water, but the titanium oxide film (b) fired at 700 ° C. could not decompose.

【0012】実施例2 厚さ1mmのソーダガラス上に、透明導電膜である酸化
スズを厚さ200nmで被覆した透明導電膜ガラス上に
光触媒膜を形成し、光触媒板を作製した。光触媒膜とし
ては、ゾルゲル法酸化チタン膜(T3 )、微結晶酸化チ
タン分散コーティング液塗布膜(T2 )、過酸化水素酸
化チタン塗布後焼成膜(T1 )の3種類の膜を用いた。
膜厚はいずれも300nmに統一した。これら3種類の
光触媒板に対して、表面電位の変化を追った。表面電位
は1秒間隔に測定した。初め、光触媒板を暗状態に置
き、測定開始から10秒後に光照射を開始し、30秒照
射後、暗状態にし、その後も測定を続け、全300秒の
測定を行った。
Example 2 A photocatalytic film was formed on a transparent conductive film glass in which a transparent conductive film of tin oxide was coated with a thickness of 200 nm on soda glass having a thickness of 1 mm. As the photocatalyst film, three kinds of films were used: a sol-gel method titanium oxide film (T 3 ), a microcrystalline titanium oxide dispersed coating liquid coating film (T 2 ), and a hydrogen peroxide titanium oxide post-fired film (T 1 ). .
All film thicknesses were unified to 300 nm. The change in surface potential was followed for these three types of photocatalytic plates. The surface potential was measured at one second intervals. First, the photocatalyst plate was placed in a dark state, light irradiation was started 10 seconds after the start of the measurement, irradiation was performed for 30 seconds, the state was set to a dark state, and the measurement was continued thereafter, and measurement was performed for a total of 300 seconds.

【0013】同様な測定を表面電位計のプローブの先端
からヘリウムを吹き付けながら行った。大気中およびヘ
リウムを吹き付けながら行った表面電位の変化で、光照
射を行っている間の表面電位の値に差があり、この差は
空気中の酸素や水蒸気で消費されるキャリア量であると
予想できる。この表面電位の差をΔVとする。次に各サ
ンプルの光触媒効果の確認を行った。対象として、水中
のジニトロフェノールの光触媒分解反応を選んだ。方法
は実施例1と同様な方法で行った。光触媒分解実験より
分解速度定数Kを求めた。表面電位の差をΔVと分解速
度定数Kとの間には、図4のような関係が得られた。
The same measurement was performed while spraying helium from the tip of the probe of the surface electrometer. Due to the change in surface potential in the air and while spraying helium, there is a difference in the value of the surface potential during light irradiation, and this difference is the amount of carrier consumed by oxygen and water vapor in the air. Can be expected. This difference in surface potential is defined as ΔV. Next, the photocatalytic effect of each sample was confirmed. As a target, a photocatalytic decomposition reaction of dinitrophenol in water was selected. The method was performed in the same manner as in Example 1. The decomposition rate constant K was determined from a photocatalytic decomposition experiment. The relationship as shown in FIG. 4 was obtained between the difference in surface potential ΔV and the decomposition rate constant K.

【0014】比較例1厚さ1mmの合成石英(絶縁体)
上に、実施例1と同様の酸化チタン膜を形成し、サンプ
ルを作製した。サンプルの背面に銅板を密着し、これを
接地して表面電位の測定を行った。450℃焼成、70
0℃焼成のサンプルとも、光照射に伴う表面電位の変化
を観測できなかった。上記2つの実施例から、光照射時
における表面電位の変化量で、大気中と窒素ガス雰囲気
での表面電位変化量の差が大きいほど光触媒効果が高い
ことが予測できる。このように表面電位の変化を観察す
ることで、光触媒効果の有無やその大小を評価すること
ができる。さらにそれらは、短時間に非接触で行うこと
ができる。
Comparative Example 1 1 mm thick synthetic quartz (insulator)
A titanium oxide film similar to that of Example 1 was formed thereon to prepare a sample. A copper plate was adhered to the back of the sample, and this was grounded to measure the surface potential. 450 ° C firing, 70
No change in the surface potential due to light irradiation was observed in any of the samples fired at 0 ° C. From the above two examples, it can be predicted that the photocatalytic effect is higher as the difference in the surface potential between the atmosphere and the nitrogen gas atmosphere is larger, based on the change in the surface potential during light irradiation. By observing the change in the surface potential in this manner, the presence or absence of the photocatalytic effect and the magnitude thereof can be evaluated. Furthermore, they can be performed in a short time without contact.

【0015】[0015]

【発明の効果】本発明の方法、装置および能力評価用の
光触媒体によって、光触媒膜の能力を簡便に短時間で評
価することができる。
According to the method, the apparatus and the photocatalyst for performance evaluation of the present invention, the performance of the photocatalyst film can be easily and quickly evaluated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光触媒評価装置の概略図。FIG. 1 is a schematic diagram of a photocatalyst evaluation device of the present invention.

【図2】実施例1における表面電位の変化を示すグラフ
である。
FIG. 2 is a graph showing a change in surface potential in Example 1.

【図3】実施例1における光触媒膜を用いた光照射時間
と水中のジニトロフェノール濃度変化を示すグラフ。
FIG. 3 is a graph showing light irradiation time using a photocatalytic film and a change in dinitrophenol concentration in water in Example 1.

【図4】実施例2における表面電位の差ΔVと光触媒分
解実験における分解速度定数Kとの関係を示すグラフ。
FIG. 4 is a graph showing a relationship between a difference ΔV in surface potential and a decomposition rate constant K in a photocatalytic decomposition experiment in Example 2.

【符号の説明】 1 実験装置 2 光触媒膜 3 光 4 表面電位計 5 チタン板 6 光照射用光源 7 接地 8 プローブ[Explanation of Signs] 1 Experimental apparatus 2 Photocatalytic film 3 Light 4 Surface potential meter 5 Titanium plate 6 Light irradiation light source 7 Grounding 8 Probe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光触媒膜の能力を評価する方法におい
て、光照射とともに変化する表面電位を測定することに
よって、その能力を評価することを特徴とする光触媒膜
の能力の評価方法。
1. A method for evaluating the performance of a photocatalytic film, wherein the capability is evaluated by measuring a surface potential that changes with light irradiation.
【請求項2】 測定雰囲気を不活性ガス雰囲気と酸素お
よび水蒸気存在雰囲気とで測定した表面電位の変化を比
較することにより、その能力を評価することを特徴とす
る請求項1記載の光触媒膜の能力の評価方法。
2. The photocatalytic film according to claim 1, wherein the capability of the photocatalytic film is evaluated by comparing changes in surface potential measured in an inert gas atmosphere and an atmosphere containing oxygen and water vapor. Ability evaluation method.
【請求項3】 測定雰囲気を不活性ガス雰囲気と反応対
象化合物存在雰囲気とで測定した表面電位の変化を比較
することにより、その能力を評価することを特徴とする
請求項1記載の光触媒膜の能力の評価方法。
3. The photocatalytic film according to claim 1, wherein the capability of the photocatalytic film is evaluated by comparing changes in surface potential measured in an inert gas atmosphere and an atmosphere in which the reaction target compound is present. Ability evaluation method.
【請求項4】 光照射用光源と表面電位測定器からなる
ことを特徴とする光触媒膜の能力の評価装置。
4. An apparatus for evaluating the performance of a photocatalytic film, comprising a light source for light irradiation and a surface potential measuring device.
【請求項5】 光照射用光源と表面電位測定器とガス雰
囲気を制御できる容器あるいはガス噴出ノズルを備えて
いることを特徴とする請求項4記載の光触媒膜の能力の
評価装置。
5. The apparatus for evaluating the performance of a photocatalytic film according to claim 4, further comprising a light source for light irradiation, a surface potential measuring device, and a container or a gas ejection nozzle capable of controlling a gas atmosphere.
【請求項6】 請求項1の光触媒膜の能力の評価方法に
用いるため、あらかじめ対象とする光触媒膜の基板の少
なくとも一部分に外部から接地できる電極を形成してお
くことを特徴とする光触媒膜の能力評価用の光触媒体。
6. The photocatalytic film according to claim 1, wherein an electrode that can be grounded from outside is formed on at least a part of the substrate of the photocatalytic film to be used in advance. Photocatalyst for performance evaluation.
JP10065509A 1998-03-16 1998-03-16 Method and device for evaluating photocatalyst Pending JPH11258206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10065509A JPH11258206A (en) 1998-03-16 1998-03-16 Method and device for evaluating photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10065509A JPH11258206A (en) 1998-03-16 1998-03-16 Method and device for evaluating photocatalyst

Publications (1)

Publication Number Publication Date
JPH11258206A true JPH11258206A (en) 1999-09-24

Family

ID=13289110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10065509A Pending JPH11258206A (en) 1998-03-16 1998-03-16 Method and device for evaluating photocatalyst

Country Status (1)

Country Link
JP (1) JPH11258206A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031612A (en) * 2000-07-14 2002-01-31 Japan Atom Energy Res Inst Method for evaluating photocatalytic performance by measuring quantity of pulse light excited surface hole
JP2002257812A (en) * 2001-03-02 2002-09-11 Japan Atom Energy Res Inst Method for evaluating performance of semiconductor photocatalyst by complementary measurement of pulse laser light-excited surface carrier
KR20040043895A (en) * 2002-11-20 2004-05-27 주식회사 유진텍 이십일 Apparatus for measuring photocatalytic activity and method using the same
KR100435423B1 (en) * 2001-12-22 2004-06-10 재단법인 포항산업과학연구원 Measuring method of Anti-corrosion performance for photocatalytic effect coating
JP2009036652A (en) * 2007-08-02 2009-02-19 Toshiro Kawaguchi Photocatalytic activity quantitative measuring instrument and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031612A (en) * 2000-07-14 2002-01-31 Japan Atom Energy Res Inst Method for evaluating photocatalytic performance by measuring quantity of pulse light excited surface hole
JP4630995B2 (en) * 2000-07-14 2011-02-09 独立行政法人 日本原子力研究開発機構 Photocatalytic performance evaluation method by pulse photoexcitation surface hole content measurement
JP2002257812A (en) * 2001-03-02 2002-09-11 Japan Atom Energy Res Inst Method for evaluating performance of semiconductor photocatalyst by complementary measurement of pulse laser light-excited surface carrier
KR100435423B1 (en) * 2001-12-22 2004-06-10 재단법인 포항산업과학연구원 Measuring method of Anti-corrosion performance for photocatalytic effect coating
KR20040043895A (en) * 2002-11-20 2004-05-27 주식회사 유진텍 이십일 Apparatus for measuring photocatalytic activity and method using the same
JP2009036652A (en) * 2007-08-02 2009-02-19 Toshiro Kawaguchi Photocatalytic activity quantitative measuring instrument and method
JP4571170B2 (en) * 2007-08-02 2010-10-27 俊郎 川口 Photocatalytic activity quantitative measurement apparatus and photocatalytic activity quantitative measurement method

Similar Documents

Publication Publication Date Title
Yamakata et al. Water-and oxygen-induced decay kinetics of photogenerated electrons in TiO2 and Pt/TiO2: a time-resolved infrared absorption study
Hayes et al. Reactive ion etching of InP using CH4/H2 mixtures: Mechanisms of etching and anisotropy
Zemlyanov et al. XPS observation of OH groups incorporated in an Ag (111) electrode
Sterrer et al. Energy transfer on the MgO surface, monitored by UV− induced H2 chemisorption
Du et al. Effect of water vapor on plasma morphology, OH and H2O2 production in He and Ar atmospheric pressure dielectric barrier discharges
Scheiderer et al. Surface-interface coupling in an oxide heterostructure: Impact of adsorbates on LaAlO 3/SrTiO 3
Imbihl Electrochemical promotion of catalytic reactions
KR101204342B1 (en) Sample plate for MALDI-Tof mass spectrometer and a method for analysing a mass using the MALDI-Tof mass spectrometer
JPH0228322A (en) Preliminary treatment of semiconductor substrate
JP2000294530A (en) Method for cleaning semiconductor substrate and its cleaner
JP2014041030A (en) Impurity analysis method of semiconductor substrate
Shondo et al. Nanoscale synergetic effects on Ag–TiO2 hybrid substrate for photoinduced enhanced Raman spectroscopy (PIERS) with ultra‐sensitivity and reusability
Oelkrug et al. Photoionization on insulator surfaces: diffuse reflectance laser flash photolysis of distyrylbenzenes adsorbed on silica and alumina
Sawada et al. Reduction of copper oxide thin films with hydrogen plasma generated by a dielectric-barrier glow discharge
Shaw et al. Thermal analysis of positive photoresist films by mass spectrometry
JPH11258206A (en) Method and device for evaluating photocatalyst
Celii et al. UV laser-induced photochemistry of iron pentacarbonyl on single crystal surfaces in ultrahigh vacuum
Dubois et al. Stabilization of the porous silicon surface by grafting of organic groups: direct electrochemical methylation
Ozawa et al. A surface science approach to unveiling the TiO2 photocatalytic mechanism: Correlation between photocatalytic activity and carrier lifetime
Wang et al. Photocatalytic chemistry of methanol on rutile TiO 2 (011)-(2× 1)
Kennelly et al. Photoinduced disproportionation of Ru (bpy) 32+ on porous Vycor glass
Satoh et al. Decomposition of benzene in a corona discharge at atmospheric pressure
Roberts et al. Evidence from photoelectron spectroscopy for dissociative adsorption of oxygen on nickel oxide
Elam et al. Adsorption and desorption of HCl on a single-crystal α-Al2O3 (0001) surface
JP2005214933A (en) Hydrogen sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071205