JPH07131387A - Device for eliminating acoustic echo - Google Patents

Device for eliminating acoustic echo

Info

Publication number
JPH07131387A
JPH07131387A JP27187893A JP27187893A JPH07131387A JP H07131387 A JPH07131387 A JP H07131387A JP 27187893 A JP27187893 A JP 27187893A JP 27187893 A JP27187893 A JP 27187893A JP H07131387 A JPH07131387 A JP H07131387A
Authority
JP
Japan
Prior art keywords
circuit
output
coefficient
threshold value
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27187893A
Other languages
Japanese (ja)
Other versions
JP3145547B2 (en
Inventor
Yoshimasa Kusano
吉雅 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27187893A priority Critical patent/JP3145547B2/en
Publication of JPH07131387A publication Critical patent/JPH07131387A/en
Application granted granted Critical
Publication of JP3145547B2 publication Critical patent/JP3145547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To provide the good voice communication space by judging the generation of bidirectional communication only when the output of an AND circuit is '1', stopping the operation of a correction amount arithmetic circuit, and reducing the detection delay of the bidirectional communication, and eliminating the tone deterioration. CONSTITUTION:When the output of a constant section movement integration circuit 18 is lower than that of an interpolation threshold value S4, a correlation value comparison circuit 19 outputs '0' and it outputs '1' if it is higher than a threshold value S4. An AND circuit 20 takes the output of an attenuation characteristic observation circuit 16 as the 1st input and takes the output of a comparison circuit 19 as the 2nd input. When the AND circuit 20 outputs '1', a bidirectional communication detection circuit 11 judges that the bidirectional communication is generated to stop the operation of a factor correction amount arithmetic circuit 7 and not performs the factor updating processing. When the circuit 20 outputs '0', the operation of the circuit 7 is continued to update factors. Thus, the detection delay in the bidirectional communication detection is made small and the good voice communication space can be obtained by eliminating the tone deterioration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通信回線、室内音場制
御装置そして高品質な音声通信会議装置に使用され、受
話径路の信号が音響反響経路を介して送話経路に現れる
音響反響成分を除去する音響反響除去装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a communication line, a room sound field control device, and a high-quality voice communication conference device, and an acoustic echo component in which a signal on a receiving path appears in a transmitting path via an acoustic echo path. The present invention relates to an acoustic echo canceller that removes noise.

【0002】[0002]

【従来の技術】一般に音響反響除去装置は通信衛生およ
び海底ケーブルを利用した長距離電話回線において、2
線4線変換器のインピーダンス不整合により生ずる反射
を除去するものと、テレビ会議システムなどの拡声電話
において、話者音声の音響結合による反響を除去するも
のとに大別でき、修正量演算回路、擬似音響反響を発生
する可変係数フィルタおよび減算回路から構成されてい
る。以下に音響反響除去装置の基本動作を述べる。
2. Description of the Related Art Generally, an acoustic echo canceller is used in communication hygiene and long-distance telephone lines using a submarine cable.
It can be roughly classified into one that removes reflection caused by impedance mismatch of the line-to-four-line converter and one that removes reverberation due to acoustic coupling of speaker's voice in a loudspeaker such as a video conference system. It is composed of a variable coefficient filter and a subtraction circuit that generate pseudo-acoustic echo. The basic operation of the acoustic echo canceller will be described below.

【0003】図6は音響反響除去装置の基本構成を示す
図である。受話信号入力端子1は受話信号出力端子2に
接続され、その受話信号入力端子1の受話信号は可変係
数フィルタ3に分岐供給され、擬似反響を生成させる。
送話信号入力端子4からの送話信号と可変係数フィルタ
3の出力である擬似音響反響は減算回路5へ入力され、
送話信号中の音響反響成分が除去され、その減算回路5
の出力は送話信号出力端子6へ出力される。送話信号出
力端子6の出力と受話信号入力端子1の信号が修正量演
算回路7に入力され、係数修正量演算回路7の出力によ
り可変係数フィルタ3のフィルタ係数が修正される。可
変係数フィルタ3内で受話信号は受話信号入力レジスタ
8に入力され、その受話信号入力レジスタ8の受話信号
と擬似インパルス応答レジスタ9の擬似インパルス応答
との積和が積和回路10でとられ、積和回路10の出力
が擬似音響反響として出力される。受話信号出力端子2
および送話信号入力端子4は長距離電話回線の場合、2
線4線変換器に、拡声電話システムの場合、スピーカと
マイクロホンへと接続されている。
FIG. 6 is a diagram showing the basic structure of an acoustic echo canceller. The reception signal input terminal 1 is connected to the reception signal output terminal 2, and the reception signal of the reception signal input terminal 1 is branched and supplied to the variable coefficient filter 3 to generate a pseudo echo.
The transmission signal from the transmission signal input terminal 4 and the pseudo acoustic echo that is the output of the variable coefficient filter 3 are input to the subtraction circuit 5,
The acoustic echo component in the transmitted signal is removed, and the subtraction circuit 5
Is output to the transmission signal output terminal 6. The output of the transmission signal output terminal 6 and the signal of the reception signal input terminal 1 are input to the correction amount calculation circuit 7, and the filter coefficient of the variable coefficient filter 3 is corrected by the output of the coefficient correction amount calculation circuit 7. In the variable coefficient filter 3, the reception signal is input to the reception signal input register 8, and the sum of products of the reception signal of the reception signal input register 8 and the pseudo impulse response of the pseudo impulse response register 9 is obtained by the sum of products circuit 10. The output of the sum-of-products circuit 10 is output as a pseudo acoustic echo. Received signal output terminal 2
And the transmission signal input terminal 4 is 2 for a long-distance telephone line.
A line-to-line converter is connected to the speaker and microphone in the case of a loudspeaker telephone system.

【0004】音響反響経路の信号伝搬特性を線形で、且
つFIR形ディジタルフィルタで表されると仮定し、そ
のインパルス応答h(t)と入力受話信号x(t)とを
用いれば、サンプル時間間隔をTとし、時刻kTにおけ
る音響反響yK は、 yK = h’xK (1) で表される。但し、 h=[h1 ,h2 ,・・・,hn ]’ (2) x=[xk-1 ,・・・,xk-n ]’ ’:べクトルの転置 である。
Assuming that the signal propagation characteristic of the acoustic echo path is linear and represented by an FIR type digital filter, if the impulse response h (t) and the input received signal x (t) are used, the sampling time interval is Is T, and the acoustic echo y K at time kT is represented by y K = h′x K (1). However, h = [h 1 , h 2 , ..., H n ] '(2) x = [x k-1 , ..., x kn ]'': transposition of the vector.

【0005】一方、 時刻kTにおけるhの推定値をh
k とすれば、yk の推定値yskは、 ysk = hsk ’xk (3) で与えられる。 音響反響除去装置では、受話信号入力
端子1に音声信号があり、送話信号入力端子4に音声信
号がなく音響反響のみが存在している時、適応動作状態
として反響除去動作を行う。この適応動作アルゴリズム
には、一般に学習同定法が採用される。学習同定法によ
るhsk の逐次修正は hsk+1 = hsk +α(xk ek )/xk ’xk (4) によって行われる。但し、 ek =yk −ysk , 0<α≦1 (5) でありek を残留音響反響と呼ぶ。この様な演算動作が
係数修正量演算回路7において処理実行されている。擬
似インパルス応答レジスタ9の内容には可変係数系列h
k が格納されている。αは推定の敏感さを決める為の
修正ループゲインで1.0に近いほど大きな修正量を与
える事が出来るが、近端雑音や回線状態によって変えて
やる必要がある。又、音場の音響反響特性をこの様にF
IR形ディジタルフィルタで表記した場合、数100〜
数1000タップという長大な構成となり、可変係数系
列hsk の修正量更新に関わる演算量が膨大なものにな
り小規模なハードウェアで実現できない為、可変係数系
列hsk を数段階に分割処理を行い1ステップにおいて
の更新演算量を削減させる方法が採られている。図7に
二分割処理を施した場合の音響反響消去特性を示す。比
較の為に分割処理を用いない場合も記載した。分割内容
は可変係数系列の総数をNとした時、次の様になる。
On the other hand, the estimated value of h at time kT is h
If s k , the estimated value ys k of y k is given by ys k = hs k ′ x k (3). In the acoustic echo canceller, when there is a voice signal in the reception signal input terminal 1 and there is no voice signal in the transmission signal input terminal 4 and only acoustic echo exists, the echo elimination operation is performed as an adaptive operation state. A learning identification method is generally adopted for this adaptive operation algorithm. Successive correction of hs k by the learning identification method is performed by hs k + 1 = hs k + α (xk ek) / xk 'x k (4). However, e k = y k −y s k , 0 <α ≦ 1 (5), and e k is called residual acoustic echo. Such a calculation operation is processed in the coefficient correction amount calculation circuit 7. The contents of the pseudo impulse response register 9 include the variable coefficient series h.
s k is stored. α is a correction loop gain for determining the sensitivity of estimation, and a larger correction amount can be given as it approaches 1.0, but it must be changed depending on near-end noise and line conditions. Also, the acoustic reverberation characteristics of the sound field are
When expressed with an IR digital filter, several hundreds of
Since it has a long configuration of several thousand taps and the amount of calculation involved in updating the modification amount of the variable coefficient sequence hs k becomes enormous and cannot be realized by small-scale hardware, the variable coefficient sequence hs k is divided into several stages. The method of reducing the update calculation amount in one step is performed. FIG. 7 shows acoustic echo canceling characteristics when the two-division processing is performed. The case where division processing is not used for comparison is also described. The division contents are as follows, where N is the total number of variable coefficient sequences.

【0006】 hs1 k :0〜N/2 hs2 k :N/2〜N 更新アルゴリズムは上記分割範囲を適用して、式(4)
より、 hs1 k+1 =hs1 k +α(xk k )/xk ’xk (6) hs2 k 1 =hs2 k +α(xk k )/xk ’xk (7) と表す事が出来、2ステップで全可変係数系列hsk
更新する適応アルゴリズムである。従って、1ステップ
における演算量は1/2に削減する事が出来、勿論分割
数を増やせばそれに比例して演算量は削減できる。
[0006] hs1 k: 0~N / 2 hs2 k : N / 2~N updating algorithm by applying the divided ranges, Equation (4)
More, hs1 k + 1 = hs1 k + α (x k e k) / x k 'x k (6) hs2 k 1 = hs2 k + α (x k e k) / x k' be represented as x k (7) it is possible, an adaptive algorithm for updating the entire variable coefficient series hs k in two steps. Therefore, the calculation amount in one step can be reduced to 1/2, and of course, if the number of divisions is increased, the calculation amount can be reduced in proportion to it.

【0007】送話信号入力端子に音響反響だけではなく
音声信号が入力された時、つまり、双方向通信が発生し
た場合、そのまま音響反響除去動作を続行していると残
留誤差信号を増加させてしまい通信品質が劣化する。従
って、その状態を何等かの方法で検出して可変係数ディ
ジタルフィルタの係数更新を即座に停止しなければなら
ない。双方向通信検出はその検出遅延が小さければ小さ
いほど通信状態への影響が少ない。双方向通信検出の検
出評価値として受話信号の一定区間移動平均電力と送話
信号の一定区間移動平均電力とを用いて、その比較によ
って状態変位を観測する方式と、誤差信号の短時間移動
平均電力の増加を観測する方法とがあるが、前者に比べ
て後者は検出遅延が小さく高速な双方向通信検出を実現
できる。図6には、誤差信号の短時間移動平均電力を検
出評価値とした場合の音響反響除去装置の一例を記載し
ている。
When not only the acoustic echo but also the voice signal is input to the transmission signal input terminal, that is, when bidirectional communication occurs, if the acoustic echo removal operation is continued as it is, the residual error signal is increased. As a result, communication quality deteriorates. Therefore, the state must be detected by some method to immediately stop the coefficient update of the variable coefficient digital filter. In the bidirectional communication detection, the smaller the detection delay, the less the influence on the communication state. A method of observing the state displacement by comparison between the moving average power of a fixed section of the reception signal and the moving average power of a fixed section of the transmission signal as the detection evaluation value of the two-way communication detection, and a short-time moving average of the error signal. Although there is a method of observing an increase in power, the latter has a smaller detection delay than the former and can realize high-speed two-way communication detection. FIG. 6 shows an example of the acoustic echo canceller when the short-time moving average power of the error signal is used as the detection evaluation value.

【0008】[0008]

【発明が解決しようとする課題】誤差信号の短時間移動
平均電力を双方向通信検出の評価値として採用した場合
に問題になるのは、誤差信号の増加が双方向通信発生に
よるものでなく、音響反響径路の変動によっても起こ
り、誤差信号の短時間移動平均電力だけの変化を見てい
たのでは双方向通信なのか音響径路変動なのかの区別が
つかず、誤検出の原因となる。この対策として推定した
可変係数ディジタルフィルタの瞬時電力分布の双方向通
信状態と音響径路変動状態での変化を検出して誤検出発
生の危険性を低下させる方式が考えられる。しかし、可
変係数ディジタルフィルタの電力分布変化を観測するの
に関わる演算量は膨大となる。又、誤差信号の移動平均
電力を算出し評価値として毎ステップ用いる事による演
算量の増大も小さくは無い。この様な双方向通信検出に
関わる演算量の増大によってハードウェアが大規模なも
のとなり実現性が失われてしまうという様な問題点があ
った。
When the short-time moving average power of the error signal is adopted as the evaluation value for the bidirectional communication detection, the problem is not that the increase in the error signal is caused by the bidirectional communication occurrence. It also occurs due to fluctuations in the acoustic echo path, and if changes in only the short-time moving average power of the error signal are observed, it is not possible to distinguish between bidirectional communication and acoustic path fluctuations, which causes erroneous detection. As a countermeasure against this, a method of reducing the risk of false detection by detecting changes in the instantaneous power distribution of the variable coefficient digital filter estimated in the bidirectional communication state and the acoustic path fluctuation state is considered. However, the amount of calculation involved in observing the power distribution change of the variable coefficient digital filter becomes enormous. Further, the increase in the amount of calculation due to calculating the moving average power of the error signal and using it as the evaluation value in each step is not small. Due to such an increase in the amount of calculation related to the detection of two-way communication, the hardware becomes large-scaled and the feasibility is lost.

【0009】本発明は上述の点に鑑みてなされたもの
で、上記問題点を除去し、受話信号と送話信号の電力差
に影響されない安定な双方向通信検出を実現し、大きな
音響反響消去量を維持しながら音響反響制御を行う音響
反響除去装置を提供する事を目的とする。
The present invention has been made in view of the above points, eliminates the above problems, realizes stable two-way communication detection that is not affected by the power difference between the reception signal and the transmission signal, and eliminates a large acoustic echo. An object is to provide an acoustic echo canceller that performs acoustic echo control while maintaining the amount.

【0010】[0010]

【課題を解決するための手段】本発明はこれらの課題を
解決するためのものであり、受話信号入力端子と、受話
信号出力端子と、送話信号入力端子と、送話信号出力端
子と、該受話信号入力端子から入力された受話信号を入
力とする可変係数ディジタルフィルタと、該可変係数デ
ィジタルフィルタの係数系列を格納した擬似インパルス
応答レジスタと、該擬似インパルス応答レジスタの内容
と該受話信号入力端子からの受話信号を格納した受話信
号入力レジスタの内容との畳み込み積分演算を行う積和
演算回路と、該積和演算回路により生成された擬似音響
反響と該送話信号入力端子より入力される音響反響との
差分値をとる減算回路と、該可変係数ディジタルフィル
タが該反響の近似値を供給する様に該擬似インパルス応
答レジスタの係数系列をN個のブロックに分けて、M回
で係数系列全体が自動的に更新される様に制御を行う係
数修正量演算回路と、通信回線上で双方向通信が発生し
た時その状態を検出する為の双方向通信検出回路とで構
成される音響反響除去装置において、該擬似インパルス
応答レジスタの第一番目ブロックの各係数の絶対値を求
める第一の絶対値出力回路と、該擬似インパルス応答レ
ジスタの第二番目ブロックの各係数の絶対値を求める第
二の絶対値出力回路と、該第一の絶対値出力回路の出力
が、内挿閾値[S1]よりも小さければ“0”とし、内
挿閾値[S1]よりも大きければ“1”として、“1”
の総数を出力する第一の係数変換回路と、該第二の絶対
値出力回路の出力が、内挿閾値[S1]よりも小さけれ
ば“0”とし、内挿閾値[S1]よりも大きければ
“1”として、“1”の総数を出力する第二の係数変換
回路と、該第一の係数変換回路と、該第二の係数変換回
路との出力の差が、内挿閾値[S2]よりも小さければ
“0”を出力し、内挿閾値[S2]よりも大きければ
“1”を出力するよう設定された減衰特性観測回路と、
該誤差信号の信号振幅が、内挿閾値[+S3]よりも大
きいか、内挿閾値[−S3]よりも小さい場合には
“1”を出力し、又、内挿閾値[+S3]よりも小さい
か、内挿閾値[−S3]より大きい場合には“0”を出
力する非線形変換処理回路と、該非線形変換処理回路出
力の“1”と“0”からなる二値系列の一定区間中に存
在する“1”の数をステップ毎一定区間を移動させなが
ら出力する一定区間移動積算回路と、該一定区間移動積
算回路の出力が、内挿閾値[S4]よりも小さければ
“0”を出力し、内挿閾値[S4]よりも大きければ
“1”を出力するよう設定された相関値比較回路と、該
減衰特性観測回路の出力を第一の入力とし、該相関値比
較回路の出力を第二の入力とした論理積回路と、該論理
積回路から“1”が出力された場合に該係数修正量演算
回路の動作を停止し、“0”が出力された場合に該係数
修正量演算回路の動作を続行して係数更新を行う音響反
響除去装置を提供する。
SUMMARY OF THE INVENTION The present invention is to solve these problems and comprises a reception signal input terminal, a reception signal output terminal, a transmission signal input terminal, and a transmission signal output terminal. A variable coefficient digital filter that receives the received signal input from the received signal input terminal, a pseudo impulse response register that stores a coefficient sequence of the variable coefficient digital filter, the contents of the pseudo impulse response register, and the received signal input. A product-sum operation circuit that performs a convolution integral operation with the content of the reception-signal input register that stores the reception signal from the terminal, the pseudo-acoustic echo generated by the product-sum operation circuit, and the input from the transmission-signal input terminal A subtraction circuit for taking a difference value from the acoustic echo, and a coefficient of the pseudo impulse response register so that the variable coefficient digital filter supplies an approximate value of the echo. The column is divided into N blocks, and the coefficient correction amount calculation circuit that controls so that the entire coefficient sequence is automatically updated M times and the state when bidirectional communication occurs on the communication line is detected. In the acoustic echo canceller configured with a two-way communication detection circuit for performing the above, a first absolute value output circuit for obtaining an absolute value of each coefficient of the first block of the pseudo impulse response register, and the pseudo impulse response If the output of the second absolute value output circuit for obtaining the absolute value of each coefficient of the second block of the register and the output of the first absolute value output circuit is smaller than the interpolation threshold value [S1], it is set to "0", If it is larger than the interpolation threshold value [S1], it is set to "1" and is set to "1".
If the outputs of the first coefficient conversion circuit that outputs the total number of the first coefficient conversion circuit and the second absolute value output circuit are smaller than the interpolation threshold value [S1], it is set to "0", and if they are larger than the interpolation threshold value [S1]. The difference between the outputs of the second coefficient conversion circuit that outputs the total number of “1” as “1”, the first coefficient conversion circuit, and the second coefficient conversion circuit is the interpolation threshold value [S2]. An attenuation characteristic observing circuit set to output “0” if smaller than the above, and output “1” if larger than the interpolation threshold [S2],
If the signal amplitude of the error signal is larger than the interpolation threshold value [+ S3] or smaller than the interpolation threshold value [-S3], "1" is output, and is smaller than the interpolation threshold value [+ S3]. Alternatively, when it is larger than the interpolation threshold [-S3], a non-linear conversion processing circuit that outputs “0” and a non-linear conversion processing circuit output within a certain interval of a binary sequence consisting of “1” and “0” are output. A constant section movement integration circuit that outputs the number of existing "1" while moving a constant section for each step, and outputs "0" if the output of the constant section movement integration circuit is smaller than the interpolation threshold value [S4] Then, if it is larger than the interpolation threshold value [S4], the correlation value comparison circuit set to output “1” and the output of the attenuation characteristic observation circuit are used as the first input, and the output of the correlation value comparison circuit is The AND circuit used as the second input and "1" is output from the AND circuit. It stops the operation of the coefficient correction amount calculating circuit when the "0" is to provide an acoustic echo removing apparatus for performing coefficient updating to continue the operation of the coefficient correction amount calculating circuit when output.

【0011】[0011]

【作用】本発明では、上記手段により検出遅延が極めて
小さく、そして、音場への音声入出力の相対比が変化し
た場合に安定状態を確保した双方向通信検出が内部演算
量を増大させる事なく実現でき、明瞭で高品質な音声通
信空間を提供する事ができる。
According to the present invention, the detection delay is extremely small by the above means, and the bidirectional communication detection ensuring a stable state increases the internal calculation amount when the relative ratio of the voice input / output to the sound field changes. It is possible to provide a clear and high quality voice communication space.

【0012】[0012]

【実施例】以下本発明の実施例を図面に基づいて詳細に
説明する。図1は本発明の第1の音響反響除去装置の構
成を示すブロック図である。図1に示す様に、本発明は
従来の受話信号入力端子1、受話信号出力端子2、可変
係数ディジタルフィルタ3、送話信号入力端子4、減算
回路5、送話信号出力端子6、係数修正量演算回路7、
受話信号入力レジスタ8、擬似インパルス応答レジスタ
9、積和演算回路10、そして、双方向通信検出回路1
1から構成された適応アルゴリズムとして学習同定法を
採用した音響反響除去装置と同一構成の装置に、第一の
絶対値出力回路12、第二の絶対値出力回路13、第一
の係数変換回路14、第二の係数変換回路15、減衰特
性観測回路16、非線形変換処理回路17、一定区間移
動積算回路18、相関値比較回路19、論理積回路20
を追加した構成になっている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a first acoustic echo canceller of the present invention. As shown in FIG. 1, according to the present invention, the conventional reception signal input terminal 1, reception signal output terminal 2, variable coefficient digital filter 3, transmission signal input terminal 4, subtraction circuit 5, transmission signal output terminal 6, coefficient correction. Quantity calculation circuit 7,
Received signal input register 8, pseudo impulse response register 9, sum of products operation circuit 10, and bidirectional communication detection circuit 1
The first absolute value output circuit 12, the second absolute value output circuit 13, and the first coefficient conversion circuit 14 are added to the device having the same configuration as the acoustic echo canceling device adopting the learning identification method as the adaptive algorithm configured from 1. , A second coefficient conversion circuit 15, an attenuation characteristic observation circuit 16, a non-linear conversion processing circuit 17, a constant section movement integration circuit 18, a correlation value comparison circuit 19, and a logical product circuit 20.
Has been added.

【0013】該受話信号入力端子1と、該受話信号出力
端子2と、該送話信号入力端子4と該送話信号出力端子
6と、該受話信号入力端子1から入力された受話信号を
入力とする該可変係数ディジタルフィルタ3と、該可変
係数ディジタルフィルタ3の係数系列を格納した該擬似
インパルス応答レジスタ9と、該擬似インパルス応答レ
ジスタ9の内容と該受話信号入力端子1からの該受話信
号を格納した該受話信号入力レジスタ8の内容との畳み
込み積分演算を行う該積和演算回路10と、該積和演算
回路10により生成された擬似音響反響と該送話信号入
力端子4より入力される音響反響との差分値をとる該減
算回路5と、該可変係数ディジタルフィルタ3が該反響
の近似値を供給する様に該擬似インパルス応答レジスタ
9の係数系列をN個に分けて、M回で係数系列全体が自
動的に更新される様に制御を行う係数修正量演算回路7
と、通信回線上で双方向通信が発生した時その状態を検
出する為の該双方向通信検出回路11とで構成される音
響反響除去装置において、該擬似インパルス応答レジス
タ9の第一番目ブロックの各係数の絶対値を求める該第
一の絶対値出力回路12と、該擬似インパルス応答レジ
スタ9の第二番目ブロックの各係数の絶対値を求める該
第二の絶対値出力回路13と、該第一の絶対値出力回路
の出力が、内挿閾値[S1]よりも小さければ“0”と
し、内挿閾値[S1]よりも大きければ“1”として、
“1”の総数hn1を出力する該第一の係数変換回路1
4と、該第二の絶対値出力回路の出力が、内挿閾値[S
1]よりも小さければ“0”とし、内挿閾値[S1]よ
りも大きければ“1”として、“1”の総数hn2を出
力する該第二の係数変換回路15と、該第一の係数変換
回路14と、該第二の係数変換回路15との出力の差h
nsが、内挿閾値[S2]よりも小さければ“0”を出
力し、内挿閾値[S2]よりも大きければ“1”を出力
するよう設定された該減衰特性観測回路16と、 hns=hn1−hn2 (8) 該誤差信号の信号振幅が、内挿閾値[+S3]よりも大
きいか、内挿閾値[−S3]よりも小さい場合には
“1”を出力し、又、内挿閾値[+S3]よりも小さい
か、内挿閾値[−S3]より大きい場合には“0”を出
力する該非線形変換処理回路17と、該非線形変換処理
回路17の“1”と“0”からなる二値系列の一定区間
中に存在する“1”の数をステップ毎一定区間を移動さ
せながら出力する該一定区間移動積算回路18と、該一
定区間移動積算回路18の出力ensが、内挿閾値[S
4]よりも小さければ“0”を出力し、内挿閾値[S
4]よりも大きければ“1”を出力するよう設定された
該相関値比較回路19と、該減衰特性観測回路16の出
力を第一の入力とし、該相関値比較回路19の出力を第
二の入力とした該論理積回路20と、該論理積回路20
から“1”が出力された場合に該係数修正量演算回路7
の動作を停止し、“0”が出力された場合に該係数修正
量演算回路7の動作を続行して係数更新を行う事を特徴
とした音響反響除去装置。
The receiving signal input terminal 1, the receiving signal output terminal 2, the transmitting signal input terminal 4, the transmitting signal output terminal 6, and the receiving signal input from the receiving signal input terminal 1 are input. The variable coefficient digital filter 3, the pseudo impulse response register 9 storing the coefficient sequence of the variable coefficient digital filter 3, the contents of the pseudo impulse response register 9 and the reception signal from the reception signal input terminal 1. Is input to the product-sum operation circuit 10 for performing a convolution integration operation with the content of the reception-signal input register 8 storing therein, the pseudo-acoustic echo generated by the product-sum operation circuit 10, and the transmission signal input terminal 4. The subtraction circuit 5 which takes the difference value with the acoustic echo and the variable coefficient digital filter 3 supplies N to the coefficient sequence of the pseudo impulse response register 9 so as to supply the approximate value of the echo. Divided into, coefficient correction amount calculating circuit 7 for controlling so as to total coefficient sequence is automatically updated M times
And the acoustic echo canceller composed of the two-way communication detection circuit 11 for detecting the state when two-way communication occurs on the communication line, in the first block of the pseudo impulse response register 9. The first absolute value output circuit 12 for obtaining the absolute value of each coefficient, the second absolute value output circuit 13 for obtaining the absolute value of each coefficient of the second block of the pseudo impulse response register 9, and the first absolute value output circuit 13. If the output of one absolute value output circuit is smaller than the interpolation threshold [S1], it is set to "0", and if it is larger than the interpolation threshold [S1], it is set to "1".
The first coefficient conversion circuit 1 that outputs the total number hn1 of "1"
4 and the output of the second absolute value output circuit are the interpolation threshold value [S
1] if it is smaller than 1], and if it is larger than the interpolation threshold [S1], it is set to "1", and the second coefficient conversion circuit 15 that outputs the total number hn2 of "1" and the first coefficient are output. Output difference h between the conversion circuit 14 and the second coefficient conversion circuit 15
If the ns is smaller than the interpolation threshold [S2], "0" is output, and if it is larger than the interpolation threshold [S2], "1" is output, and hns = hn1-hn2 (8) When the signal amplitude of the error signal is larger than the interpolation threshold [+ S3] or smaller than the interpolation threshold [-S3], "1" is output, and the interpolation threshold is also output. If it is smaller than [+ S3] or larger than the interpolation threshold value [-S3], it is composed of the non-linear conversion processing circuit 17 that outputs "0", and "1" and "0" of the non-linear conversion processing circuit 17. The constant interval movement integrating circuit 18 that outputs the number of “1” existing in the constant interval of the binary sequence while moving the constant interval at each step, and the output ens of the constant interval movement integrating circuit 18 are the interpolation threshold values. [S
4], “0” is output and the interpolation threshold [S
4], the correlation value comparison circuit 19 set to output "1" and the output of the attenuation characteristic observation circuit 16 are used as a first input, and the output of the correlation value comparison circuit 19 is used as a second input. And the logical product circuit 20
When "1" is output from the coefficient correction amount calculation circuit 7
Is stopped, and when "0" is output, the operation of the coefficient correction amount calculation circuit 7 is continued to update the coefficient.

【0014】図2は女性の実音声信号を参照信号として
入力した時、定常状態における該擬似インパルス応答レ
ジスタ9に格納されている推定インパルス応答の係数系
列を観測したものである。音場のインパルス特性の特徴
である減衰特性が保たれている事が判る。
FIG. 2 shows the observed coefficient sequence of the estimated impulse response stored in the pseudo impulse response register 9 in the steady state when the actual female voice signal is input as the reference signal. It can be seen that the attenuation characteristic, which is the characteristic of the impulse characteristic of the sound field, is maintained.

【0015】図3は女性の実音声信号を参照信号として
入力し、途中で双方向通信が発生した時の該擬似インパ
ルス応答レジスタ9に格納されている推定インパルス応
答の係数系列を観測したものである。この観測結果が示
す通り双方向通信が発生した為に推定精度が極めて悪く
なり係数が乱されて、図2の様な減衰特性を呈する事が
なくなる。双方向通信による推定インパルス応答の減衰
特性の劣化は、他のどの様な変化よりも急激に起こる。
この急変をマクロな形で採用し、第一の検出評価値とし
て用いたのが本発明による双方向通信検出方式である。
FIG. 3 is an observation of the coefficient sequence of the estimated impulse response stored in the pseudo impulse response register 9 when a bidirectional communication occurs while a female actual voice signal is input as a reference signal. is there. As shown in this observation result, the bidirectional communication occurs, so that the estimation accuracy is extremely deteriorated, the coefficient is disturbed, and the attenuation characteristic as shown in FIG. 2 is not exhibited. The deterioration of the attenuation characteristic of the estimated impulse response due to two-way communication occurs more rapidly than any other change.
The two-way communication detection method according to the present invention employs this sudden change in a macro form and uses it as the first detection evaluation value.

【0016】図4は該非線形変換処理回路17の変換特
性を示したものであるが、該誤差信号の瞬時電力計算を
省略する為にこの様な三値の相関係数値を持たしてい
る。内挿閾値[S3]は近端雑音などの外乱に影響され
ない程度の値に設定する。この内挿閾値[S3]を小さ
くすれば双方向通信検出の感度は敏感になり、逆に大き
くすれが双方向通信検出の感度は鈍感になる。この出力
値を基に二値系列を生起させ、それを第二の検出評価値
として用いたものが本発明による双方向通信検出方式で
ある。
FIG. 4 shows the conversion characteristic of the non-linear conversion processing circuit 17, which has such a three-valued correlation coefficient value in order to omit the calculation of the instantaneous power of the error signal. The interpolation threshold [S3] is set to a value that is not affected by disturbance such as near-end noise. If this interpolation threshold [S3] is made small, the sensitivity of bidirectional communication detection becomes sensitive, and conversely, if it is made large, the sensitivity of bidirectional communication detection becomes insensitive. The two-way communication detection method according to the present invention is one in which a binary sequence is generated based on this output value and is used as the second detection evaluation value.

【0017】図5は該論理積回路20の入出力関係を示
したタイムチャート図である。この様に簡単な論理回路
によって双方向通信が高速、且つ、安定に双方向通信状
態を検出する事が可能である。
FIG. 5 is a time chart showing the input / output relationship of the AND circuit 20. In this way, the bidirectional communication can be detected at high speed and stably with a simple logic circuit.

【0018】[0018]

【発明の効果】以上、詳細に説明したように本発明によ
れば、下記のような優れた効果が期待される。
As described in detail above, according to the present invention, the following excellent effects are expected.

【0019】(1)双方向通信検出の構造的検出遅延が
極めて小さく出来るので、適応ディジタルフィルタの係
数系列が乱される事による音質劣化を防げ、高品質な音
声通信空間を実現できる。
(1) Since the structural detection delay of the bidirectional communication detection can be made extremely small, it is possible to prevent the sound quality deterioration due to the disturbance of the coefficient sequence of the adaptive digital filter, and to realize a high quality voice communication space.

【0020】(2)制御対象となる線形システムの入力
となる受話信号と、その応答である反響に音声が加わっ
た送話信号との音圧の相対比が変化しても本発明は影響
を受ける事なく良好な双方向通信検出を行う事ができ
る。
(2) The present invention is not affected even if the relative ratio of the sound pressures of the reception signal which is the input of the linear system to be controlled and the transmission signal in which voice is added to the echo which is the response changes. Good two-way communication detection can be performed without receiving.

【0021】(3)音響反響消去性能を劣化させずに、
適応アルゴリズムの内部演算量を大幅に削減する事が出
来るので、小規模な構成でハードウェア化が実現し、コ
ストの低減化を図れる。
(3) Without degrading the acoustic echo canceling performance,
Since the internal calculation amount of the adaptive algorithm can be significantly reduced, hardware can be realized with a small-scale configuration and cost can be reduced.

【0022】(4)誤差信号の閾値を近端雑音に影響さ
れない程度まで低く設定する事ができるので、高速な双
方向通信検出が可能となり、高性能な音響反響除去装置
を提供する事ができる。
(4) Since the threshold value of the error signal can be set low enough not to be affected by near-end noise, high-speed bidirectional communication detection can be performed, and a high-performance acoustic echo canceller can be provided. .

【0023】(5)本双方向通信検出方式は学習同定法
を用いた適応アルゴリズムだけではなく他のあらゆるパ
ラメータ推定アルゴリズムに対しても同等の性能を示す
汎用性の高い方式である。
(5) This two-way communication detection method is a highly versatile method that shows equivalent performance not only to the adaptive algorithm using the learning identification method but also to all other parameter estimation algorithms.

【図面の簡単な説明】[Brief description of drawings]

【図1】本説明による音響反響除去装置の一構成例を示
すブロック図である。
FIG. 1 is a block diagram showing a configuration example of an acoustic echo canceller according to the present description.

【図2】本説明に用いた有色信号入力時の擬似インパル
ス応答レジスタに格納された推定インパルス応答係数系
列の一例を示した図である。
FIG. 2 is a diagram showing an example of an estimated impulse response coefficient sequence stored in a pseudo impulse response register when a colored signal is used, which is used in the present description.

【図3】本説明に用いた有色信号入力時の擬似インパル
ス応答レジスタの双方向通信が発生した場合の推定イン
パルス応答係数系列の一例をを示した図である。
FIG. 3 is a diagram showing an example of an estimated impulse response coefficient sequence when bidirectional communication of a pseudo impulse response register at the time of input of a color signal used in the present description occurs.

【図4】本説明に用いた三値の相関係数を与えた非線形
変換処理回路の変換特性の一例を示した図である。
FIG. 4 is a diagram showing an example of conversion characteristics of a non-linear conversion processing circuit given a ternary correlation coefficient used in the present description.

【図5】本説明に用いた双方向通信検出用論理積回路の
入出力特性のタイムチャートの一例を示した図である。
FIG. 5 is a diagram showing an example of a time chart of input / output characteristics of a bidirectional communication detection AND circuit used in the present description.

【図6】従来の一般的な学習同定法を用いた音響反響除
去装置の基本構成の一例を示したブロック図である。
FIG. 6 is a block diagram showing an example of a basic configuration of an acoustic echo canceller using a conventional general learning identification method.

【符号の説明】[Explanation of symbols]

1 受話信号入力端子 2 受話信号出力端子 3 可変係数フィルタ 4 送話信号入力端子 5 減算回路 6 送話信号出力端子 7 修正量演算回路 8 受話信号入力レジスタ 9 擬似インパルス応答レジスタ 10 積和演算回路 11 双方向通信検出回路 12 第一の絶対値出力回路 13 第二の絶対値出力回路 14 第一の係数変換回路 15 第二の係数変換回路 16 減衰特性観測回路 17 非線形変換処理回路 18 一定区間移動積算回路 19 相関値比較回路 20 論理積回路 21 短時間移動平均電力演算回路 1 reception signal input terminal 2 reception signal output terminal 3 variable coefficient filter 4 transmission signal input terminal 5 subtraction circuit 6 transmission signal output terminal 7 correction amount calculation circuit 8 reception signal input register 9 pseudo impulse response register 10 sum of products calculation circuit 11 Bidirectional communication detection circuit 12 First absolute value output circuit 13 Second absolute value output circuit 14 First coefficient conversion circuit 15 Second coefficient conversion circuit 16 Attenuation characteristic observation circuit 17 Non-linear conversion processing circuit 18 Fixed interval moving integration Circuit 19 Correlation value comparison circuit 20 AND circuit 21 Short-time moving average power calculation circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】受話信号入力端子と、受話信号出力端子
と、送話信号入力端子と、送話信号出力端子と、該受話
信号入力端子から入力された受話信号を入力とする可変
係数ディジタルフィルタと、該可変係数ディジタルフィ
ルタの係数系列を格納した擬似インパルス応答レジスタ
と、該擬似インパルス応答レジスタの内容と該受話信号
入力端子からの受話信号を格納した受話信号入力レジス
タの内容との畳み込み積分演算を行う積和演算回路と、
該積和演算回路により生成された擬似音響反響と該送話
信号入力端子より入力される音響反響との差分値をとる
減算回路と、該可変係数ディジタルフィルタが該反響の
近似値を供給する様に該擬似インパルス応答レジスタの
係数系列をN個のブロックに分けて、M回で係数系列全
体が自動的に更新される様に制御を行う係数修正量演算
回路と、通信回線上で双方向通信が発生した時その状態
を検出する為の双方向通信検出回路とで構成される音響
反響除去装置において、該擬似インパルス応答レジスタ
の第一番目ブロックの各係数の絶対値を求める第一の絶
対値出力回路と、該擬似インパルス応答レジスタの第二
番目ブロックの各係数の絶対値を求める第二の絶対値出
力回路と、該第一の絶対値出力回路の出力が、内挿閾値
[S1]よりも小さければ“0”とし、内挿閾値[S
1]よりも大きければ“1”として、“1”の総数を出
力する第一の係数変換回路と、該第二の絶対値出力回路
の出力が、内挿閾値[S1]よりも小さければ“0”と
し、内挿閾値[S1]よりも大きければ“1”として、
“1”の総数を出力する第二の係数変換回路と、該第一
の係数変換回路と、該第二の係数変換回路との出力の差
が、内挿閾値[S2]よりも小さければ“0”を出力
し、内挿閾値[S2]よりも大きければ“1”を出力す
るよう設定された減衰特性観測回路と、該誤差信号の信
号振幅が、内挿閾値[+S3]よりも大きいか、内挿閾
値[−S3]よりも小さい場合には“1”を出力し、ま
た内挿閾値[+S3]よりも小さいか、内挿閾値[−S
3]より大きい場合には“0”を出力する非線形変換処
理回路と、該非線形変換処理回路出力の“1”と“0”
からなる二値系列の一定区間中に存在する“1”の数を
ステップ毎一定区間を移動させながら出力する一定区間
移動積算回路と、該一定区間移動積算回路の出力が、内
挿閾値[S4]よりも小さければ“0”を出力し、内挿
閾値[S4]よりも大きければ“1”を出力するよう設
定された相関値比較回路と、該減衰特性観測回路の出力
を第一の入力とし、該相関値比較回路の出力を第二の入
力とした論理積回路と、該論理積回路から“1”が出力
された場合に該係数修正量演算回路の動作を停止し、
“0”が出力された場合に該係数修正量演算回路の動作
を続行して係数更新が行われることを特徴とする音響反
響除去装置。
Claims: 1. A reception signal input terminal, a reception signal output terminal, a transmission signal input terminal, a transmission signal output terminal, and a variable coefficient digital filter having the reception signal input from the reception signal input terminal as an input. And a pseudo impulse response register that stores the coefficient sequence of the variable coefficient digital filter, and a convolution integral operation of the contents of the pseudo impulse response register and the contents of the reception signal input register that stores the reception signal from the reception signal input terminal. A product-sum operation circuit that performs
A subtraction circuit that takes a difference value between the pseudo-acoustic echo generated by the product-sum calculation circuit and the acoustic echo input from the transmission signal input terminal, and the variable coefficient digital filter that supplies an approximate value of the echo. In addition, the coefficient sequence of the pseudo impulse response register is divided into N blocks, and a coefficient correction amount calculation circuit for controlling so that the entire coefficient sequence is automatically updated in M times, and bidirectional communication on a communication line. In the acoustic echo canceller configured with a two-way communication detection circuit for detecting the state when the occurrence of the, the first absolute value for obtaining the absolute value of each coefficient of the first block of the pseudo impulse response register The output circuit, the second absolute value output circuit for obtaining the absolute value of each coefficient of the second block of the pseudo impulse response register, and the output of the first absolute value output circuit are calculated from the interpolation threshold value [S1]. Small And "0", Kere, inner 挿閾 value [S
1] if it is larger than 1], and if the outputs of the first coefficient conversion circuit that outputs the total number of "1" and the second absolute value output circuit are smaller than the interpolation threshold value [S1], then it is "1". 0 ", and if it is larger than the interpolation threshold value [S1], it is set to" 1 ".
If the difference between the outputs of the second coefficient conversion circuit that outputs the total number of "1", the first coefficient conversion circuit, and the second coefficient conversion circuit is smaller than the interpolation threshold value [S2], then " 0 "is output, and if the attenuation characteristic observation circuit is set to output" 1 "if it is larger than the interpolation threshold value [S2], whether the signal amplitude of the error signal is larger than the interpolation threshold value [+ S3]. , 1 is output when it is smaller than the interpolation threshold value [−S3], and it is smaller than the interpolation threshold value [+ S3] or the interpolation threshold value [−S3].
3] is larger than the above, a non-linear conversion processing circuit that outputs “0”, and outputs “1” and “0” of the non-linear conversion processing circuit
The constant interval movement integrating circuit that outputs the number of “1” existing in the constant interval of the binary sequence consisting of Smaller than], output "0", and if larger than the interpolation threshold value [S4], output "1", and the output of the attenuation characteristic observation circuit is the first input. And the operation of the logical product circuit using the output of the correlation value comparison circuit as the second input and the coefficient correction amount calculation circuit when "1" is output from the logical product circuit,
An acoustic echo canceller characterized in that when "0" is output, the operation of the coefficient correction amount calculation circuit is continued to update the coefficient.
JP27187893A 1993-10-29 1993-10-29 Acoustic echo canceller Expired - Fee Related JP3145547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27187893A JP3145547B2 (en) 1993-10-29 1993-10-29 Acoustic echo canceller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27187893A JP3145547B2 (en) 1993-10-29 1993-10-29 Acoustic echo canceller

Publications (2)

Publication Number Publication Date
JPH07131387A true JPH07131387A (en) 1995-05-19
JP3145547B2 JP3145547B2 (en) 2001-03-12

Family

ID=17506166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27187893A Expired - Fee Related JP3145547B2 (en) 1993-10-29 1993-10-29 Acoustic echo canceller

Country Status (1)

Country Link
JP (1) JP3145547B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382726B2 (en) 2013-04-23 2016-07-05 Joseph Nordlinger Fence apparatus
EP3443284B1 (en) 2016-04-15 2020-11-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics

Also Published As

Publication number Publication date
JP3145547B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
JPH10242891A (en) Echo canceller
US6088445A (en) Adaptive filter system having mixed fixed point or floating point and block scale floating point operators
JP5293952B2 (en) Signal processing method, signal processing apparatus, and signal processing program
JP3145547B2 (en) Acoustic echo canceller
US5359656A (en) Adaptive echo cancellation apparatus
JP3121983B2 (en) Acoustic echo canceller
JP3121969B2 (en) Acoustic echo canceller
JP3121998B2 (en) Acoustic echo canceller
JP3152815B2 (en) Acoustic echo canceller
JPH0746160A (en) Sound echo canceller
JP3152822B2 (en) Acoustic echo canceller
JP3152825B2 (en) Acoustic echo canceller
JP3217614B2 (en) Acoustic echo canceller
JP3217619B2 (en) Acoustic echo canceller
JPH0758674A (en) Howling detector
JP3452341B2 (en) Echo canceller
JP3217618B2 (en) Acoustic echo canceller
JP3121997B2 (en) Acoustic echo canceller
JP3187716B2 (en) Echo canceller
JP3121988B2 (en) Acoustic echo canceller
JPH0799469A (en) Device for eliminating acoustic echo
JPH07154306A (en) Acoustic echo removing device
JP3187715B2 (en) Echo canceller
JPH0746162A (en) Sound echo canceller
JPH11313014A (en) Band divided echo canceler

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090105

LAPS Cancellation because of no payment of annual fees