JP4630995B2 - Photocatalytic performance evaluation method by pulse photoexcitation surface hole content measurement - Google Patents

Photocatalytic performance evaluation method by pulse photoexcitation surface hole content measurement Download PDF

Info

Publication number
JP4630995B2
JP4630995B2 JP2000213772A JP2000213772A JP4630995B2 JP 4630995 B2 JP4630995 B2 JP 4630995B2 JP 2000213772 A JP2000213772 A JP 2000213772A JP 2000213772 A JP2000213772 A JP 2000213772A JP 4630995 B2 JP4630995 B2 JP 4630995B2
Authority
JP
Japan
Prior art keywords
thin film
photocatalytic
pulse
light
insulating sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000213772A
Other languages
Japanese (ja)
Other versions
JP2002031612A (en
Inventor
泰史 住田
春也 山本
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2000213772A priority Critical patent/JP4630995B2/en
Publication of JP2002031612A publication Critical patent/JP2002031612A/en
Application granted granted Critical
Publication of JP4630995B2 publication Critical patent/JP4630995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光触媒性能評価法に関するものであり、入射光として波長可変パルス光を用いることにより、瞬時に使用予定環境下での触媒性能を見積もることができ、さらに複雑な機構を持つ光触媒反応の劣化原因の解明にも役立つものである。
【0002】
【従来の技術】
物質の光触媒性能を評価する場合、光触媒物質の持つバンドギャップ以上の光を照射しながら表面に塗布した油や、色素または反応ガスの分解量を時系列で観測する手法が取られるが、いずれも光触媒反応が微弱であるため、その触媒性能を観測するには長い時間(数十分以上)を必要とした。
【0003】
また、光触媒性能の優劣を決定する原因は非常に複雑であり、物質表面に関して言えば反応表面積、表面酸化電位、結晶構造等であるが、これらを評価する手法はすでに確立しているのに対して、光触媒反応を起こすのに最も重要な役割を果たす正孔の表面への挙動を観測する手法は確立されていない。そのため、その物質のどの特性が触媒性能の優劣を決定しているのか不明瞭であった。
【0004】
【発明が解決しようとする課題】
本発明は、光触媒物質にパルス光を入射し、表面に励起された正孔数をカウントすることで、その光触媒性能を瞬時に測定する手法を提供するものである。
【0005】
【課題を解決するための手段】
本発明のパルス光励起表面正孔量測定による光触媒性能評価法は、光触媒薄膜の表面に透明な絶縁シートをかぶせ、それらを2枚の透明電極ではさみ、パルスレーザーを入射することで表面に励起された正孔数をデジタルオシロスコープで瞬時に観測することを特徴とする。入射パルスレーザーの波長を可変させることにより、その物質の光触媒性能の入射波長依存性も見積もることができる。
【0006】
又、本発明のパルス光励起表面正孔量測定による光触媒性能評価法を行う装置は、光触媒薄膜、その片側に設けられた絶縁シート、絶縁シートを介して設けられた一方の透明電極、及び絶縁シートの反対側に設けられた他方の透明電極から構成される積層体を設置し、その積層体の絶縁シート側の透明電極に外部抵抗及びディジタルオシロスコープを結合し、他側の透明電極を接地することにより電気回路を構成し、同期信号発信器から同期信号をパルスレーザ及びディジタルオシロスコープに付与し、発生したパルスレーザーにより薄膜表面に励起された電荷を外部抵抗を通して放電すると同時にその抵抗値を電圧としてディジタルオシロスコープ上に表示し、得られた表示値を下記式1に付与してその際の量子効率を算出することにより、光触媒性能を評価する装置である。
【0007】
【発明の実施の形態】
図1は本発明のパルス光励起表面正孔量測定回路のブロック図を示す説明図である。光触媒薄膜試料の表面にマイラーシート(絶縁シート)をかぶせ、透明導電膜が蒸着されたネサガラス(透明電極)で薄膜試料及びマイラーシートをはさむ。透明電極の光照射側端子は外部抵抗Rを通して接地し、透明電極の反対側はそのまま接地する。
【0008】
励起光としてパルスレーザーを透明電極を通して薄膜試料に入射し、薄膜試料中に電子−正孔対分離が生じ薄膜試料表面に電荷が励起されると、密着しているマイラーシート(絶縁シート)に電荷が蓄えられる。貯えられた電荷は外部抵抗R[Ω]を通じて放電される。このRでの放電電圧vを、入射光パルスと同期されたディジタルオシロスコープで時間軸(t)測定を行う。マイラーシート(絶縁シート)、及び薄膜試料の合成容量をC[F]、表面に励起された総電荷量をΔq[C]とsると、vは次式で表される。
【0009】
【式1】

Figure 0004630995
【0010】
即ち、回路の合成容量C及び抵抗値Rが既知であれば光触媒薄膜表面に励起される総電荷量を求めることができ、同時にレーザーパルスのパワーを観測しておけば、入射フォトンに対して何個の正孔が光触媒反応に寄与でき得るか(量子効率)を求めることが可能となる。また、入射パルスの波長を変化させそれぞれの量子効率を求めておけば、実際に使用される環境下での光触媒性能を短時間で見積もることができる。以下本発明を実施例に基づいて説明する。
【0011】
【実施例】
(実施例1)
光触媒薄膜試料としてレーザーアブレーション法で単結晶サファイア基板(10mm×10mm×0.5mmt)上に製膜した二酸化チタン(TiO2)薄膜を2枚用意した。製膜法はパルスレーザーデポジション法を用いた。製膜条件はいずれも、1パルス当たりのエネルギーを100mJ、繰り返し周波数10HzのYAGレーザー(波長532nm)、基板温度460℃で3時間堆積させもので、酸素分圧のみ、試料A:30mTorrと試料B:35mTorrとわずかに変化させた。両者をX線回折法により評価を行った結果、両サンプルともTiO2ルチル構造が優先的に成長していることが確認された他は違いは発見されなかった。
【0012】
このようにして得られた2つのサンプル(試料A及び試料B)に対して、パルス光励起表面正孔量測定を行った。入射光パルスとして、窒素レーザー(波長337nm、1パルス当たりのエネルギー50μJ、パルス幅5×10-9sec)を用い、外部抵抗Rは1M[Ω]を使用した。測定結果を図2に示す。
【0013】
図2は、本発明のパルス光励起表面正孔量測定法を用いて、酸化チタン薄膜に入射光として窒素レーザー(波長337nm、1パルス当たりのエネルギー50μJ、パルス幅5×10-9sec)を照射した際の図1における抵抗R(=1MΩ)での放電電圧波形である。本発明の測定波形より(1)式を用いて、表面に励起された総電荷量をΔq[C]を算出する。
【0014】
この測定波形を式(1)を用いてフィッティング((1)式の関数と測定波形が一致するようにパラメータΔqを導き出す)を行い表面に移動した総電荷量Δq[C]を比較すると、試料Aは試料Bより(この波長において)表面へ約1.3倍の正孔輸送能力を持っており、より高い光触媒性能を保持していることが推測される。
【0015】
(実施例2)
実施例1で使用した2つの試料の実際の光触媒性能を評価するために、薄膜表面に有機色素(メチレンブルー溶液、濃度1mmo1/l)を塗布し、UV光(波長<400nm)を照射しながら表面の色素の分解を吸光度変化として一定時間おきに観測した(真空理工株式会社製 光触媒評価チェッカーPCC−1を使用)。約20分間のUV照射後両者の分解量に違いが現れ始め、試料Aが試料Bより光触媒性能が高いことが確認され、実施例1の結果を支持するものとなった。
【0016】
なお今回は、実施例1において入射波長として337nmを使用したが、波長を変化させ各々の波長における電荷輸送能力を測定しておけば、実際の利用環境下(自然光、室内蛍光灯など)での触媒性能を短時間で見積もることが可能である。
【0017】
【発明の効果】
本発明は、これまで評価が困難であった“表面への正孔の移動し易さ”という光触媒性能の優劣を決定する新指標を導入することが可能となり、高活性光触媒の設計に役立つ。また、瞬時に光触媒性能を評価することができる、という本発明に特有の顕著な効果を生ずるものである。
【図面の簡単な説明】
【図1】図1は、本発明のパルス光励起表面正孔量測定回路のブロック図を示す説明図である。
【図2】図2は、本発明のパルス光励起表面正孔量測定結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalyst performance evaluation method, and by using wavelength-tunable pulsed light as incident light, it is possible to instantaneously estimate the catalyst performance under the intended use environment, and to further degrade the photocatalytic reaction having a complicated mechanism. It is also useful for elucidating the cause.
[0002]
[Prior art]
When evaluating the photocatalytic performance of a substance, a method of observing the amount of oil, pigment, or reactive gas decomposed in time series while irradiating light beyond the band gap of the photocatalytic substance is used. Since the photocatalytic reaction is weak, it took a long time (several tens of minutes) to observe the catalyst performance.
[0003]
In addition, the reasons for determining the superiority or inferiority of the photocatalytic performance are very complex. Regarding the surface of the material, the reaction surface area, surface oxidation potential, crystal structure, etc., while methods for evaluating these have already been established. Thus, a method for observing the behavior of holes, which plays the most important role in causing a photocatalytic reaction, to the surface has not been established. Therefore, it was unclear which characteristics of the material determined the superiority or inferiority of the catalyst performance.
[0004]
[Problems to be solved by the invention]
The present invention provides a technique for instantaneously measuring the photocatalytic performance of a photocatalytic substance by entering pulsed light and counting the number of holes excited on the surface.
[0005]
[Means for Solving the Problems]
The photocatalytic performance evaluation method by measuring the amount of holes on the surface of the photoexcited surface of the present invention is such that a transparent insulating sheet is placed on the surface of the photocatalytic thin film, sandwiched between two transparent electrodes, and excited by the pulse laser. It is characterized by instantaneously observing the number of holes with a digital oscilloscope. By varying the wavelength of the incident pulse laser, the dependence of the photocatalytic performance of the substance on the incident wavelength can also be estimated.
[0006]
In addition, the apparatus for performing the photocatalytic performance evaluation method by measuring the amount of surface hole of pulsed light excitation according to the present invention includes a photocatalytic thin film, an insulating sheet provided on one side thereof, one transparent electrode provided via the insulating sheet, and an insulating sheet A laminate composed of the other transparent electrode provided on the opposite side of the laminate is installed, an external resistor and a digital oscilloscope are connected to the transparent electrode on the insulating sheet side of the laminate, and the transparent electrode on the other side is grounded An electric circuit is constructed by applying a synchronizing signal from a synchronizing signal generator to a pulse laser and a digital oscilloscope, and the electric charge excited on the surface of the thin film by the generated pulse laser is discharged through an external resistor, and at the same time, the resistance value is digitalized as a voltage. By displaying on an oscilloscope and assigning the obtained display value to the following equation 1 to calculate the quantum efficiency at that time A device for evaluating the photocatalytic performance.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory diagram showing a block diagram of a pulsed light excitation surface hole quantity measuring circuit of the present invention. A mylar sheet (insulating sheet) is placed on the surface of the photocatalytic thin film sample, and the thin film sample and the mylar sheet are sandwiched with nesa glass (transparent electrode) on which a transparent conductive film is deposited. The light irradiation side terminal of the transparent electrode is grounded through the external resistor R, and the opposite side of the transparent electrode is grounded as it is.
[0008]
When a pulse laser is incident on the thin film sample through the transparent electrode as excitation light and electron-hole pair separation occurs in the thin film sample and the charge is excited on the surface of the thin film sample, the charge is applied to the closely contacted mylar sheet (insulating sheet). Is stored. The stored charge is discharged through the external resistance R [Ω]. The discharge voltage v at R is measured on the time axis (t) with a digital oscilloscope synchronized with the incident light pulse. Assuming that the combined capacity of the Mylar sheet (insulating sheet) and the thin film sample is C [F] and the total charge excited on the surface is Δq [C], v is expressed by the following equation.
[0009]
[Formula 1]
Figure 0004630995
[0010]
That is, if the combined capacitance C and resistance value R of the circuit are known, the total amount of charge excited on the surface of the photocatalytic thin film can be obtained. At the same time, if the power of the laser pulse is observed, what is the amount of incident photons? It is possible to determine whether the number of holes can contribute to the photocatalytic reaction (quantum efficiency). Further, if the quantum efficiency is obtained by changing the wavelength of the incident pulse, it is possible to estimate the photocatalytic performance in an environment where it is actually used in a short time. Hereinafter, the present invention will be described based on examples.
[0011]
【Example】
Example 1
Two titanium dioxide (TiO 2 ) thin films formed on a single crystal sapphire substrate (10 mm × 10 mm × 0.5 mmt) by a laser ablation method were prepared as photocatalytic thin film samples. The film forming method was a pulse laser deposition method. The film forming conditions are as follows: a YAG laser (wavelength of 532 nm) with an energy per pulse of 100 mJ and a repetition frequency of 10 Hz, and a substrate temperature of 460 ° C., deposited for 3 hours. Only oxygen partial pressure, sample A: 30 mTorr and sample B : Slightly changed to 35 mTorr. As a result of evaluating both by the X-ray diffraction method, no difference was found except that both samples confirmed that the TiO 2 rutile structure was preferentially grown.
[0012]
The two samples (sample A and sample B) thus obtained were subjected to pulsed photoexcitation surface hole amount measurement. As the incident light pulse, a nitrogen laser (wavelength 337 nm, energy per pulse 50 μJ, pulse width 5 × 10 −9 sec) was used, and the external resistance R was 1 M [Ω]. The measurement results are shown in FIG.
[0013]
FIG. 2 shows that the titanium oxide thin film is irradiated with a nitrogen laser (wavelength 337 nm, energy per pulse 50 μJ, pulse width 5 × 10 −9 sec) as incident light on the titanium oxide thin film by using the pulsed light excitation surface hole quantity measurement method of the present invention. 2 is a discharge voltage waveform at a resistance R (= 1 MΩ) in FIG. From the measurement waveform of the present invention, using equation (1), Δq [C] is calculated from the total amount of charges excited on the surface.
[0014]
When this measurement waveform is fitted using Equation (1) (parameter Δq is derived so that the function of Equation (1) matches the measurement waveform) and the total charge amount Δq [C] moved to the surface is compared, It is surmised that A has a hole transport capability about 1.3 times that of sample B (at this wavelength) to the surface and retains higher photocatalytic performance.
[0015]
(Example 2)
In order to evaluate the actual photocatalytic performance of the two samples used in Example 1, an organic dye (methylene blue solution, concentration 1 mmol / l) was applied to the surface of the thin film, and the surface was irradiated with UV light (wavelength <400 nm). Was observed at regular intervals as a change in absorbance (using a photocatalyst evaluation checker PCC-1 manufactured by Vacuum Riko Co., Ltd.). After the UV irradiation for about 20 minutes, a difference began to appear between the two, and it was confirmed that Sample A had higher photocatalytic performance than Sample B, which supported the results of Example 1.
[0016]
In this example, 337 nm was used as the incident wavelength in Example 1. However, if the charge transport capability at each wavelength is measured by changing the wavelength, the actual use environment (natural light, indoor fluorescent lamp, etc.) can be used. It is possible to estimate the catalyst performance in a short time.
[0017]
【The invention's effect】
The present invention makes it possible to introduce a new index for determining the superiority or inferiority of photocatalytic performance such as “ease of movement of holes to the surface”, which has been difficult to evaluate, and is useful for designing highly active photocatalysts. Moreover, the remarkable effect peculiar to this invention that the photocatalyst performance can be evaluated instantaneously is produced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a block diagram of a pulsed light excitation surface hole quantity measurement circuit of the present invention.
FIG. 2 is a graph showing the measurement results of the pulsed light excitation surface hole amount of the present invention.

Claims (3)

光触媒作用を有する物質が存在する薄膜表面に絶縁シートを被せ、該薄膜及び該絶縁シートを1対の透明電極で挟み、該薄膜表面にパルス光を照射して、放電電圧波形を測定することにより表面に励起された正孔量を求めてその物質の触媒性能を評価することを特徴とするパルス光励起表面正孔量測定による光触媒性能評価法。 By covering an insulating sheet on the surface of a thin film on which a substance having a photocatalytic action is present , sandwiching the thin film and the insulating sheet between a pair of transparent electrodes, irradiating the thin film surface with pulsed light, and measuring a discharge voltage waveform photocatalytic performance evaluation method by pulsed light excitation surface hole measuring, characterized in that to evaluate the catalytic performance of the material seeking holes amounts excited on the surface. 前記入射パルス光の入射光波長を変化させ、自然光下や屋内照明下等あらゆる環境での触媒性能を見積もることが可能であることを特徴とする請求項1記載のパルス光励起表面正孔量測定による光触媒性能評価法。The incident light wavelength of the incident pulse light is changed, the pulse excitation surface hole of claim 1, wherein it is possible to accumulate viewed catalytic performance in natural light or under indoor lighting lower every environment Photocatalytic performance evaluation method by measurement. 光触媒作用を有する物質が存在する薄膜表面に被せるための絶縁シート;An insulating sheet for covering a thin film surface on which a substance having a photocatalytic action exists;
絶縁シートを被せた薄膜を挟むための1対の透明電極;A pair of transparent electrodes for sandwiching a thin film covered with an insulating sheet;
薄膜表面に励起光を入射するためのパルスレーザー源;A pulsed laser source to make the excitation light incident on the thin film surface
薄膜からの放電電圧を測定するためのオシロスコープ;及びAn oscilloscope for measuring the discharge voltage from the thin film; and
前記パルスレーザー源と前記オシロスコープとを同期させるための同期手段;Synchronization means for synchronizing the pulsed laser source and the oscilloscope;
を具備する、光触媒性能評価装置。A photocatalyst performance evaluation device comprising:
JP2000213772A 2000-07-14 2000-07-14 Photocatalytic performance evaluation method by pulse photoexcitation surface hole content measurement Expired - Fee Related JP4630995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213772A JP4630995B2 (en) 2000-07-14 2000-07-14 Photocatalytic performance evaluation method by pulse photoexcitation surface hole content measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213772A JP4630995B2 (en) 2000-07-14 2000-07-14 Photocatalytic performance evaluation method by pulse photoexcitation surface hole content measurement

Publications (2)

Publication Number Publication Date
JP2002031612A JP2002031612A (en) 2002-01-31
JP4630995B2 true JP4630995B2 (en) 2011-02-09

Family

ID=18709469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213772A Expired - Fee Related JP4630995B2 (en) 2000-07-14 2000-07-14 Photocatalytic performance evaluation method by pulse photoexcitation surface hole content measurement

Country Status (1)

Country Link
JP (1) JP4630995B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599547B2 (en) * 2001-09-28 2010-12-15 独立行政法人 日本原子力研究開発機構 Two-layer photocatalytic titanium oxide film and method for producing the same
KR20040043895A (en) * 2002-11-20 2004-05-27 주식회사 유진텍 이십일 Apparatus for measuring photocatalytic activity and method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258206A (en) * 1998-03-16 1999-09-24 Ebara Corp Method and device for evaluating photocatalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247857B2 (en) * 1997-09-09 2002-01-21 宇部日東化成株式会社 Method and apparatus for measuring photocatalytic activity
JP2001183321A (en) * 1999-12-28 2001-07-06 Research Institute Of Innovative Technology For The Earth Method for evaluating photocatalytic film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258206A (en) * 1998-03-16 1999-09-24 Ebara Corp Method and device for evaluating photocatalyst

Also Published As

Publication number Publication date
JP2002031612A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
Tsuji et al. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution
Chidsey et al. Micrometer-spaced platinum interdigitated array electrode: fabrication, theory, and initial use
Heimer et al. Direct time-resolved infrared measurement of electron injection in dye-sensitized titanium dioxide films
Leung et al. Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: carbon monoxide adsorption and electrooxidation on platinum-and palladium-coated gold electrodes
Tadjeddine et al. Vibrational spectroscopy of the electrochemical interface by visible-infrared sum-frequency generation
US7141859B2 (en) Porous gas sensors and method of preparation thereof
Nakade et al. Enhancement of electron transport in nano-porous TiO2 electrodes by dye adsorption
JP2504897B2 (en) How to use electronic components containing fullerenes
Lomoth et al. Redox‐Switchable Direction of Photoinduced Electron Transfer in an Ru (bpy) 32+–Viologen Dyad
Yu et al. In-situ spectroscopic studies of electrochromic hydrated nickel oxide films
EP2154520A1 (en) Gas sensor, gas measuring system using the gas sensor, and gas detection module for the gas measuring system
Iwai et al. Ultrafast interfacial charge separation processes from the singlet and triplet MLCT states of Ru (bpy) 2 (dcbpy) adsorbed on nanocrystalline SnO2 under negative applied bias
Gomes et al. Ethanol electro-oxidation over Pt (h k l): Comparative study on the reaction intermediates probed by FTIR and SFG spectroscopies
Fawcett et al. Kinetics and thermodynamics of the electroreduction of buckminsterfullerene in benzonitrile
JP4630995B2 (en) Photocatalytic performance evaluation method by pulse photoexcitation surface hole content measurement
Bozzini et al. In situ spectroelectrochemical measurements during the electro-oxidation of ethanol on WC-supported Pt-black, based on sum-frequency generation spectroscopy
Hernández-Balaguera et al. The dominant role of memory-based capacitive hysteretic currents in operation of photovoltaic perovskites
Sato et al. The effect of CdS on the charge separation and recombination dynamics in PbS/CdS double-layered quantum dot sensitized solar cells
Katsuta et al. Electrical properties of rutile (TiO2) thin film
Yoshimura et al. Light emission from tracking discharges on organic insulation
JP2002257812A (en) Method for evaluating performance of semiconductor photocatalyst by complementary measurement of pulse laser light-excited surface carrier
Goossens et al. A photoelectrochemical impedance spectroscopic study of passive metals
Balog et al. The effect of trap states on the optoelectronic properties of nanoporous nickel oxide
Jennings et al. In situ spectroelectrochemical studies of the fluorescence of 5-substituted indole trimer films
Nakabayashi et al. Surface state assisted electron tunneling through a space charge layer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees