JPS6362420A - Parallel processing method for echo canceler - Google Patents

Parallel processing method for echo canceler

Info

Publication number
JPS6362420A
JPS6362420A JP20708486A JP20708486A JPS6362420A JP S6362420 A JPS6362420 A JP S6362420A JP 20708486 A JP20708486 A JP 20708486A JP 20708486 A JP20708486 A JP 20708486A JP S6362420 A JPS6362420 A JP S6362420A
Authority
JP
Japan
Prior art keywords
echo
signal
cancellers
canceller
echo canceller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20708486A
Other languages
Japanese (ja)
Inventor
Hirokazu Fukui
宏和 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20708486A priority Critical patent/JPS6362420A/en
Publication of JPS6362420A publication Critical patent/JPS6362420A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress a signal even with a large echo delay by inputting a signal including an echo to an echo canceler of the 1st stage only so as to obtain a residual echo signal. CONSTITUTION:Echo cancellers 12, 13, 14 are connected in cascade, and a signal including an echo signal Yn is fed to the echo canceler 12 of the 1st stage and no signal is applied to the echo cancellers 13, 14 of the post-stage. The echo cancellers 12, 13, 14 are operated in parallel at the same time and the result of each operation is added by an adder circuit 15 to obtain the residual echo signal. Thus, the high speed processing is attained and a large echo delay is suppressed sufficiently by increasing the number of connections.

Description

【発明の詳細な説明】 〔概要〕 エコーキャンセラ並列処理方法において、少なくとも2
個のエコーキャンセラのうち初段のエコーキャンセラに
はエコーを含んだ信号を入力し、他のエコーキャンセラ
にはこの信号を入力せずにそれぞれ処理を行った後、処
理結果を加算回路で加算して残留エコー信号を求める様
にして、エコー遅延が大きくても抑圧できる様にしたも
のである。
[Detailed Description of the Invention] [Summary] In an echo canceller parallel processing method, at least two
A signal containing an echo is input to the first echo canceller among the echo cancellers, and the other echo cancellers perform processing without inputting this signal, and then add the processing results in an adder circuit. By determining the residual echo signal, even if the echo delay is large, it can be suppressed.

〔産業上の利用分野〕[Industrial application field]

本発明はエコーキャンセラ並列処理方法に関するもので
ある。
The present invention relates to an echo canceller parallel processing method.

第3図はエコーキャンセラを使用する会議システムの構
成図例を示す。
FIG. 3 shows an example of a configuration diagram of a conference system using an echo canceller.

図に示す様に、相手側からの音声信号Xは線路4を介し
てスピーカ2に加えられ、音響信号に変換されて外部に
送出されるが、例えば会議室内での反射によりマイクロ
ホン3にまわりこみ残響信号(以下、エコー信号と云う
)として線路5を通して相手側に戻り通話妨害となる。
As shown in the figure, the audio signal X from the other party is applied to the speaker 2 via the line 4, converted into an acoustic signal and sent out to the outside, but for example, due to reflection inside the conference room, it wraps around the microphone 3 and causes reverberation. The signal returns to the other party through the line 5 as a signal (hereinafter referred to as an echo signal) and interferes with the communication.

そこで、この様なエコー信号をできるだけ抑圧する為に
設けられたのがエコーキャンセラ1である。
Therefore, the echo canceller 1 is provided to suppress such echo signals as much as possible.

エコーキャンセラlはエコーを発生する部分(以下、エ
コー経路と云う)の伝送特性に近似した伝送特性を持ち
、相手側からの信号Xを取り込んで近似のエコー信号(
以下、擬似エコー信号と云う)yを発生させて、実際の
エコー信号yと逆相で加算することによりエコー信号が
ある程度抑圧されて減衰したエコー信号(以下、残留エ
コ°−信号と云う)eが相手側に戻るので通話障害の程
度は改善されるが、エコーキャンセラとしてはより大き
な遅延を持つエコー信号が抑圧されることが要求される
The echo canceller l has a transmission characteristic that approximates the transmission characteristic of the part that generates an echo (hereinafter referred to as the echo path), and takes in the signal X from the other side and generates an approximate echo signal (
By generating an echo signal y (hereinafter referred to as a pseudo echo signal) and adding it with the opposite phase to the actual echo signal y, the echo signal is suppressed to some extent and an attenuated echo signal (hereinafter referred to as a residual echo signal) e Since the signal returns to the other party's side, the degree of communication interference is improved, but the echo canceller is required to suppress echo signals with a longer delay.

(従来の技術〕 第4図はエコーキャンセラのブロック図を示す。(Conventional technology) FIG. 4 shows a block diagram of the echo canceller.

図に示す様にエコーキャンセラにはエコ丁経路のN個の
インパルス応答に対応する係数hN−iを記憶する係数
記憶回路8と、受信信号x7 ・・・X n−(N−1
1を記憶する受信信号記憶回路7とがあり、この記憶回
路から読出された係数り、と受信信号Xr+−i との
たたみ込み演算をたたみ込み演算部10で行うことによ
りエコー経路(図示せず)で生ずるエコー信号ynと同
じエコー信号(以下。
As shown in the figure, the echo canceller includes a coefficient storage circuit 8 that stores coefficients hN-i corresponding to N impulse responses of the echo path, and a coefficient storage circuit 8 that stores coefficients hN-i corresponding to N impulse responses of the echo path, and a coefficient storage circuit 8 that stores coefficients hN-i corresponding to N impulse responses of the echo path
There is a received signal storage circuit 7 that stores 1, and a convolution calculation section 10 performs a convolution operation between the coefficients read from this storage circuit and the received signal Xr+-i, thereby creating an echo path (not shown). ) is the same as the echo signal yn generated by (hereinafter referred to as the echo signal yn)

擬似エコー信号と云う)yfiを発生する。そこで、加
算器11でyn−yfiを求めることによりエコー信号
を抑圧することができる。
yfi (referred to as a pseudo echo signal) is generated. Therefore, the echo signal can be suppressed by calculating yn-yfi using the adder 11.

一方、エコー経路のインパルス応答は通話中に残留エコ
ー信号e7を用いて適応制御部6.係数更新演算部9で
自動的にり、をエコー経路のインパルス応答に近すけ、
即ち同定してエコー信号を抑圧する様にしている。
On the other hand, the impulse response of the echo path is determined by the adaptive control unit 6 using the residual echo signal e7 during the call. The coefficient update calculation section 9 automatically calculates
That is, the echo signal is identified and suppressed.

尚、エコーキャンセラでは下記の式を用いて上記の処理
が行われる。
Note that the echo canceller performs the above processing using the following equation.

・係数更新演算 (w)    鉤−1) tli =h= ”Kn−I  Hxl、−4−l  
  (11・擬似エコー信号y、、゛の算出 Δ  N−1C町 y、=Σh、・Xn−1(21 −〇 ・残留エコー信号e1の算出 e11=Vn  )’I、(31 ・更新用係数算出 N−1。
・Coefficient update operation (w) hook-1) tli =h= ”Kn-I Hxl, -4-l
(11・Calculation of pseudo echo signal y,,゛ Δ N−1C town y,=Σh,・Xn−1(21 −〇・Calculation of residual echo signal e1 e11=Vn)′I,(31・Coefficient for update Calculation N-1.

K、=αen/Σx++−4(41 を呻 即ち、受信信号記憶回路7と係数記憶回路8とclH) から古い信号Xn−Nとそれに対応した係数hN−1と
を読出し、たたみ込み演算部10の中の乗算回路(図示
せず)でに、、−+  Xn−Nを求めた後、この演C
)l−1) 軍部の中の加減算回路(図示せず)で更にh−1を加算
して(1)式の演算をして更新したれ−1を求(η) める。次に、乗算回路は更新されたh2−1を用いて(
2)式の演算をXl−0−0について行った後に再び(
1)式の係数更新演算を行う。そして、この様な演算を
繰り返してynを得た後、更に(3)弐を演算してエコ
ー信号y7を抑圧する。又、K、は(3)式の実行後に
算出する。
The old signal Xn-N and the corresponding coefficient hN-1 are read from K, = αen/Σx++-4 (41, that is, the received signal storage circuit 7, the coefficient storage circuit 8, and clH), and the convolution calculation unit 10 After calculating -+Xn-N using the multiplication circuit (not shown) in
) l-1) An addition/subtraction circuit (not shown) in the military further adds h-1 and calculates the updated value (η) by calculating equation (1). Next, the multiplication circuit uses the updated h2-1 (
2) After calculating the formula for Xl-0-0, calculate (
1) Perform the coefficient update calculation of the equation. After repeating such calculations to obtain yn, further calculate (3) 2 to suppress the echo signal y7. Further, K is calculated after executing equation (3).

つまり、エコーキャンセラではたたみ込み演算と係数更
新演算とを交互に繰り返してy7を得た後、更に(3)
式を演算してエコー信号ynを抑圧する。
In other words, in the echo canceller, after obtaining y7 by alternately repeating the convolution operation and the coefficient update operation,
The echo signal yn is suppressed by calculating the equation.

ここで、(2)弐のたたみ込み演算は受信信号記憶回路
7及び係数記憶回路8からの受信信号x1−8及び係B
h、を用いてフィルタ的な演算をするのでh、をタップ
係数、Nをタップ数と云う。
Here, (2) the convolution operation is performed using the received signal x1-8 from the received signal storage circuit 7 and the coefficient storage circuit 8 and the coefficient B
Since a filter-like operation is performed using h, h is called a tap coefficient and N is called the number of taps.

でのhi、即ち信、を用いて求められる。It can be found using hi, that is, belief.

又、係数更新用パラメータK。は適応制御部6で算出さ
れる。
Also, a parameter K for updating coefficients. is calculated by the adaptive control unit 6.

尚、エコー経路で生ずるエコーの遅延が大きいとタップ
数Nを1000〜2000位にしなければならないが、
1個のエコーキャンセラが抑圧できるエコーの遅延量は
受信記憶回路及び係数記憶回路の記憶容量に対応するタ
ップ数によって制限される。
Note that if the echo delay occurring in the echo path is large, the number of taps N must be set to around 1000 to 2000.
The amount of echo delay that can be suppressed by one echo canceller is limited by the number of taps corresponding to the storage capacity of the reception storage circuit and coefficient storage circuit.

例えば、LSI化した時は500タツプ/チツプで約6
0 m5ecのエコー遅延に対応できるので、上記の場
合は3〜4個のエコーキャンセラが必要となる。
For example, when converted to LSI, 500 taps/chip is about 6
Since an echo delay of 0 m5ec can be accommodated, three to four echo cancellers are required in the above case.

第5図は従来例のブロック図、第6図は従来例の動作説
明図を示す。以下、第6図を参照して第5図の動作を説
明する。
FIG. 5 is a block diagram of the conventional example, and FIG. 6 is an explanatory diagram of the operation of the conventional example. The operation shown in FIG. 5 will be explained below with reference to FIG.

第5図に示す様に、例えばエコーキャンセラ12の出力
側がエコーキャンセラ13の入力側に、エコーキャンセ
ラ13の出力側がエコーキャンセラ140入力側にそれ
ぞれ接続され、エコーキャンセラ14の出力側から残留
エコー信号e7を取出す構成になっている。
As shown in FIG. 5, for example, the output side of the echo canceller 12 is connected to the input side of the echo canceller 13, the output side of the echo canceller 13 is connected to the input side of the echo canceller 140, and the residual echo signal e7 is output from the output side of the echo canceller 14. It is configured to take out the

又、エコーキャンセラ12は係数h0〜hN−1と受信
信号系列としてx、、〜Xn−(N−11、エコーキャ
ンセラ13はhN”hZN−1とX 、1−N −X 
、1− +ZN−11、エコーキャンセラ14はh Z
N〜h 3N−1とXn−2N〜X7〜(38−+)の
それぞれN個の値を用いて前記の(1)弐〜(4)式を
用いて擬似エコー信号であるynctz> *y11(
1311yll(+41 を求める。
Also, the echo canceller 12 uses the coefficients h0 to hN-1 and the received signal sequence as x, .
, 1- +ZN-11, echo canceller 14 is h Z
Using N values of N~h 3N-1 and Xn-2N~X7~(38-+) and using equations (1) to (4) above, the pseudo echo signal ynctz> *y11 (
1311yll (calculate +41.

尚、ynu□) はエコーキャンセラ12の擬似エコー
信号である。
Note that ynu□) is a pseudo echo signal of the echo canceller 12.

そして、下記の式を用いて残留エコー信号e、。Then, the residual echo signal e, using the following equation.

を求める。但し、y7は入力信号(エコー信号である)
seek. However, y7 is the input signal (echo signal)
.

:l’1%   −y n  (1z+   =e+5
(12+                (5)el
l(+2l−yn(+z)=enf13+’(61en
(11+   3’n(1a+  =elI(Im) 
    (71尚、(!ailZl  はエコーキャン
セラ12の87を示す。
:l'1% -y n (1z+ =e+5
(12+ (5)el
l(+2l-yn(+z)=enf13+'(61en
(11+ 3'n(1a+ =elI(Im)
(71 Note that (!ailZl indicates 87 of the echo canceller 12.

この方法は、第6図に示す様に前段で演算されたefl
(12)からynusr を減算してejlfl:l)
を求め、更にyn(+oを減算してe +s(+41 
 = 6 、、を求めるので、エコーキャンセラ12〜
14は少しずつ時間的に遅れて演算を開始する必要があ
り、演算開始信号は3種類必要となるが、この制御信号
のずれはデータ転送時間1tや(6)式、(7)式の演
算のタイミングを考慮して決めるなければならない。
This method uses the efl calculated in the previous stage as shown in Figure 6.
Subtract ynusr from (12) ejlfl:l)
, and further subtract yn(+o to obtain e +s(+41
= 6, , so the echo canceller 12~
14, it is necessary to start the calculation with a slight time delay, and three types of calculation start signals are required, but the deviation of this control signal is caused by the data transfer time 1t and the calculation of equations (6) and (7). The decision must be made taking into consideration the timing of

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、大きなエコー遅延を抑圧するにはエコーキャン
セラの接続数m(但し2mは正の整数)を大きくしなけ
ればならないが、mの値が太き(なると第6図に示す様
にに7算出に制当てられる時間やデータ転送時間を小さ
くしなければならない。そこで、エコー遅延が大きい場
合はエコー信号の抑圧が不、十分になると云う問題点が
ある。
However, in order to suppress large echo delays, it is necessary to increase the number m of connected echo cancellers (where 2m is a positive integer), but the value of m becomes large (as shown in Figure 6, 7 calculations are required). Therefore, if the echo delay is large, the echo signal may not be suppressed sufficiently or may not be suppressed sufficiently.

〔問題点を解決する為の手段〕 上記の問題点は第1図に示す如く、エコー信号を消去す
るための処理を行う少なくとも2個のエコーキャンセラ
12.13.14と加算回路15とを設け、譲歩なくと
も2個のエコーキャンセラのうち初段のエコーキャンセ
ラ12のみにエコー信号を印加し、残りのエコーキャン
セラ13.14にはエコー信号を印加せず、該受なくと
も2個のエコーキャンセラを同時に並列処理させ、処理
結果を該加算回路で加算してエコー信号を抑圧する様に
した本発明のエコーキャンセラ並列処理方法により解決
される。
[Means for solving the problem] The above problem can be solved by providing at least two echo cancellers 12, 13, 14 and an adder circuit 15 that perform processing for canceling echo signals, as shown in FIG. , the echo signal is applied only to the first-stage echo canceller 12 among the two echo cancellers, and no echo signal is applied to the remaining echo cancellers 13 and 14; This problem is solved by the echo canceller parallel processing method of the present invention, which simultaneously performs parallel processing and adds the processing results in the adding circuit to suppress the echo signal.

〔作用〕[Effect]

本発明は少なくとも2個のエコーキャンセラをIF接続
し、初段のエコーキャンセラにはエコー信号を含んだ信
号を加えるが、後段のエコーキャンセラにはエコー信号
は加えない。そして、少なくとも2個のエコーキャンセ
ラは同時に並列演算をさせて、それぞれの演算結果を加
算回路で加算して残留エコー信号を求める様にしたので
、高速処理が可能となり接Vt、数mを大きくすること
かできるのでエコー遅延の大きなものに対しても抑圧が
十分に行われる。
In the present invention, at least two echo cancellers are connected via IF, and a signal containing an echo signal is applied to the first-stage echo canceller, but no echo signal is applied to the second-stage echo canceller. At least two echo cancellers are operated in parallel at the same time, and the results of each operation are added in an adder circuit to obtain the residual echo signal, which enables high-speed processing and increases the tangent Vt by several meters. Therefore, even when there is a large echo delay, the suppression is sufficiently performed.

〔実施例〕〔Example〕

第1図は本発明の実施例のブロック図、第2図は第を図
の動作状態説明図を示す。尚、全図を通して同一符号は
同一対象物を示す。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the operating state of FIG. Note that the same reference numerals indicate the same objects throughout the figures.

以下、従来例と同じくタップ数がNのエコーキャンセラ
を3個使用する場合を例にして第1図の動作を説明する
The operation shown in FIG. 1 will be explained below, taking as an example the case where three echo cancellers each having N taps are used as in the conventional example.

先ず、前記の様にエコーキャンセラー2は演算周朋内に
は受信信号記憶回路121に貯えられたx、。
First, as described above, the echo canceller 2 calculates x, which is stored in the received signal storage circuit 121 in the calculation circuit.

からX h−(N−0までのN個の受信信号を用いて、
:Y n ++z、を算出し、加算器125で入力した
エコー信号y7と加算されて残留エコー信号e1〈1□
)=3’ n  Y n t。、を得る。
Using N received signals from to X h-(N-0,
: Y n ++z, is added to the input echo signal y7 in the adder 125, and the residual echo signal e1<1□
)=3' n Y n t. , get.

次に、エコーキャンセラー3には入力信号は印加されな
いが、受信信号はXFI−NがらX□(2N−1>まで
のN個の値よりy□、〉を算出してen(Ill=0 
3’+off、を得る。
Next, no input signal is applied to the echo canceller 3, but the received signal is calculated by calculating y□, 〉 from N values up to
3'+off is obtained.

同様に、エコーキャンセラ14ではall(+4>  
=0)’+14)を得る。
Similarly, in the echo canceller 14, all(+4>
=0)'+14) is obtained.

これらの値は加算回路15で加算されて残留エコー信号
e、lが下記の様に求められる。
These values are added by an adder circuit 15 to obtain residual echo signals e and l as shown below.

en =Yn   (y?1(Iz+  +3’nt+
3+  十yn(+a+ )この演算動作は第2図に示
す様に、演算開始信号がエコーキャンセラ12.13.
14に同時に加えられるので、上記の演算が同時に行わ
れ、得られた演算結果は同時に加算回路15に加えられ
て残留エコー信号が得られる。
en =Yn (y?1(Iz+ +3'nt+
3+ 10yn (+a+) This calculation operation is performed as shown in FIG. 2, when the calculation start signal is echo canceller 12.13.
14 at the same time, the above calculations are performed simultaneously, and the obtained calculation results are simultaneously applied to the adder circuit 15 to obtain a residual echo signal.

即ち、演算開始のタイミングが同一で、残留エコー信号
を求めるタイミングも同一の為、接続数が大きくなって
もに7の割当て算出許容時間が長くなると共に、演算結
果が同時に得られるのでこれの転送タイミングを考慮す
る必要はなくなる。
In other words, since the calculation start timing is the same and the timing to obtain the residual echo signal is also the same, even if the number of connections increases, the allowable time for calculating the allocation of 7 becomes longer, and since the calculation results can be obtained at the same time, it is necessary to transfer them. There is no need to consider timing.

即ち、遅延の大きなエコー信号に対しても十分に抑圧す
ることができる。
That is, even echo signals with a large delay can be sufficiently suppressed.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した様に本発明は、遅延の大きなエコー
信号に対しても十分対処できると云う効果がある。
As explained in detail above, the present invention has the advantage of being able to adequately cope with echo signals with a large delay.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のブロック図、第2図は第1図
の動作説明図、 第3図はエコーキャンセラを使用する会議システムの構
成図例、 第4図はエコーキャンセラのブロック図、第5図は従来
例のブロック図、 第6図は第5図の動作説明図を示す。 図において、 6は適応制御部、 7は受信信号記憶回路、 10はたたみ込み演算部、 11は加算器、 12.13.14はエコーキャンセラ、15は加算回路
を示す。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the operation of Fig. 1, Fig. 3 is an example of a configuration diagram of a conference system using an echo canceller, and Fig. 4 is a block diagram of an echo canceller. , FIG. 5 is a block diagram of a conventional example, and FIG. 6 is an explanatory diagram of the operation of FIG. 5. In the figure, 6 is an adaptive control section, 7 is a received signal storage circuit, 10 is a convolution operation section, 11 is an adder, 12, 13, 14 is an echo canceller, and 15 is an addition circuit.

Claims (1)

【特許請求の範囲】 エコー信号を消去するための処理を行う少なくとも2個
のエコーキャンセラ(12、13、14・・)と加算回
路(15)とを設け、 該少なくとも2個のエコーキャンセラのうち初段のエコ
ーキャンセラ(12)のみにエコー信号を印加し、残り
のエコーキャンセラ(13、14・・)にはエコー信号
を印加せず、 該少なくとも2個のエコーキャンセラを同時に並列処理
させ、処理結果を該加算回路で加算してエコー信号を抑
圧する様にしたことを特徴とするエコーキャンセラの並
列処理方法。
[Claims] At least two echo cancellers (12, 13, 14, . . . ) and an adder circuit (15) are provided that perform processing for canceling echo signals, and among the at least two echo cancellers, an adder circuit (15) is provided. An echo signal is applied only to the first-stage echo canceller (12), no echo signal is applied to the remaining echo cancellers (13, 14, etc.), and the at least two echo cancellers are processed in parallel at the same time, and the processing results are 1. A parallel processing method for an echo canceller, characterized in that echo signals are suppressed by adding them in the adding circuit.
JP20708486A 1986-09-03 1986-09-03 Parallel processing method for echo canceler Pending JPS6362420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20708486A JPS6362420A (en) 1986-09-03 1986-09-03 Parallel processing method for echo canceler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20708486A JPS6362420A (en) 1986-09-03 1986-09-03 Parallel processing method for echo canceler

Publications (1)

Publication Number Publication Date
JPS6362420A true JPS6362420A (en) 1988-03-18

Family

ID=16533931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20708486A Pending JPS6362420A (en) 1986-09-03 1986-09-03 Parallel processing method for echo canceler

Country Status (1)

Country Link
JP (1) JPS6362420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516545A (en) * 2004-10-13 2008-05-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Echo cancellation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516545A (en) * 2004-10-13 2008-05-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Echo cancellation
US9509854B2 (en) 2004-10-13 2016-11-29 Koninklijke Philips N.V. Echo cancellation

Similar Documents

Publication Publication Date Title
JPH04120812A (en) Fir type echo canceller
JPH09153846A (en) Echo canceler
JPS6362420A (en) Parallel processing method for echo canceler
US10999444B2 (en) Acoustic echo cancellation device, acoustic echo cancellation method and non-transitory computer readable recording medium recording acoustic echo cancellation program
JPS6113416B2 (en)
JP2547782B2 (en) Norm calculator
JP2850826B2 (en) Method and apparatus for removing multi-channel echo
JP3121983B2 (en) Acoustic echo canceller
JP3152815B2 (en) Acoustic echo canceller
JPH05252079A (en) Echo canceller
JPS5944131A (en) Echo canceller
JPH0250530A (en) Echo canceller
JPH0644725B2 (en) Echo canceller
JPH01307321A (en) Echo canceller
JPS63279622A (en) Maximum correction limiting type echo canceller
JP3152825B2 (en) Acoustic echo canceller
JPH0447720A (en) Echo canceller
JPH03117206A (en) Adaptive filter
JPS59221036A (en) Echo canceller
JPH0392018A (en) Adaptive type echo canceller
JPH07131387A (en) Device for eliminating acoustic echo
JPH02113732A (en) Floating point type echo canceller
JPH07212278A (en) Echo erasing device
JPH0771028B2 (en) Eco-erasing device
JPH02278926A (en) Fir lattice hybrid echo canceller