JPS6362663A - Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration - Google Patents

Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration

Info

Publication number
JPS6362663A
JPS6362663A JP20851486A JP20851486A JPS6362663A JP S6362663 A JPS6362663 A JP S6362663A JP 20851486 A JP20851486 A JP 20851486A JP 20851486 A JP20851486 A JP 20851486A JP S6362663 A JPS6362663 A JP S6362663A
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
diameter
vibration
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20851486A
Other languages
Japanese (ja)
Inventor
Junichiro Kumabe
隈部 淳一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20851486A priority Critical patent/JPS6362663A/en
Publication of JPS6362663A publication Critical patent/JPS6362663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To reduce the average grinding temperature rise and to reduce the grinding force remarkably, by fixing a large grinding wheel having diameter D to the tip of a rotary spindle having diameter of (d), where D>>d, and employing such shape as will cause resonance with the inherent vibration of a longitudinal supersonic wave vibration chip fixed to the tail section of said rotary spindle. CONSTITUTION:When the inherent frequency of a longitudinal supersonic vibration chip 32 is 20kHz, there are relations between the diameter and the width of a grinding wheel 1 and the diameter and the length of the spindle. If the diameter of the spindle 31 is 50mm, for example, its length is 260mm for single wavelength while the diameter and the width of the grinding wheel are 165mm and 10mm, respectively. When such shape and dimensions are employed, the grinding wheel 1 can be vibrated radially with supersonic frequency while simultaneously vibrated in the direction of the thickness with supersonic frequency. Consequently, the grinding wheel 1 vibrates radially with supersonic frequency (f) and amplitude (ar) 17 and axially with supersonic frequency (f) and amplitude (as) 18. Said grinding wheel 1 is rotated in the direction of an arrow 3 with a grinding speed V so as to cut (t) into a work 2 thus grinding the work 2 with a feeding speed (v).

Description

【発明の詳細な説明】 (産業−1−の利用分野) 本発明は従来の研削方法では困難とされているゴム及び
セラミックス等を容易に精ヤト;研削でき”る砥石車に
超音波振動と低周波振動を重畳させて研削する複合仕上
方法に関する。。
Detailed Description of the Invention (Field of Application in Industry-1-) The present invention applies ultrasonic vibration to a grinding wheel that can easily grind rubber, ceramics, etc. that are difficult to grind with conventional grinding methods. This article relates to a composite finishing method in which grinding is performed by superimposing low-frequency vibrations.

(従来技術) 切削・研削工具によって精密加1−するためには、工作
物に与える力を少しでも軽減する方法によって加工する
必要がある31回+lta円板1−にI、11刃を有限
数段(Jた例えばフライスを高速回転させて切削するこ
とによって切削力が軽減する。
(Prior art) In order to perform precision machining 1- with a cutting/grinding tool, it is necessary to process it 31 times + lta by a method that reduces the force applied to the workpiece as much as possible. For example, cutting by rotating a milling cutter at high speed reduces the cutting force.

回転円板−4−に無数に砥粒を分布させた砥石車を高速
回転させて研削することによ−)で、砥粒1刃あたりの
切込みがさらに小さくなって1−作物に作用する力が激
減して精密畑土てきるようになる。しかし、一方、約2
000m / m i n ニ及フ高速研削のため多−
h(の研削液によって−1,イ4物JSよび砥石車を冷
却しなければならない稈甲均研削d1.1度が著しく上
昇することも既に周知のところである。砥石itの高速
回転にともなう、このバーしい発熱現象かあるにもかか
わ1)ず、−11作物に作用する力の激減効果が絶大で
Ij)るため砥石車による研削加工が広く常用されてい
るのが現状である。従来の工作物の相性は、金属が主体
で発熱があっても熱伝達効率がよく冷1+μ効果がよい
ので適切な研削液を多量に使用することによって精密研
削を可能としていた。
By grinding by rotating at high speed a grinding wheel with countless abrasive grains distributed on a rotating disk (4-), the cutting depth per abrasive grain becomes even smaller and the force acting on the crop is reduced. This drastically reduced the amount of soil used, and precision field soil began to be used. However, on the other hand, about 2
000m/min for high-speed grinding
It is already well known that the grinding fluid of h(-1, A4 JS and grinding wheel must be cooled d1.1 degrees) increases significantly.As the grinding wheel IT rotates at high speed, Despite this severe heat generation phenomenon, the current situation is that grinding using a grinding wheel is widely used because the effect of drastically reducing the force acting on -11 crops is enormous. Conventional workpieces are mainly made of metal, and even if they generate heat, they have good heat transfer efficiency and a good cooling 1+μ effect, making precision grinding possible by using a large amount of an appropriate grinding fluid.

(発明が解決しようとする問題点) しかし、今日では精密加工理論、技術の有無にかかわら
ず、新書判が開発されてきており、そのなかにはゴム、
FRP、セラミックスのように熱伝達効率の悪い新素月
が多く含まれている。そして、これらにも極めて高い加
工精度が要求されてきている。
(Problem to be solved by the invention) However, today, new paper formats have been developed regardless of precision processing theory and technology, and some of them include rubber,
It contains many materials that have poor heat transfer efficiency, such as FRP and ceramics. These materials are also required to have extremely high machining accuracy.

これらに対する精密加工の期待に応えるためには、平均
研削温度上昇をより少なくして研削力をさらに激減させ
ることができる研削方法が必要である。ゴムのような軟
くてねばい材料、金属、セラミックスのような硬くても
ろい材料に共通な精密研削方法がないという問題点があ
った・ (問題点な解決するための手段) 本発明は平均研削湿度上昇をより少なくして研削力をよ
り軽減していかなる材料に対してでも同し加」二条性で
精密研削することができることを目的とするもので、直
径dの回転主軸の先端に砥石車直径D>)clの大型砥
石中を取付けて砥石車超音波振動系を構成し、その形状
・1−法を該回転主軸の尾部に取イ・」【づた縦用?°
1波振動r−の固有振動数と共振する形状とし、砥石車
の研削作用面を同一振動数で砥石中米径方向と砥石11
L軸方向に複合超音波振動させなから誠砥(1車を回転
させ、パルス研削波形を発生させて極微細切りくずを生
成し研削する特徴とするものである。
In order to meet these expectations for precision machining, there is a need for a grinding method that can further reduce the average grinding temperature rise and sharply reduce the grinding force. There is a problem in that there is no common precision grinding method for soft and sticky materials such as rubber, hard and brittle materials such as metals and ceramics. The purpose of this machine is to reduce the increase in grinding humidity, further reduce the grinding force, and perform precision grinding on any material with a two-strip feature. A grinding wheel ultrasonic vibration system is constructed by installing a large grinding wheel with a wheel diameter D>) cl, and its shape is attached to the tail of the rotating main shaft. °
The shape is designed to resonate with the natural frequency of the one-wave vibration r-, and the grinding surface of the grinding wheel has the same frequency in the radial direction of the center of the grinding wheel and the grinding wheel 11.
It is characterized by grinding by rotating one wheel and generating pulsed grinding waveforms to generate extremely fine chips without applying complex ultrasonic vibrations in the L-axis direction.

(実施例) 以下5図示した実施例に基づいて具体的に説明する。第
]−図は従来の研削法のときの研削機構と研削力波形を
示す。研削速度■で矢印;3の方向に高速回転する砥石
車1を1冨1−物2に対して切込みLを与えて研削する
ときの研削機構において砥石車内の1つの砥粒は斜線で
示した面積ABCを切削する。、砥粒は高速回転してい
るために、砥石車の切込みはt、であ−)ても、砥粒」
刃の見掛け」二の切込みg。は極めて小さくなる。
(Example) Hereinafter, a detailed description will be given based on five examples shown in the drawings. Figure 1 shows the grinding mechanism and grinding force waveform in the conventional grinding method. One abrasive grain in the grinding wheel is indicated by diagonal lines in the grinding mechanism when the grinding wheel 1 rotates at high speed in the direction of arrow; Cut area ABC. , the abrasive grains rotate at high speed, so even if the cutting depth of the grinding wheel is t, the abrasive grains
Appearance of the blade's second incision g. becomes extremely small.

このときの研削力波形は円筒面に間隔をもって分布する
砥粒の高速回転と砥粒の弾性振動によって周期的に変化
し、これをモデル化して表ねすと、図示4のように主分
力PC1背分力Pjともに、P mean 十p si
nωを形で表わされる。工作物の背分力方向のはね定数
をに、角固有振動数をω□とすると、ω7t<ωの関係
で研削しているのが一般であるため、加]二精度に関係
する工作物の背分力方向の工作物の弾性変位量又は、X
−m−となる。加工精度を向」ニさせるために々 はこの変位jtxを軽減させる必要が生ずる。そのため
には、砥石車を工作物に押えつける力を軽減させる必要
が生ずる。すなわち、P mean値を少なくして切れ
味を向」ニさせる必要がある。
The waveform of the grinding force at this time changes periodically due to the high-speed rotation of the abrasive grains distributed at intervals on the cylindrical surface and the elastic vibration of the abrasive grains, and when this is modeled and expressed, the principal force component is shown in Figure 4. Both PC1 thrust force Pj, P mean 10 psi
It is expressed in the form of nω. If the resiliency constant of the workpiece in the direction of the thrust force is , and the angular natural frequency is ω□, then grinding is generally performed with the relationship ω7t<ω. The amount of elastic displacement of the workpiece in the direction of the thrust force, or
-m-. In order to improve machining accuracy, it becomes necessary to reduce this displacement jtx. For this purpose, it is necessary to reduce the force pressing the grinding wheel against the workpiece. That is, it is necessary to reduce the P mean value to improve the sharpness.

さて発明者は今日までに砥石車を研削方向すなオ)ち、
第2図における砥石車を5の矢印f。
Now, the inventor has developed a grinding wheel so far that the direction of grinding is
The grinding wheel in FIG. 2 is indicated by arrow f of 5.

Elの方向に超音波ねじり振動させて研削速度■く2π
afの研削速度で振動研削する方法を発明した。この方
法によって研削力波形は図示のようにパルス研削力波形
6となり、パルス研削力の絶対値をI〕′ とすると、
背分力方向の変位xは、x乱層、 、fl−どなる。こ
こで、し0は砥石下 慶 車の振動−サイクルでの正味研削時間、I゛け振動周期
である。このとき諸1?擦抵抗が減少する効果と作用時
間が短くなるので見掛け1−の切込みが浅くなる効果に
よってI−1’<I)となる1、すなわち、研削砥石接
触面での研削力P I も減少し、加」−精度に関係す
る工作物の背分力方向の変位Xは従来の研削方法にJ′
;ける同じ研削速度tOI  l のときの変位に比べて−F−(丁〜W)に減少する。
The grinding speed is increased by ultrasonic torsional vibration in the direction of El to 2π.
We have invented a method of vibration grinding at an af grinding speed. With this method, the grinding force waveform becomes a pulsed grinding force waveform 6 as shown in the figure, and if the absolute value of the pulsed grinding force is I]',
The displacement x in the direction of the thrust force is xturbostratic, ,fl-. Here, 0 is the net grinding time in the vibration cycle of the grinding wheel, and I is the vibration period. At this time, 1? Due to the effect of reducing the friction resistance and the shortening of the working time, the apparent depth of cut becomes shallower, so that I-1'<I) 1, that is, the grinding force P I at the grinding wheel contact surface also decreases, - The displacement X of the workpiece in the direction of the back force, which is related to accuracy, is J' in the conventional grinding method.
; compared to the displacement at the same grinding speed tOI l .

さらに、第3図のように、矢印7の方向に1・゛〈fの
低い振動を重畳して!j、え、研削速度V<2πAFで
研削すると、その研削力波形は断続パルス切削力波形8
となって工作物に作用する、。
Furthermore, as shown in Figure 3, a low vibration of 1·゛<f is superimposed in the direction of arrow 7! j, Eh, when grinding at a grinding speed V<2πAF, the grinding force waveform is an intermittent pulse cutting force waveform 8
and acts on the workpiece.

不感性振動切削機構と零位瞬間振動切削との1l−(畳
振動切削機構との複合効果により、研削砥石接触面の研
削力P“が減少し、加]−精度に関係する工作物の背分
力方向の変位Xが連続パルス研削力の場合に比べてさら
に減少し、精密研削加1′、を11「能とする。しかし
、このとき、研削速度■は低速となるので2000m/
 minの研削速度のときのメτ。に等しくさせて研削
しようとすると、工作物の送り速度■9は遅い速度とな
り、研削能率が低減する欠点が生ずる。
1l-(Due to the combined effect of the insensitive vibration cutting mechanism and zero-level instantaneous vibration cutting, the grinding force P" on the grinding wheel contact surface is reduced and processed) - The back of the workpiece related to accuracy The displacement X in the component force direction is further reduced compared to the case of continuous pulse grinding force, and precision grinding 1' becomes 11". However, at this time, the grinding speed (2) is low, so 2000 m/
Me τ when the grinding speed is min. If an attempt is made to grind the workpiece by making it equal to , the workpiece feed rate (9) becomes slow, resulting in a drawback that the grinding efficiency is reduced.

そこで、−1−述の特徴を生かして研削能率が低十しな
いような研削方法について考えた。
Therefore, we considered a grinding method that takes advantage of the features described in -1- and does not lower the grinding efficiency.

第4図のようにして、工作物表面に微細ピッチ<1.−
C11+の高さをRmaxとする規則的な微細みぞ11
1を成形しておき、t<Rmaxの切込みとして高速同
転する周速■3の砥石車で工作物に第1図の送り速度■
をケえて研削する。このようにすることによって、高速
回転する砥石車を用いて工作物の送り速度を遅くするこ
となく、第4190こ示すような研削加工という力学的
加工において理想とするパルス切削力波形を発生させ発
熱も少く能率よく研削することができるようになる3、
第2図のように切込みt>Rma)tとし、砥石と−1
−作物が接触する研削面での曲線ACを滑らかな円弧と
して研削する場合には、砥石車−り− を研削方向に振動さぜV<2πt+ 1’の条件を!j
えて低速研削してパルス切削力波形を発生させたことに
対して、微細凹凸みぞ111形状にして、その111の
頂上付近を高速回転する砥イ1車でこれをg(、を小さ
くして研削し、切りくずを微細に寸断する研削機構とし
てパルス切削力波形を発生させて精密研削する法が本発
明の特徴である。
As shown in Fig. 4, fine pitch <1. −
Regular fine grooves 11 with the height of C11+ as Rmax
1 is formed, and the workpiece is fed at the feed rate shown in Fig. 1 using a grinding wheel of 3, which rotates simultaneously at high speed with a cutting depth of t<Rmax.
Cut and grind. By doing this, the pulse cutting force waveform that is ideal in mechanical processing such as grinding as shown in No. 4190 can be generated and heat generated without slowing down the feed speed of the workpiece using a high-speed rotating grinding wheel. 3. You will be able to grind more efficiently with less
As shown in Figure 2, the cutting depth is t>Rma)t, and the grinding wheel is -1
- When grinding the curve AC on the grinding surface that comes into contact with the crop as a smooth circular arc, the condition of vibrating the grinding wheel in the grinding direction is V<2πt+1'! j
In order to generate a pulsed cutting force waveform by grinding at a low speed, a fine groove 111 is formed, and a grinding wheel 1 rotating at high speed near the top of the groove 111 is used to reduce g(,) and grind it. However, a feature of the present invention is a method of precision grinding by generating a pulsed cutting force waveform as a grinding mechanism that finely shreds chips.

しからば、この微細凹凸みぞ山形状ないかにして連続し
て研削面に発生させるかについて詳述する。
Next, we will explain in detail how to continuously generate this fine unevenness groove shape on the grinding surface.

第5図は、慣用研削におけろ砥粒]刃あたりの研削面積
を示ず図である。砥石車1の円周」二の1つの砥粒11
の先端は近似円弧ΔB上を回転し、砥粒1」の次に位置
する砥粒12は近似円弧AC上を回転する。そして、黒
く塗った面積ABCに相当する部分製砥粒12か研削し
て切りくずを生成する。このときのt;。はドア。< 
Lである。
FIG. 5 is a diagram without showing the grinding area per abrasive blade in conventional grinding. Circumference of grinding wheel 1 1 abrasive grain 11
The tip of the abrasive grain 1 rotates on an approximate arc ΔB, and the abrasive grain 12 located next to the abrasive grain 1'' rotates on an approximate arc AC. Then, the partially formed abrasive grains 12 corresponding to the black area ABC are ground to generate chips. At this time, t;. is the door. <
It is L.

第6図は砥石車上の研削面における砥粒の分布をモデル
化して研削面をに面から見た図である11幅をもつ砥石
車の円周」―において、砥粒11のA点を通る一直線」
−に等間隔に分布する砥粒群を点記し、さらに次の点に
位置する砥粒12を含む−・直線」二に等間隔に分布す
る砥粒群を点記した図である。その砥粒群内の砥粒をそ
れぞれ1.3,1.4とする。砥粒]4の運動軌跡を」
作方から見たときその軌跡は直線abcとなる。
Figure 6 is a model of the distribution of abrasive grains on the grinding surface of the grinding wheel, and is a view of the grinding surface viewed from the side. A straight line that passes through
It is a diagram in which groups of abrasive grains distributed at equal intervals are dotted on - and straight lines including abrasive grains 12 located at the next point. The abrasive grains in the abrasive grain group are respectively 1.3 and 1.4. Abrasive grain] Motion trajectory of 4
When viewed from the production method, its locus becomes a straight line abc.

そのときの研削面積をモデル化して示したのが第7図の
面積AB C−1−5である。第8図はその面積15を
研削する砥粒12の切削力波形16を示ず最大研削力は
)3点において生じてP5kg「を示す、。
The area ABC-1-5 in FIG. 7 shows a model of the grinding area at that time. FIG. 8 shows the cutting force waveform 16 of the abrasive grain 12 grinding the area 15, and the maximum grinding force is generated at three points and is P5 kg.

この面f古15を砥石の研削速度をおとさずに細かく分
割してパルス状の研削力とすることを考える。これ詮実
現させる具体的方法としては、切りくずを極小片に」断
すること以外にない。
Consider dividing this surface f-15 into small pieces without reducing the grinding speed of the grindstone to generate a pulse-like grinding force. The only concrete way to accomplish this is to cut the chips into extremely small pieces.

その方θ、の]つには高速回転する砥石車を半径方向に
超音波振動させて研削することによって実現する。すな
わち、第9図のように砥石車の半径方向である矢印17
の方向に振動数f、振幅a、Y−で超音波振動させなか
ら、研削速度■3で研削する方法によって実現する。こ
のときの砥石車の砥粒1]の運動軌跡は11列玄波連動
軌跡1−9、砥粒」2は正弦波運動軌跡2oを示して、
その間の断続する黒色部が振動1ザイクルで研削する研
削面積となる1、この研削面積目、工(T−*)秒の周
期をもって断続する。このようにして切りくずは微細に
・j断され、パルス状の研削力波形となる。第10図は
このときの砥粒の動きを上方から見てこれをモデル化し
て第6図に相当させて示す図である。切込みが時々刻々
変化して切りくずを寸断して断続研削機前となる。この
状態をモデル化して表A)ずために微細点線の集合であ
る点線a h c 22 %もって示した。1つの砥粒
の切込みが0がtE+ある値まで時々刻々変化し、これ
をある間隔をも−)で断続させて研削するために、研削
力は第11図に示すようにパルス状23となる。ト;。
One way is to achieve grinding by ultrasonically vibrating a grinding wheel that rotates at high speed in the radial direction. That is, as shown in FIG. 9, the arrow 17, which is the radial direction of the grinding wheel,
This is achieved by applying ultrasonic vibration in the direction of frequency f, amplitude a, and Y-, and then grinding at a grinding speed of 3. At this time, the motion locus of the abrasive grain 1 of the grinding wheel is the 11-row Genba interlocking locus 1-9, and the abrasive grain 2 is a sinusoidal motion locus 2o.
The intermittent black parts in between are the grinding area to be ground in one cycle of vibration.1 This grinding area is intermittent with a period of T-* seconds. In this way, the chips are cut into fine pieces, resulting in a pulsed grinding force waveform. FIG. 10 is a diagram showing the movement of the abrasive grains at this time viewed from above and modeled to correspond to FIG. 6. The depth of cut changes from moment to moment, cutting the chips into pieces before the intermittent grinding machine. This state is modeled and shown in Table A) using a dotted line ah c 22 %, which is a collection of fine dotted lines. The cutting depth of one abrasive grain changes from time to time from 0 to a certain value of tE+, and in order to grind this intermittently at certain intervals (-), the grinding force becomes pulsed 23 as shown in Fig. 11. . to;.

の最大なり点において研削力は最大値を示し、これをl
)9kg (とする。このPgはIJ5に対してl) 
:; > T)っとなる。
The grinding force shows the maximum value at the maximum point, and this is called l
)9kg (Assume that this Pg is l for IJ5)
:; > T) It becomes.

一1=記のように切込みを変化させて切りくずを寸断す
る方法に対して切削長さを極細分割化して切りくずを寸
断する方法が考えられる。この方法は、第1−2図のよ
うに、砥石車をその軸方向である矢印」8の方向に振動
数f、振幅a9で超音波振動させ、研削速度V3で研削
してジグザグトこ運動させることしこよって実現する。
In contrast to the method of cutting chips by changing the depth of cut as described in 11, a method of cutting chips by dividing the cutting length into extremely fine sections can be considered. In this method, as shown in Figure 1-2, the grinding wheel is ultrasonically vibrated in the direction of the arrow 8, which is its axial direction, at a frequency f and an amplitude a9, and is ground at a grinding speed V3 to make a zigzag motion. It will come true this year.

このときの砥石用の砥粒11の刃先先端の運動軌跡は第
10図と回しようにして表わした第13図によ昌づる実
線で画いた正弦波曲線24を示し、砥粒12の刃先先端
は点線で画いた正弦波曲線25を示す。この2つの曲線
は交叉する。各砥粒形状を近似化して円すいとして考え
る。曲線24−1−を通らずに別の曲線25上を運動し
て曲線24ど交叉して運動する砥粒12によって、砥粒
11による切り残し部を研削しなから砥粒11で加工さ
れた溝で19Jりくすを寸断して研削加工する機構とな
る。このときの、切込み深さgoは第5図のようにして
連続して変化するか、第5図との相異点はその切りくず
長さ梨細かく、1′断されるところにある。この状fル
をこれを干デル化して第12図の=1断微小而積:(T
、32゜333・・・・・・・とじて表わす。
At this time, the motion locus of the tip of the cutting edge of the abrasive grains 11 for the grindstone shows a sine wave curve 24 drawn by a solid line as shown in FIG. 10 and FIG. shows a sinusoidal curve 25 drawn with a dotted line. These two curves intersect. The shape of each abrasive grain is approximated and considered as a cone. By the abrasive grains 12 moving on another curve 25 without passing through the curve 24-1-, and crossing the curve 24, the uncut portion by the abrasive grains 11 is ground and then processed with the abrasive grains 11. It is a mechanism that cuts 19J Rikusu into pieces with the groove and grinds it. At this time, the cutting depth go changes continuously as shown in FIG. 5, and the difference from FIG. 5 is that the chip length is fine and is cut by 1'. By converting this state f into a delta, the =1 fragment in Figure 12 is the product: (T
, 32°333...

従って研削力波形は第14図に示すようにパルス状26
になり、B点において研削力番゛■最大値を示す。これ
をP□2kgfとする1、この1)□2けP7Lこ対し
てP 、、 > p□2となる。この減少理111は切
削長さを短くして、これを夕(jいlaJ l’il 
11.’i’ 1fllで研削するために、比較的長い
距1雛を切込みた変化させて比較的長い作用時間で断続
させて切削する第9図の場合のP、よりもその研削力t
 ’lIY減させることができる。このように解析して
さ1゛)に研削力を軽減させる方法として第9図と第1
2図振動方向を重畳複合させた研削力θ1、f fJ:
わち砥石車に半径方向と同時に軸方向にも超1′イ波振
動をljえて研削する方法を考えた。。
Therefore, the grinding force waveform has a pulse shape 26 as shown in Fig. 14.
The grinding force number shows the maximum value at point B. Letting this be P□2kgf, 1)□2 digits P7L becomes P,, > p□2. This reduction principle 111 shortens the cutting length and
11. 'i' In order to grind with 1 fll, the grinding force t is greater than P in the case of Fig. 9, in which cutting is performed intermittently over a relatively long cutting time by varying the cutting distance over a relatively long distance.
'lIY can be reduced. Based on this analysis, Figures 9 and 1 show how to reduce the grinding force.
Fig. 2 Grinding force θ1, f fJ:
Specifically, we devised a method for grinding by applying ultra-1' wave vibration to the grinding wheel both in the radial direction and in the axial direction. .

第15図は第9図と第12図を・重畳さ」↓た砥粒」1
と砥粒12の運動軌跡をモテル化し、で示ずものである
。第9図にお(Jる砥粒IIは甲、径 11一 方向の振:lす+て曲線19の運動軌跡を画き、砥粒1
2は曲線20の運動軌跡を画き、その間の切削面積を第
12図における軸方向の振動の重畳によ−)で極微小面
積群27に細分割する。このようにして切りくずを超微
細形状砥粒に寸断してパルス研削力波形とする。切込み
をゼロからある値となることを繰返すことによるパルス
研削力波形で研削する第9図による機構と、切りくず長
さを寸断することによるパルス研削力波形で研削する第
12図による機構とを重畳させた研削機構による運動軌
跡のモデル図は第16図のように点線28.29で示す
曲線となる。
Figure 15 is a superimposition of Figures 9 and 12.
The motion locus of the abrasive grains 12 is modeled as shown in the figure. In Fig. 9, the abrasive grain II is the instep, the diameter is
2 draws a motion locus of a curve 20, and the cutting area therebetween is subdivided into extremely small area groups 27 by superimposing vibrations in the axial direction as shown in FIG. In this way, the chips are shredded into ultra-fine abrasive grains to form a pulsed grinding force waveform. The mechanism shown in Fig. 9 which grinds with a pulsed grinding force waveform by repeatedly increasing the depth of cut from zero to a certain value, and the mechanism shown in Fig. 12 which grinds with a pulsed grinding force waveform by cutting the chip length. A model diagram of the motion trajectory by the superimposed grinding mechanisms is a curve shown by dotted lines 28 and 29 as shown in FIG.

このようにして砥粒1]および砥粒コー2前後、左右、
1〕ドの各砥粒による運動軌跡がさらに密に交錯し、て
切りくず長さを短くし、および切り込み深さを浅く、深
く断続させて変化させる効果を相乗させて、切りくず長
さを微細化し、切込み深さを細分割して研削する理想的
な研削機構となり、第17図に示すように、その研削力
波形を理想的なパルス切削力波形30とし、研剛力を激
減させてP l 7(I’ + 、、 (kt: I’
 )とずろことができる、。
In this way, the abrasive grain 1] and the abrasive grain 2 are
1) The movement trajectories of each abrasive grain intersect more closely, shorten the chip length, and synergize the effect of changing the depth of cut from shallow to deep intermittently, increasing the length of the chip. It becomes an ideal grinding mechanism that grinds by finely dividing the depth of cut, and as shown in Fig. 17, the grinding force waveform is an ideal pulse cutting force waveform 30, and the grinding force is drastically reduced. l 7(I' + , (kt: I'
).

以1−のようにして、砥粒か砥石中円t1?1面に規則
的に等間隔に分布しているものとし、その砥粒形状を従
来の研削機構の解析で考えているように円錆:体と考え
、その1つの砥粒によってl′JJ込み深さおよび切り
くず長さを断続させ・1断させてパルス研削力波形とす
る機構を干デル化して示して本発明の詳細な説明した。
As described in 1-1 below, it is assumed that the abrasive grains are distributed regularly and equally spaced on the center circle t1?1 of the grinding wheel, and the shape of the abrasive grains is circular as considered in the conventional analysis of the grinding mechanism. Rust: Considered as a body, we will explain the details of the present invention by showing the mechanism that creates a pulsed grinding force waveform by intermittent and one-time interruption of l'JJ penetration depth and chip length using one abrasive grain. explained.

。 実際の砥石車における各砥粒JIYの]刀刃形状4r9
よび分布状態は不規則で不揃いであり、本発明の実施に
よってより活発となる研削(〔IIでの砥粒の破砕、脱
落てさらに複信1な先端形状をし、凹凸面に研削される
のでこの1νjりくず長さの微細化と切り込む深さの細
分割化はさ+7.にtlう発になり極細分割化される。
. Blade shape 4r9 of each abrasive grain JIY in actual grinding wheel
The grinding and distribution state is irregular and irregular, and by implementing the present invention, the grinding becomes more active (the abrasive grains are crushed and fallen off in II, and the tip shape becomes complex and is ground into an uneven surface. This miniaturization of the chip length by 1νj and the subdivision of the cutting depth result in an extremely fine division at +7.tl.

説明を砥粒11.+2の2の砥粒の運動軌跡で行ったが
、第15図に才9いて黒色に画いた微小面積27群の間
の白色部群は砥粒12の後に続く砥粒イ1)′によって
研削して加工していくので所定切込みlの研削加にが円
古゛)に実施され、5+l滑な研削面に加工できる。
Description of abrasive grains 11. The movement was carried out using the abrasive grain movement trajectory of +2 and 2, but the white part group between the 27 groups of minute areas drawn in black in Figure 15 was ground by the abrasive grain A1)' following the abrasive grain 12. Since the grinding process is carried out by grinding, the grinding process of the predetermined depth of cut l can be carried out easily, and the grinding process can be processed to a smooth ground surface of 5+l.

すなわち、発熱なくパルス研削力波形を作用させてセラ
ミックスやゴムなどの精密研削を可能なIン)しめる、
In other words, it is possible to precisely grind ceramics, rubber, etc. by applying a pulsed grinding force waveform without generating heat.
.

次に本発明に用いる研削盤主軸振動系および砥石車形状
を第18図、第19図、第20図によって説明する。第
18図は縦超音波振動子32を>’、 ’tillt 
31の尾部に設け、先端に砥石車1を設けてなる研削盤
上1Illll、1′9よび砥石車振動系を示す図であ
る。縦超音波振動子32の固有振動数を20 K Il
zどしたとき、砥石車の直径及び+j+と、主軸の直径
、長さには一連の関係があって、例えは:i:、1ll
ll131の直径を50mmとすると、その畏さは1波
j4のとき260mm、砥石車の直径は1.65 mm
、幅はlomτIとなる。このような形状と寸法とする
ことによって砥石車と半径方向に超音波振動させると同
日、1゛に軸方向の厚み方向にも超音波振動させること
ができる。砥石車1の主軸31への着脱は第1−9図お
よび第20図のように砥石車に設けたねじ部33あるい
はテーバ部35などを利用して行うことができる。ねし
結合の場合にはねじ35のほかにはめ合い部:λ’Ik
itQけて位置決めし、砥石外周の振、(シを最小にす
る。。
Next, the main shaft vibration system of the grinding machine and the shape of the grinding wheel used in the present invention will be explained with reference to FIGS. 18, 19, and 20. FIG. 18 shows the vertical ultrasonic transducer 32 >', 'tilt
31 is a diagram showing a grinding machine top 1Illll, 1'9 and a grinding wheel vibration system, which are provided at the tail portion of the grinding wheel 1 and the grinding wheel 1 is provided at the tip thereof. The natural frequency of the vertical ultrasonic transducer 32 is 20 K Il
z, there is a series of relationships between the diameter of the grinding wheel and +j+, and the diameter and length of the main shaft, for example: i:, 1ll
If the diameter of ll131 is 50 mm, its height is 260 mm at one wave j4, and the diameter of the grinding wheel is 1.65 mm.
, the width is lomτI. By having such a shape and dimensions, when ultrasonic vibration is caused in the radial direction of the grinding wheel, ultrasonic vibration can also be caused in the thickness direction of the axial direction by 1° on the same day. The grinding wheel 1 can be attached to and removed from the main shaft 31 by using a threaded portion 33 or a tapered portion 35 provided on the grinding wheel as shown in FIGS. 1-9 and 20. In the case of screw connection, in addition to the screw 35, the fitting part: λ'Ik
Position it with Q and minimize the vibration of the outer circumference of the grinding wheel.

このほかはめ合い部を設けて、敷本のポル1−でねし結
合することができろ。テーバ粘合の場合には、位置決め
と取イζjけをテーバ部か兼ねるのでその必要がないが
、着脱に際しては、中心にばか穴をあけ、主軸の端面に
設けためね【)にボルトをねじ込んでねじ締結してテー
バ白和1’l’1密着させて砥石車1を主軸;3Iに取
1j(・1ける。
In addition, it is possible to provide a fitting part and connect it with the pin 1- of the bookmark. In the case of Taper adhesive, this is not necessary as the Taper part also serves as the positioning and removal part, but when attaching and detaching, make a hole in the center and screw the bolt into the socket [) provided on the end face of the main shaft. Tighten the screws and bring the Taber Shirawa 1'l'1 into close contact, and then place the grinding wheel 1 on the main shaft; 3I.

取り付は後は、ポル1〜を取外しても砥石中をAイj音
波振動させ本発明を実施することができる。。
After installation, even if poles 1 to 1 are removed, the present invention can be carried out by causing sonic vibration in the grindstone. .

次に、この砥石車を用いた本発明1.、T、 J:る各
種研削方法について説明ずろ。東面研削力θ、’i第2
1図によって説明する。゛IL径ツノ゛向に、1イ3音
波振動数fおよび振幅aT17て超音波振!1011.
、軸方向に超音波振動数■゛および振幅tI318で超
音波振動する砥石車」を研削速度Vで矢印;3の方向に
回転させ、工作物2に1νj込み1.をりえ、送り速度
■を矢印方向9に与えて研削することによって本発明に
」:る平面研削が実施される。
Next, the present invention 1 using this grinding wheel. , T, J: Explain various grinding methods. East face grinding force θ, 'i 2nd
This will be explained using Figure 1. Ultrasonic vibration in the direction of the ``IL diameter horn'' with 1-3 sonic frequency f and amplitude aT17! 1011.
, a grinding wheel that vibrates ultrasonically in the axial direction at an ultrasonic frequency of vibration and an amplitude of tI of 318 is rotated at a grinding speed of V in the direction of arrow; Surface grinding according to the present invention is carried out by applying the feed rate ① in the direction of the arrow 9 and grinding.

円筒研削方法を第22図によって説明する。半径方向に
超音波振動数「および振幅a117で超音波振!til
l L、軸方向に超音波振動数fおよび4hli’I’
61 ;is ”で超音波振動する砥石車1を速度■で
矢印3の方向に回転させ、工作物2を回転速度Vで矢印
方向9の方向に回転させ、切込みを!j、えて研削する
ことによって本発明による円筒研削が実施される。
The cylindrical grinding method will be explained with reference to FIG. Ultrasonic vibration in the radial direction with ultrasonic frequency 'and amplitude a117!til
l L, axially ultrasonic frequency f and 4hli'I'
The grinding wheel 1, which vibrates ultrasonically at 61; Cylindrical grinding according to the invention is carried out by:

内面研削方法を第26図によって説明する。The internal grinding method will be explained with reference to FIG.

砥石の的径は縦超音波振動子の固有振動数を高めろこと
によって小さくすることができる。従って、内径の小さ
い穴の内面研削にも容易に本発明を実施することができ
る。半径方向に超音波4I14 nit+数fおよび振
幅aY−17で超音波振動し、軸方向に超音波振動数f
および振幅as18で超音波振動する砥イiTI℃1を
矢印3の方向に回転さゼ、−に作物2を回転速度■で矢
印9の方向に回転させ、切込みと送り53(3を与えて
研削するごとによ一〕で本発明による内面研削が実施さ
れる。この外のねし研削、南中研削などに対しても同様
にして本発明が実施さオ11る。
The target diameter of the grindstone can be reduced by increasing the natural frequency of the vertical ultrasonic vibrator. Therefore, the present invention can be easily applied to internal grinding of holes with small inner diameters. Ultrasonic vibration in the radial direction with an ultrasonic wave of 4I14 nit+number f and an amplitude aY-17, and an ultrasonic frequency f in the axial direction.
Then, rotate the abrasive iTI℃1 which vibrates ultrasonically with an amplitude as18 in the direction of arrow 3, - rotate the crop 2 in the direction of arrow 9 at rotational speed ■, and grind by giving cutting depth and feed rate 53 (3). Internal grinding according to the present invention is carried out in each case.The present invention can be carried out in the same manner for other processes such as thread grinding and south-center grinding.

本発明による砥石車の円周曲砥粒群で咽りくす長さの微
細化と切込み深さの細づ)割化が行われると同時に工作
物に接触して研削加1.にあつかろ端面砥粒群でも切り
くず長さの微細化とIJ+込み深さの細分割化が行われ
研削熱の発生夕はとんどなくして研削力を申Y減さく1
−研削イノ1夕向1゜させて画期的な精密研削効果が得
られる。
The group of circumferentially curved abrasive grains of the grinding wheel according to the present invention refines the grinding length and narrows the cutting depth, and at the same time contacts the workpiece to perform grinding. Even in the Niatsuro end face abrasive grain group, the chip length is made finer and the IJ+inclusion depth is subdivided, which eliminates the generation of grinding heat and reduces the grinding force.
- Grinding Inno 1 A revolutionary precision grinding effect can be obtained by turning the grinding angle 1°.

以」二の外に、本発明の砥イ1車の端面(i、利用して
研削する方法かある3、その1例どして甲面研削、工具
研削がある。すなわち、本発明けlJ月”1り工具など
のように、手にもてろような比較的形状の小さい工作物
を研削加1.ずろどきの研削にも適用される1、第24
同じ+: II、、研削lJθ、を説明する。主軸34
の尾部に設+1ノー、W(和音θl/ 4J+J !I
す+ rによって主軸を矢印;37の方向に超’7’j
波IJ+3動さぜる。砥石中形状はこの)ミ軸に取イ・
口づlこときに砥石車が縦超音波1b←l’lj子の固
(i4)14勅数1をt)−うて、半径方向には振幅ε
1Y、軸り向にIJlhJ %、l a5で超音波振動
する振動姿態となるように設H]、製作する。。
In addition to the above, there are methods of grinding using the grinding wheel of the present invention, such as back surface grinding and tool grinding. Grinding workpieces with relatively small shapes that can be held in the hand, such as tools such as 1. Grinding workpieces with a relatively small shape that can be held in the hand.1.
Same +: II, , grinding lJθ, will be explained. Main shaft 34
Set in the tail of +1 no, W (chord θl/4J+J !I
+r to arrow the main axis; super '7'j in the direction of 37
Wave IJ+3 moves. The middle shape of the whetstone is taken on this axis.
When kissing, the grinding wheel generates a vertical ultrasonic wave 1b←l'lj's force (i4) 14 (t) - 14, and in the radial direction the amplitude ε
1Y, IJlhJ %, la5 in the axial direction so that it has a vibration state of ultrasonic vibration. .

このようにして設計、製作された矢印]7、矢印18の
方向に超音波振動する砥石車1を研削速度■で矢印3の
方向に回転させ、その側面に超硬バイ1へなとの切削工
具あるいはセラミックスなどの−に作物2を一定荷重P
で矢印方向38に加圧して研削することによって本発明
による一]−」L研削あるいは従来の卓上グラインダな
どで加圧しているような小片工作物の平面研削が実施さ
れる。
[Arrow designed and manufactured in this way] 7. Rotate the grinding wheel 1 that vibrates ultrasonically in the direction of arrow 18 at a grinding speed ■ in the direction of arrow 3, and cut the carbide bi 1 on its side surface. A constant load P of crop 2 on a tool or ceramics, etc.
By pressing and grinding in the direction of the arrow 38, surface grinding of a small piece workpiece according to the present invention or pressurizing with a conventional bench grinder or the like is carried out.

次に本発明を実施する振動円筒研削盤の一実施例を第2
5図、第26図について説明する。
Next, a second embodiment of a vibrating cylindrical grinder implementing the present invention will be described.
5 and 26 will be explained.

20 K IIZ縦超縦超音波−振動子32を尾部に、
先端には第18図に示した形状をしたダイヤモン1く砥
石1を取付けて主軸に31を構成する。
20 K IIZ vertical ultralongitudinal ultrasound - transducer 32 in the tail,
A diamond grindstone 1 having the shape shown in FIG. 18 is attached to the tip, and a main shaft 31 is formed.

そして、その主軸に生ずる2個の振動節にまたがるスリ
ーブ39を挿入して所定の振動節位置に銀ろう付(Jし
て固定し、該スリーブを2個の高精度ころがり軸受40
て支持して主軸を摩擦少なく回転できるようにする。1
こ))かり軸受40をハウジング41内に固定し研削盤
用1:、軸台42を構成する。スリーブ:39にはプー
リー43を取付け、このプーリ43にはスリップリング
44を取付ける。スリップリング′44にブラッシ」4
5を摩擦少なく接触させろ。プラッシュ45と超音波発
振機46の出力端子とを接続する。
Then, a sleeve 39 spanning two vibration nodes generated on the main shaft is inserted and fixed with silver soldering (J) at a predetermined vibration node position, and the sleeve is attached to two high-precision rolling bearings 40.
This allows the main shaft to rotate with less friction. 1
(2)) The lever bearing 40 is fixed in the housing 41 to constitute the axle stand 42 for the grinding machine. A pulley 43 is attached to the sleeve 39, and a slip ring 44 is attached to this pulley 43. Brush on slip ring 44
5 should be in contact with each other with minimal friction. The plush 45 and the output terminal of the ultrasonic oscillator 46 are connected.

主軸台42には主軸回転駆動用の−f相誘導電動(幾4
7を取付け、ベルト48でに輔;(1に回転動力を伝達
する。そして主軸X31を矢印;3の方向に回転させて
砥石車の周速を約5(H)〜20 (10m/minと
する。この主軸台を研削盤flatυ台4≦1に取り付
ける3、工作物2を研削盤のチャック50に取付け、他
端をセンタ51で支持し、これを回転速度Vて矢印9の
方向に回転させ、往復台48を送り速度Sで矢印52の
方向に送ることによって、同一の超音波振動数1°をも
って、半径方向に振幅ar−F8 μrn、軸方向に+
+SF+Oμmで超音波振動するダイヤモンド電着砥石
による精密振動円筒研削が実施される。そして、特にセ
ラミックスなどのような硬ぜい材料に対して従来の研削
法によっては得られない画期的な精密研削効果を発揮す
るのが本機の特徴である5゜ 次に、振動平面研削盤について第27図によって説明す
る。20 K Hy、縦超音波振動子32と主軸31才
9よび砥石車1よりなる振動平面研削盤用主軸台53を
s(t、面研削盤コラム54に固定し、その上軸31を
ベル1−55によって三相誘導電動機の回転動力を利用
して回転させる。主軸にはスリップリング56を取付け
、プラッシュ57を介して超音波発振機46からの励振
電圧を回転する振動子の与える。回転する振動子32に
はカバー58を取付しり安全を計る。このようにして砥
石車1に同一振動数fで半径方向の振幅ξlj字8μm
、軸方向の振幅as中10μInをもって超音波振動さ
せると同時に円滑に回転させて、平面研削盤テーブル5
9上に取付けた工作物2を\■y、而研削重研削とがで
き、本発明が実施されろ。上記の円筒研削と同様に、セ
ラミックスなどのような硬ぜい旧料に対して従来の研削
法によって得られない画期的な精密i1/、重研削効果
を発揮するのが本機の特徴である1゜以北は砥石の円周
面を使用面としたときのW面研削盤について説明したが
、本発明の砥石の端面を使用面として平面研削するとき
は、1:、1Illl1台を工作物表面の法線方向に直
立させた1b←1す1平面研削盤によって実施する。砥
粒]刃あたりの切削長さが長くなるこの平面研削の場合
には本発明の効果は特に顕著で例えばセラミックスの研
削加工において従来の高速回転のみの場合の研削抵抗の
約工〜上にそのわI削抵抗を激減させ、しかも砥石面の
発熱をなくし、砥石寿命を長くする効果が得られる。
The headstock 42 is equipped with a -f-phase induction electric motor (44
7 and transmit the rotational power to 1 using the belt 48.Then, rotate the main shaft Attach this headstock to the grinding machine flat υ table 4≦1 3. Attach the workpiece 2 to the chuck 50 of the grinding machine, support the other end with the center 51, and rotate it in the direction of arrow 9 at the rotational speed V. By sending the carriage 48 in the direction of the arrow 52 at a feed rate S, the amplitude ar-F8 μrn in the radial direction and ++ in the axial direction with the same ultrasonic frequency 1°
Precision vibrating cylindrical grinding is performed using a diamond electrodeposited grindstone that vibrates ultrasonically at +SF+0 μm. A feature of this machine is that it exhibits a revolutionary precision grinding effect that cannot be obtained with conventional grinding methods, especially on hard materials such as ceramics. The board will be explained with reference to FIG. 27. 20 K Hy, a headstock 53 for a vibrating surface grinder consisting of a vertical ultrasonic vibrator 32, a main shaft 31, and a grinding wheel 1 is fixed to a surface grinder column 54, and the upper shaft 31 is fixed to a bell 1. A slip ring 56 is attached to the main shaft, and an excitation voltage from the ultrasonic oscillator 46 is applied to the rotating vibrator via a plush 57. A cover 58 is attached to the vibrator 32 for safety.In this way, the grinding wheel 1 is given a radial amplitude ξlj of 8 μm at the same frequency f.
, the surface grinder table 5 was subjected to ultrasonic vibration with an axial amplitude as of 10 μIn and simultaneously rotated smoothly.
The workpiece 2 mounted on the top of the workpiece 9 can be subjected to heavy grinding, and the present invention can be carried out. Similar to the above-mentioned cylindrical grinding, this machine is characterized by its revolutionary precision i1/heavy grinding effect on hard and brittle materials such as ceramics, which cannot be obtained with conventional grinding methods. We have described a W-surface grinder that uses the circumferential surface of the grindstone as the surface to be used north of a certain 1 degree, but when surface grinding is performed using the end surface of the grindstone of the present invention as the surface to be used, it is necessary to machine one 1:, 1Illll. This is carried out using a 1b←1s1 surface grinder that stands upright in the normal direction of the surface of the object. Abrasive particles] The effect of the present invention is particularly remarkable in the case of surface grinding where the cutting length per blade is long. The cutting resistance is drastically reduced, heat generation on the grinding wheel surface is eliminated, and the life of the grinding wheel is extended.

最後に、本発明による振動上置研削盤あるいは振動車」
ニグラインダについて第281ン目こよって説明する。
Finally, the vibratory top grinding machine or vibrating wheel according to the invention.
The ni grinder will be explained in detail at the 281st point.

上記の振動円筒研削盤の場合ど同様に20KIk縦超音
波振動子32と第1.8図に示した・1法形状の主+l
i+lI3 ]1才よび砥石中1よりなる工具研削用あ
るいは<L上グラインダ用主軸台65をコラ11あるい
は取付台601−に固定し、ソ(1) 主+l1lll
 31をベル1−61によって三相誘導電動機の回転1
!!+力を利用して回転させる。主軸にはスリップリン
グ62を取付け、プラッシュ63を介して超音波発振機
46からの励振電圧を回転する振動子に与、える。振動
子32にはカバー64を取付けて安全をM]る。工作物
2を治具本体66上のテーブル67に締付治具68を利
用して固定し、その端面を研削加工できるようにする。
In the case of the above-mentioned vibrating cylindrical grinder, the 20KIk longitudinal ultrasonic vibrator 32 and the main +l
i+lI3] Fix the headstock 65 for tool grinding or <L upper grinder consisting of 1 year old and grindstone 1 to the collar 11 or mounting base 601-, and
Rotation 1 of a three-phase induction motor by Bell 1-61
! ! + Rotate using force. A slip ring 62 is attached to the main shaft, and an excitation voltage from the ultrasonic oscillator 46 is applied to the rotating vibrator via a plush 63. A cover 64 is attached to the vibrator 32 to ensure safety. The workpiece 2 is fixed to a table 67 on a jig body 66 using a tightening jig 68 so that its end face can be ground.

、このようにして、同一振動数fで半径方向に振幅Fl
y: 871 m、軸方向に振幅as:1107zをも
って超音波振動させると同時に高速回転させてパルス研
削力波形を作用させてテーブル67」二に取付けた二に
作物2を精密研削することができる。超硬工具、セラミ
ックスなどの硬ぜい材料に対して発熱させることな〈従
来の研削法の2〜5倍の高能率で精密研削するのが本機
の特徴である。
, in this way, the amplitude Fl in the radial direction at the same frequency f
y: 871 m, the crop 2 can be precisely ground by ultrasonic vibration in the axial direction with an amplitude as: 1107z and at the same time a pulsed grinding force waveform is applied by rotating at high speed. The feature of this machine is that it precisely grinds hard and brittle materials such as carbide tools and ceramics without generating heat (2 to 5 times more efficient than conventional grinding methods).

(効 果) 次に本発明の実施しこよって得られた具体的効果につい
て説明する。本発明はセラミックス、ゴムの研削加工に
特に顕著な実施効果が現れることを特徴とする。すなわ
ち、本発明の実施によって、加工面端面にだれや欠番づ
、割れの発生がなくなり、コムの研削では従来の\11
而研面時で見られたような周辺で盛りヒっで中央がしぼ
むようなことがなく平坦な研削面え+゛+れ、セラミッ
クスの研削では、欠けや割れの発生がなくなる。セラミ
ックスの研削面には、ひっかき庇がなく、クラックの深
さも表面第11さ程度で曵く、ラッピングで筒中に削除
して製品機能を低ドさせることなく精密研削できるよう
になる5、ゴ11の研削表面は平滑となり、従来の研削
面に見られていた鱗状の研削面がなくなり、その品質が
向にする。セラミックスの研削時におL″)ろ研削台が
低ドする。研削砥石の寿命が長くなる1、設定切込みど
おりの研削加工ができる3、研削能率が向上する。以上
のような研削効果が得られる。
(Effects) Next, specific effects obtained by implementing the present invention will be explained. The present invention is characterized in that a particularly remarkable effect appears in the grinding process of ceramics and rubber. In other words, by carrying out the present invention, there will be no drooping, missing numbers, or cracks on the end surface of the machined surface, and the grinding of the comb will be less
The grinding surface does not bulge at the periphery and collapse in the center as seen when grinding, and the grinding surface is flat, eliminating chipping and cracking when grinding ceramics. The grinding surface of ceramics has no scratch eaves, and the depth of cracks is about 11 mm on the surface.By lapping, the cracks can be removed into the cylinder, allowing precision grinding without reducing product functionality5. The ground surface is smooth and the scale-like grinding surface that was seen on conventional grinding surfaces is eliminated, and its quality is improved. When grinding ceramics, the grinding table is lowered. The life of the grinding wheel is extended. 1. Grinding can be done according to the set depth of cut. 3. Grinding efficiency is improved. The above grinding effects can be obtained. .

第27図に示したil1面研削に才?いて、20 KH
z縦超音用音わい振動子を用いて夕゛イヤモント砥石#
6(10をf = 20 K Hz、ay:F8 μm
 、  aS:10μ■1で超音波振動させ、研削速度
V=1.500m/ m、i nとして、130X 1
30X 5 nunの板状シリコンナイI〜ライトの表
面を切込み0.3nyn、送り速度1m/minで水溶
性研削油剤を多量に使用して湿式平面研削して、その研
削台を低くして、従来の研削抵抗の約十〜奇にその研削
抵抗を激減させて全面一・様な平滑な研削面に、周辺に
欠けや割れを発生させないで、砥石の寿命を長くして能
イ・り的に精密平面研削することに成功した。
Is it possible to grind one surface of IL shown in Figure 27? Yes, 20KH
Earmont grinding wheel #
6 (10 f = 20 KHz, ay: F8 μm
, aS: 10μ 1, ultrasonic vibration, grinding speed V = 1.500m/m, i n, 130X 1
The surface of a 30X 5 nun plate-shaped silicone Nylon I~Light was wet-surface-ground using a large amount of water-soluble grinding fluid at a cutting depth of 0.3 nyn and a feed rate of 1 m/min, and the grinding table was lowered to achieve conventional grinding. The grinding resistance has been drastically reduced to about 10 to 100 degrees, resulting in a uniformly smooth grinding surface across the entire surface, without chipping or cracking around the area, and extending the life of the grinding wheel. Succeeded in precision surface grinding.

また、第28図の振動車−1−グラインダにおいて、ダ
イヤモンド砥石#200を20KHz縦超音波電オ)い
振動子を用いて、f = 20 KHz、  al−:
8μrn、ag中10μmで超音波振動させ、研削速度
V=800m/mjnとして、5mm角のジルコニアを
手に持って、その表面を研削することによって、振動さ
せない従来の研削方法に比べて発熱が皆無となり、研削
台が小さくなる画期的効果がk)ろことと同時にその切
れ味が抜群で、研削能率か約2〜5倍に向上することが
わがつた。そして、研削面を甲面度壬O,n:直度4=
0、表面粗さを−・様に4μmとすることに成功した。
In addition, in the vibrating wheel-1 grinder shown in Fig. 28, using a 20 KHz vertical ultrasonic vibrator for the diamond grinding wheel #200, f = 20 KHz, al-:
By holding a 5 mm square zirconia in your hand and grinding its surface with ultrasonic vibration at 8 μrn, 10 μm in ag, and a grinding speed of V = 800 m/mjn, there is no heat generation compared to the conventional grinding method that does not use vibration. It was discovered that the revolutionary effect of making the grinding table smaller was that it not only improved the sharpness but also improved the grinding efficiency by about 2 to 5 times. Then, the grinding surface is polished to
0.Successfully reduced the surface roughness to 4 μm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の研削機構を説明するモデル図、第2図は
振動研削機構を説明するモデル図、第3図は重畳振動研
削機構を説明するモデル図。 第4図は凹凸山形状の表面オj1さの山の口″i1゛付
近のみを研削してパルス切削力波形を作用させる研削機
構を説明するモデル図、第5図は従来の研削機構におけ
る1つの砥粒が研削する研削面積としての切込み深さg
Qを示すモデル図、第6図はそのときの1つの砥粒の運
動軌跡を示すモデル図、第7図は従来の研削機構におけ
る1つの砥粒が研削する研削面積を示すモデル図、第8
図は従来の研削機構における1つの砥t・γが研削する
ときの研削力波形を示ず1ン1、第≦)図は半径方向に
砥石を超音波振動させて研削ずろときの1つの砥粒が研
削する切削面積の変化髪示す説明図、第10図はそのと
きの断続するI −)の砥粒の運動軌跡すなわち切りく
ず長さが断続し切込み深さか変化することを示す図、第
11図はこのときの砥粒1−刃あたりの研削抵抗が切込
みの変化で研削力に変化のあるパルス状となきの1つの
砥粒が研削する切削面積の変化を示す説明図、第13図
はそのときの砥粒の運動軌跡が交り1Fシて切りくず長
さが細分化されることを示す図、第14図はこの切りく
ず長さが細分化されるためにパルス研削力波形となり、
また、最大研削力が減少することを示す図、第15図は
半径方向振動と軸方向振動を複合、重畳させたときの1
つの砥粒が研削する微細切削面積とその変化を示す説明
図、第16図はこれをモデル化して、各直線が寸断され
て点線になり切りくず長さが極微細化されることを示す
図、第17図はこのように切りくず長さが極微細化され
るためにへ′ルス切削力波形はその間隔である周期がさ
らに短くなり、研削力も!減し研削力は最低を示すこと
を示す図、第18図は振動子の固有振動数を20 K 
IIZとしたと;トの、砥イ1申R下径方向と同時に軸
方向に’t+ 20 K fly、の振動数で振動させ
るための主軸および砥石中の巾面図及び直径と幅の寸法
を示す図、第19図はiy 1lill+への着脱をね
し結合によって行う砥石tl(、il・面ト)1、第2
0図は主軸への着脱をテーバ出浴によ−)で行う砥石車
正面図、第21図(」本発明によるqi面研削法を示す
説明図、第22図は本発明による円節研削方法を示す説
明図、第7:i l□;+目J4発明による内面研削方
法4示すill、四回、第:己4図全発明実施する田地
研削盤の・実M:!例j・シト部・lx而面、第26図
は本発明を実JAj−4−る円f!i研削盤の−・実施
例側面1イ1、第27回は本発明を実施1ろ11/而研
削盤の一実施例側面し1、第28図(J本発明をH二J
’j、研削盤才9よび巾1ニグラインタの一実施例j′
、軸および1.JL台テーブルイ・1近の側面1ス1で
ある。 1・超音波振動イll(石 ;3 研削速度 6.10・パルス研削力波形 8・・断続パルス研削力波形 17・・砥石の半径方向超音波振動 18・・砥石の軸方向用音波振rnj :30・・極微細化りjりくす 31  研削力 32 ・超−1′1波振動主軸 733・IN 7″1波縦振動子 ;34・ねし結合 ;匁5・う゛−−−パ結合面 47・・超音波振動円筒研削盤用−1:、軸台51 、
■音波発111(機 55・、11]音波41.(動平面研削盤用]口IQI
I台(:0・Aイイ音波振動−■、具研削盤用宇軸台4
・、″f許出出願人 隈 部 淳一部第3図 kg? 図面の浄書(内容に変更なし) 第4図 ム:α         派 輔         帳 第19図     第20ニ ア8 ・) ・  ム f、a5 勿r h     ・ 手続補正書 昭和61年12月8 日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和61年特許願第208514号 2、発明の名称 超音波振動と低周波振動を重畳させた砥石車による精密
仕上加工方法 3、補正をする者 事件との関係   特許出願人 住所  栃木県宇都宮市南大通り]、 −4−20チサ
ンマンション701号室 氏名    隈  部  淳一部 4、代理人 住所  東京都港区新橋2丁目2番5号藤島ビル3M−
5 氏名  (7,672)  弁理士 伊 東 貞 雄−
11電話 東京 (03) 50.4−2728〜95
刀−15、補正指令の日付 昭和61年1]月25日 6、補正の対象 委任状及び図面 7、補正の内容 る。 (2)図面第1図〜第4図を別紙の如く補正するf′6
12
FIG. 1 is a model diagram for explaining a conventional grinding mechanism, FIG. 2 is a model diagram for explaining a vibration grinding mechanism, and FIG. 3 is a model diagram for explaining a superimposed vibration grinding mechanism. Fig. 4 is a model diagram illustrating a grinding mechanism that applies a pulsed cutting force waveform by grinding only the vicinity of the mouth of the peak ``i1'' of the uneven ridge-shaped surface, and Fig. 5 shows one grinding mechanism in a conventional grinding mechanism. Depth of cut g as the grinding area where the grain is ground
Figure 6 is a model diagram showing the motion trajectory of one abrasive grain at that time. Figure 7 is a model diagram showing the grinding area that one abrasive grain grinds in a conventional grinding mechanism.
The figure shows the grinding force waveform when one grinding wheel t and γ grinds in a conventional grinding mechanism. Fig. 10 is an explanatory diagram showing changes in the cutting area that the grains grind. Figure 11 is an explanatory diagram showing the change in the cutting area that is ground by one abrasive grain when the grinding force per abrasive grain changes with the change in the depth of cut. is a diagram showing that the motion trajectories of the abrasive grains intersect at that time, and the chip length is subdivided by 1F. Figure 14 shows that the chip length is subdivided, resulting in a pulsed grinding force waveform. ,
In addition, Fig. 15, a diagram showing that the maximum grinding force decreases, shows the result when radial vibration and axial vibration are combined and superimposed.
Figure 16 is an explanatory diagram showing the fine cutting area ground by two abrasive grains and its changes. Figure 16 is a diagram showing how each straight line is cut into dotted lines and the chip length becomes extremely fine by modeling this. , Fig. 17 shows that as the chip length becomes extremely fine, the period of the Hell's cutting force waveform, which is the interval between them, becomes even shorter, and the grinding force also increases! Figure 18 shows that the reduced grinding force is at its lowest when the natural frequency of the vibrator is 20 K.
Assuming IIZ, the width view and diameter and width dimensions of the main spindle and the grinding wheel to vibrate in the lower radial direction and in the axial direction at the same time as 't + 20 K fly. The diagram shown in Fig. 19 shows the grinding wheels tl (, il, facet) 1 and 2, which can be attached and detached from the iy 1lill+ by screw connection.
Figure 0 is a front view of a grinding wheel that is attached to and detached from the spindle using a Taber bath, Figure 21 is an explanatory diagram showing the qi surface grinding method according to the present invention, and Figure 22 is a circular grinding method according to the present invention. Explanatory diagram showing 7th: i l □;・lx surface, Figure 26 is a diagram of a grinding machine in which the present invention is put into practice. One embodiment side view 1, Figure 28 (J the present invention H2J
'j, An embodiment of a grinder with a width of 9 and a width of 1'
, axis and 1. The JL table is 1 side near 1 and 1 square. 1. Ultrasonic vibration Ill (stone; 3 Grinding speed 6.10. Pulse grinding force waveform 8... Intermittent pulse grinding force waveform 17... Radial direction ultrasonic vibration of grinding wheel 18... Axial direction sonic vibration of grinding wheel rnj : 30... Ultra-fine refinement 31 Grinding force 32 ・Super-1′ 1-wave vibration main shaft 733・IN 7″ 1-wave longitudinal oscillator; 34・Top coupling; Momme 5・Wa----pa coupling Surface 47...For ultrasonic vibration cylindrical grinder-1:, Axle head 51,
■Sonic wave generation 111 (machine 55, 11) Sonic wave 41. (for dynamic surface grinder) Mouth IQI
I stand (:0・A good sonic vibration-■, spindle stand for tool grinding machine 4
・、"f Applicant Jun Kumabe Figure 3 kg? Engraving of the drawing (no changes to the content) Figure 4: α Distributor Book Figure 19 Figure 20 Near 8 ・) ・ Mu f, a5 Of course r h ・ Procedural amendment December 8, 1988 Commissioner of the Patent Office Black 1) Akio Yu 1, Indication of the case 1985 Patent Application No. 208514 2, Name of the invention Superimposing ultrasonic vibration and low frequency vibration Precision finishing method using a grinding wheel 3, relationship with the case of the person making the amendment Patent applicant address: Minami Odori, Utsunomiya City, Tochigi Prefecture], -4-20 Chisun Mansion Room 701 Name: Jun Kumabe Part 4, Agent address: Port of Tokyo Fujishima Building 3M, 2-2-5 Shinbashi, Ward
5 Name (7,672) Patent attorney Sadao Ito
11 Telephone Tokyo (03) 50.4-2728~95
Katana-15, date of amendment order 6, January 25, 1985, power of attorney subject to amendment and drawing 7, contents of amendment. (2) Correct f'6 in Figures 1 to 4 of the drawings as shown in the attached sheet.
12

Claims (1)

【特許請求の範囲】[Claims] 直径dの回転主軸の先端に砥石車直径D>>dの大型砥
石車を取付けて砥石車超音波振動系を構成し、その形状
寸法を該回転主軸の尾部に取付けた縦超音波振動子の固
有振動数と共振する形状とし、砥石車の研削作用面を同
一振動数で砥石車半径方向と砥石車軸方向に複合超音波
振動させながら該砥石車を回転させ、パルス研削波形を
発生させて極微細切りくずを生成し研削することを特徴
とする超音波振動と低周波振動を重畳させた砥石車によ
る精密仕上加工方法。
A grinding wheel ultrasonic vibration system is constructed by attaching a large grinding wheel with a grinding wheel diameter D >> d to the tip of a rotating main shaft with a diameter d, and the shape and dimensions of the vertical ultrasonic vibrator attached to the tail of the rotating main shaft are The shape is designed to resonate with the natural frequency, and the grinding wheel is rotated while subjecting the grinding surface to compound ultrasonic vibrations at the same frequency in the radial direction and axial direction of the grinding wheel, generating a pulsed grinding waveform to produce ultra-fine grinding. A precision finishing method using a grinding wheel that uses ultrasonic vibrations and low-frequency vibrations to generate and grind thin chips.
JP20851486A 1986-09-04 1986-09-04 Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration Pending JPS6362663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20851486A JPS6362663A (en) 1986-09-04 1986-09-04 Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20851486A JPS6362663A (en) 1986-09-04 1986-09-04 Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration

Publications (1)

Publication Number Publication Date
JPS6362663A true JPS6362663A (en) 1988-03-18

Family

ID=16557425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20851486A Pending JPS6362663A (en) 1986-09-04 1986-09-04 Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration

Country Status (1)

Country Link
JP (1) JPS6362663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855835A (en) * 2017-10-12 2018-03-30 佛山汇众森泰科技有限公司 A kind of jade sanding apparatus to be worked using ultrasonic wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855835A (en) * 2017-10-12 2018-03-30 佛山汇众森泰科技有限公司 A kind of jade sanding apparatus to be worked using ultrasonic wave

Similar Documents

Publication Publication Date Title
CN107442873A (en) A kind of ultrasonic vibration auxiliary screw milling screw method
WO2008047789A1 (en) Disklike cutting tool and cutting device
CN206344030U (en) A kind of radial ultrasonic vibration auxiliary cup emery wheel
KR100491625B1 (en) Ultrasonic vibration composite grinding tool
CN106493648A (en) A kind of radial ultrasonic vibration auxiliary cup emery wheel and its using method
JPS6147641B2 (en)
JPS6362663A (en) Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration
JP3088537B2 (en) Finishing method and processing device for holes of high hardness material
JPH11123365A (en) Ultrasonic vibrating combined processing tool
JPH07164288A (en) Ultrasonic vibration grinding method, ultrasonic vibration grinding tool, and ultrasonic vibration grinding device
JPH0451300B2 (en)
JPH03234451A (en) Polishing method utilizing torsional vibration
JPS58196934A (en) Precision oscillation cutting method for ceramics
JPS6362659A (en) Precise finishing method with complex vibration grinding wheel
JPH06339847A (en) Work method for circumferential groove in ceramics
JPS62140703A (en) Heating/cooling type precise cutting/grinding processing method for ceramics
JPS6362662A (en) Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration
JP2682796B2 (en) Dressing method of grinding wheel
JPH07156135A (en) Method and apparatus for machining hard an brittle material
JPH0626790B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JPH0253519A (en) Thread groove cutting method and device by ultrasonic vibration of interrupted pulse-cutting force waveform
JPS6362658A (en) Precise finishing method with complex vibration grinding wheel
JPH05253817A (en) Cup grinding wheel for ultrasonic grinding process
JP2004017235A (en) Grinding method and grinding device of total type grind stone
JPS6362661A (en) Precise finishing method with grinding wheel overlapped with supersonic and low frequency vibration