JPS6362165A - Manufacture of sodium-sulfur battery - Google Patents

Manufacture of sodium-sulfur battery

Info

Publication number
JPS6362165A
JPS6362165A JP61203690A JP20369086A JPS6362165A JP S6362165 A JPS6362165 A JP S6362165A JP 61203690 A JP61203690 A JP 61203690A JP 20369086 A JP20369086 A JP 20369086A JP S6362165 A JPS6362165 A JP S6362165A
Authority
JP
Japan
Prior art keywords
positive electrode
container
vessel
solid electrolyte
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61203690A
Other languages
Japanese (ja)
Inventor
Koji Kusakabe
康次 日下部
Hajime Wada
元 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61203690A priority Critical patent/JPS6362165A/en
Publication of JPS6362165A publication Critical patent/JPS6362165A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To intend to reduce mechanical stress in a solid electrolyte and decrease internal resistance thereof by binding an electron conductive material, of which the central part is cleared away, on an inside wall of positive electrode vessel, then impregnating the electron conductive material with a positive electrode active substance and by inserting a solid electrolyte vessel, which is filled with a negative electrode active substance, into the central vacant part. CONSTITUTION:A molten sodium 2, a negative electrode active substance, is contained in an integrated vessel, comprising a solid electrolyte vessel 5, which is selectively conductive for sodium ions, and a negative vessel 1 with an insulating material 3. On the other hand, an electron conductive material 8, which is impregnated with a molten sulfur 7, an positive electrode active substance, constitutes a positive electrode structure 9, and it is contained in a positive electrode vessel 6. After the electron conductive material 8 is made to adhere to the inside wall of the positive electrode vessel 6, the electron conductive material 8 is calcined to be fixed on the inside wall of the positive electrode vessel 6 and impregnated with molten sulfur 7. In this state, the solid electrolyte vessel is inserted into the positive electrode structure, and then a positive electrode supplementary vessel 4, which is preliminarily joined to an insulation ring, is joined to the positive electrode vessel 6 at an end face 10 and sealed. With the arrangement, heat distortion of the positive electrode structure doesn't exert asymmetrical pressure on the solid electrolyte vessel and damage of the solid electrolyte during high temperature is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はナトリウム−硫黄電池の製作法に係り、特に固
体電解質に発生する機械的応力低減と内部抵抗減少と製
作工程の簡便化に好適なナトリウム−硫黄電池の製作法
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a sodium-sulfur battery, and in particular, a method suitable for reducing mechanical stress generated in a solid electrolyte, reducing internal resistance, and simplifying the manufacturing process. This invention relates to a method for manufacturing a sodium-sulfur battery.

〔従来の技術〕[Conventional technology]

従来のナトリウム−硫黄電池の製作法は、米国特許第4
188463号、特許公報特開昭54−109134号
Conventional methods for making sodium-sulfur batteries are described in U.S. Pat.
No. 188463, Patent Publication No. 109134/1983.

特開昭55−108183号に記載のように、正極活物
質である硫黄を電子伝導材に含浸し固化成形した正極構
造体を、別途製作された正極容器と、固体電解質容器と
絶縁材と負極容器とが一体となった部材の前記正極容器
と前記固体電解質容器との円環状の間隙に挿入するもの
であった。
As described in JP-A No. 55-108183, a cathode structure in which an electron conductive material is impregnated with sulfur, which is a cathode active material, and solidified is combined with a separately manufactured cathode container, a solid electrolyte container, an insulating material, and a negative electrode. The container was inserted into an annular gap between the positive electrode container and the solid electrolyte container in a member integrated with the container.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この製作法で作られたナトリウム−硫黄電池は
固体電解質容器と正極容器の偏心等に起因して正極活物
質及び電子伝導材の膨張が固体電解質容器に不均一な圧
迫を加え、その結果、固体電解質容器の破損が生じる。
However, in sodium-sulfur batteries made using this manufacturing method, expansion of the positive electrode active material and electron conductive material applies uneven pressure to the solid electrolyte container due to eccentricity between the solid electrolyte container and the positive electrode container. , damage to the solid electrolyte container occurs.

また、従来の製作法によれば、いくつかに分割した正極
構造体を挿入しており電池の製作が複雑で手間が掛り過
ぎていた。更に、予め製作された正極構造体を挿入する
製作法では、正極容器と電子伝導材との接触面での接触
抵抗が相当高く、この部分での損失が大きい。
Furthermore, according to the conventional manufacturing method, a positive electrode structure divided into several parts is inserted, making the manufacturing of the battery complicated and time-consuming. Furthermore, in the manufacturing method of inserting a prefabricated positive electrode structure, the contact resistance at the contact surface between the positive electrode container and the electron conductive material is considerably high, and the loss at this portion is large.

本発明の目的は、固体電解質容器と正極構造体と正極容
器との偏心等の非軸対称性を減少させるとともに、電子
伝導材と正極容器間の接触抵抗を減するようにしたナト
リウム−硫黄電池の製作法を提供するに在る。
An object of the present invention is to provide a sodium-sulfur battery that reduces non-axial symmetry such as eccentricity between a solid electrolyte container, a positive electrode structure, and a positive electrode container, and also reduces contact resistance between an electronic conductive material and a positive electrode container. The purpose is to provide a manufacturing method.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成する本発明の要旨とするところは、正極
容器の内壁に電子伝導材を中心部を除いて結着後、上記
電子伝導材に正極活物質を含浸させ、上記中心空部の内
部に負極活物質が充填されている固体電解質容器を挿入
するナトリウム−硫黄電池の製作法である。
The gist of the present invention to achieve the above object is that after bonding an electron conductive material to the inner wall of a positive electrode container except for the central part, the electron conductive material is impregnated with a positive electrode active material, and the interior of the central cavity is This is a method for manufacturing a sodium-sulfur battery in which a solid electrolyte container filled with a negative electrode active material is inserted into the battery.

〔作用〕[Effect]

本発明によると、固体電解質容器と正極構造体と正極容
器とは、偏心等の非対称性なき様に接合できるので正極
構造体の熱変形が固体電解質容器に非対称な圧迫を加え
ることを低減でき、昇温中の固体電解質容器を減少する
ことができる。また、正極容器と電子伝導材の接触性に
ばらつきがなく良好にできるので内部抵抗のばらつきと
抵抗値の減少が達成される。また、正極部分を一体に製
作するので、電池製作工程が簡便となる。
According to the present invention, the solid electrolyte container, the positive electrode structure, and the positive electrode container can be joined without asymmetry such as eccentricity, so that it is possible to reduce the application of asymmetric pressure on the solid electrolyte container due to thermal deformation of the positive electrode structure. The solid electrolyte container during heating can be reduced. Further, since the contact between the positive electrode container and the electron conductive material can be made uniform and good, variations in internal resistance and a reduction in resistance value can be achieved. Furthermore, since the positive electrode portion is manufactured in one piece, the battery manufacturing process is simplified.

〔実施例〕〔Example〕

本発明を実施例によって更に詳述する。 The present invention will be explained in further detail by way of examples.

実施例1 第1図は本発明の詳細な説明するための図で、ナトリウ
ム−硫黄電池の組立の一工程を示している。
Example 1 FIG. 1 is a diagram for explaining the present invention in detail, and shows one step in assembling a sodium-sulfur battery.

負極活物質である溶融ナトリウム2は、ナトリウムイオ
ンを選択的に伝導する固体電解質容器5と負極容器1と
絶縁材3とが接合一体化された中に収められている。一
方、正極活物質である溶融硫黄7は、電子伝導材8に含
浸されて正極構造体9を構成し、正極容器6に収められ
ている。正極構造体を有する正極容器の製法は、まず正
極容器6の内壁に電子伝導材8を密着させた後焼成して
電子伝導材8を正極容器6の内壁に結着し、しかる後適
当な治具を用いて溶融硫黄7を含浸させる。
Molten sodium 2, which is a negative electrode active material, is contained in a solid electrolyte container 5 that selectively conducts sodium ions, a negative electrode container 1, and an insulating material 3, which are joined and integrated. On the other hand, molten sulfur 7, which is a positive electrode active material, is impregnated into an electron conductive material 8 to form a positive electrode structure 9, which is housed in a positive electrode container 6. The method for manufacturing a positive electrode container having a positive electrode structure is as follows: First, the electron conductive material 8 is closely attached to the inner wall of the positive electrode container 6, and then fired to bind the electron conductive material 8 to the inner wall of the positive electrode container 6, and then subjected to appropriate treatment. Impregnate with molten sulfur 7 using a tool.

この状態で、第1図に示すように、前記固体電解質容器
を前記正極構造体内に挿入した後、予め絶縁リングに接
合された正極補助容器4と正極容器6が端面10におい
て接合されて封止され、ナトリウム−硫黄電池が形成さ
れる。
In this state, as shown in FIG. 1, after the solid electrolyte container is inserted into the positive electrode structure, the positive electrode auxiliary container 4 and the positive electrode container 6, which have been joined to the insulating ring in advance, are joined at the end surface 10 and sealed. and a sodium-sulfur battery is formed.

さて、ナトリウム−硫黄電池の電池反応は、にて表わさ
れる。放電時には、電子を手前してイオンとなった溶融
ナトリウムが固体電解質を通って正極内に侵入し、溶融
硫黄と反応して多硫化ナトリウムとなり、電子を受取っ
て中性となる。この過程中、外部回路に接続しておけば
、約2vの起電力を持って電子が負極から正極に駆動さ
れて電池として機能する。また溶融硫黄は電子伝導性を
持たないので、正極内に電子伝導材を充填して正極容器
を介して外部より流入する電子が正極内部に侵入できる
ようにする。
Now, the battery reaction of a sodium-sulfur battery is expressed by: During discharge, molten sodium that has become ions in front of the electrons enters the positive electrode through the solid electrolyte, reacts with molten sulfur, becomes sodium polysulfide, and becomes neutral by receiving electrons. During this process, if it is connected to an external circuit, electrons are driven from the negative electrode to the positive electrode with an electromotive force of about 2V, and it functions as a battery. Furthermore, since molten sulfur does not have electron conductivity, the positive electrode is filled with an electron conductive material so that electrons flowing from the outside through the positive electrode container can enter the inside of the positive electrode.

充電時には1本電池の起電力以上の電位差を両極間に印
加する。この時、正極内にあって多硫化ナトリウムを形
成している溶融ナトリウムはイオンとなって、固体電解
質を通って負極内に戻り、電子を受取って中性化する。
During charging, a potential difference greater than the electromotive force of one battery is applied between the two electrodes. At this time, the molten sodium that forms sodium polysulfide in the positive electrode becomes ions, returns to the negative electrode through the solid electrolyte, receives electrons, and becomes neutralized.

電池の作動温度は、多硫化ナトリウムの融点との関係か
ら300〜350”Cに選ばれる。従って機動・停止時
の昇降温は不可避である。また、両極活物質であるナト
リウムと硫黄は常温では固相にあり、上記昇降温過程中
に溶融・固化が起こる。
The operating temperature of the battery is selected to be 300 to 350"C based on the relationship with the melting point of sodium polysulfide. Therefore, temperature rises and falls during operation and stoppage are unavoidable. Also, sodium and sulfur, which are active materials for both electrodes, are not stable at room temperature. It is in a solid phase, and melting and solidification occur during the above temperature raising and lowering process.

この時に固体電解質が破損して両極が短絡し、電池とし
ての機能を失なってしまうことがある。そして、この固
体電解質の破損は、ナトリウムと硫黄の直接反応を生じ
て、その大きな発熱によって電池容器を溶かしてしまう
こともある。
At this time, the solid electrolyte may be damaged and the two electrodes may be short-circuited, causing the battery to lose its function. Damage to the solid electrolyte may cause a direct reaction between sodium and sulfur, which can melt the battery container due to the large amount of heat generated.

この昇降温時の破損は基本的に純機械的な応力によるも
のであり、その原因として以下のことが挙げられる。
This damage during temperature rise and fall is basically due to pure mechanical stress, and the causes are as follows.

正極内に充填される電子伝導材としては、炭素繊維のマ
ットが通常用いられるが、外部端子でもある正極容器と
の接触抵抗を小さくするために。
Carbon fiber mats are usually used as the electron conductive material filled in the positive electrode, but this is done in order to reduce the contact resistance with the positive electrode container, which is also an external terminal.

径方向に圧縮された状態で充填される。It is filled in a radially compressed state.

一方、固体電解質には通常β′−アルミナと呼ばれる材
料が用いられ、また、絶縁リングにはα−アルミナが用
いられる。β′−アルミナは、その開放端でα−アルミ
ナリングとガラス半田等により接合される。α−アルミ
ナリングと正極容器とはA11ワツシヤー等を用いた熱
圧接合等によって接合される。これらの接合時に、偏心
や直角度の不具合等が残ることがある。正極部は軸方向
に長尺となっているため、接合部での偏心や直角度の不
具合は、先端において増巾される。従来の組立法のよう
に固体電解質容器と正極容器を予め一体化しておき、正
極構造体をあとから挿入する場合には、上記の偏心や直
角度の不具合を是正する方策はない。
On the other hand, a material called β'-alumina is usually used for the solid electrolyte, and α-alumina is used for the insulating ring. The β'-alumina is bonded to the α-alumina ring at its open end using glass solder or the like. The α-alumina ring and the positive electrode container are bonded together by thermopressure bonding using an A11 washer or the like. When these are joined, defects such as eccentricity and perpendicularity may remain. Since the positive electrode portion is elongated in the axial direction, problems with eccentricity or perpendicularity at the joint are amplified at the tip. When the solid electrolyte container and the cathode container are integrated in advance and the cathode structure is inserted later as in the conventional assembly method, there is no way to correct the eccentricity and perpendicularity problems described above.

このように、固体電解質容器と正極容器の間に偏心等が
残っている場合、前述した炭素繊維のマットが硫黄の溶
融時に拘束を解かれて元の厚みや形状に戻ろうとする時
に、固体電解質容器に非対称な力を加えることになる。
In this way, if eccentricity, etc. remains between the solid electrolyte container and the positive electrode container, when the aforementioned carbon fiber mat is released from its restraints when sulfur melts and tries to return to its original thickness and shape, the solid electrolyte This will result in an asymmetrical force being applied to the container.

固体電解質容器は電池内にて片持ちはり状に固定されて
おり、先端での荷重は、根元部で大きなモーメントとな
って作用する。このモーメントが応力に転じて固体電解
質を破損せしめる。  “ 本実施例によれば、正極容器と正極構造体が一体に製作
され、最後に固体電解質管との同心度を調整して接合で
きるので、上記のような破損は減少させることができる
The solid electrolyte container is fixed in a cantilever shape within the battery, and the load at the tip acts as a large moment at the base. This moment turns into stress and damages the solid electrolyte. “According to this embodiment, the cathode container and the cathode structure are manufactured integrally, and the concentricity with the solid electrolyte tube can be adjusted and joined at the end, so the above-mentioned damage can be reduced.

また、正極内の電子伝導材と正極容器との接触は、前述
したように良好でなければならない、従来の方法によれ
ば、電子伝導材は初昇温時の硫黄溶融時に初めて正極容
器との接触が実現されるので、接触性の不良やばらつき
が生じる0本実施例のように、予め一体にしておけばこ
のような不良も低減することができ、電池の内部抵抗も
減少する。
In addition, the contact between the electron conductive material in the positive electrode and the positive electrode container must be good as described above.According to the conventional method, the electron conductive material first contacts the positive electrode container when the sulfur melts during the initial temperature rise. Since contact is realized, defects and variations in contact properties occur.If the components are integrated in advance, as in this embodiment, such defects can be reduced, and the internal resistance of the battery can also be reduced.

実施例2 第2図、第3図を用いて正極部分の作製について説明す
る。第2図では電子伝導材8は炭素繊維マットを長方形
に切断して正極容器6に詰めである。第3図では、炭素
繊維マットを円環に打抜いたものを複数個、正極容器に
詰めである。これらを真空焼成すれば、正極容器と炭素
繊維が結着する0次に芯金11を正極容器と同心に挿入
し昇温した後、溶融硫黄を炭素繊維に含浸し、降温、固
化させる。ここで芯金11の外径を固体電解質容器の外
径より大きくしておけば、電池組立が容易となる。
Example 2 The production of the positive electrode portion will be explained using FIGS. 2 and 3. In FIG. 2, the electron conductive material 8 is a carbon fiber mat cut into rectangular shapes and packed in the positive electrode container 6. In FIG. 3, a plurality of ring-shaped carbon fiber mats are punched out and packed into a positive electrode container. When these are vacuum-fired, the zero-order core bar 11 that binds the positive electrode container and the carbon fibers is inserted concentrically with the positive electrode container and heated, and then the carbon fibers are impregnated with molten sulfur, and the temperature is lowered and solidified. Here, if the outer diameter of the core bar 11 is made larger than the outer diameter of the solid electrolyte container, assembly of the battery becomes easier.

以上のように、正極部分を一体に製作することで工程が
簡略化できる。
As described above, the process can be simplified by manufacturing the positive electrode part as one piece.

また、第4図のように、正極容器6の上面と、正極補助
容器4の下面を球状にしておけば、前記した偏心等の是
正が容易となる。
Further, as shown in FIG. 4, if the upper surface of the positive electrode container 6 and the lower surface of the positive electrode auxiliary container 4 are made spherical, it becomes easy to correct the eccentricity described above.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、固体電解質と正極構造体と正極容器の
偏心等の非軸対称性が電池組立時に是正できるので、固
体電解質への非軸対称な圧迫を減少でき、これによる固
体電解質容器の破損を減少できる。
According to the present invention, non-axisymmetric properties such as eccentricity between the solid electrolyte, the cathode structure, and the cathode container can be corrected during battery assembly, so non-axisymmetric pressure on the solid electrolyte can be reduced, and the resulting solid electrolyte container Can reduce damage.

また、電子伝導材と正極容器の接触抵抗を減らすことが
できるので、電池の内部抵抗が減少する。
Furthermore, since the contact resistance between the electron conductive material and the positive electrode container can be reduced, the internal resistance of the battery is reduced.

さらに、正極部分を一体化して作製するので、工程が簡
略化できる。
Furthermore, since the positive electrode portion is manufactured in one piece, the process can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図。 第3図は正極部分の部分断面図、第4図は正極容器と正
極補助容器との接合部の他の実施例の断面図である。 4・・・正極補助容器、5・・・固体電解質、6・・・
正極容塁、7・・・正極活物質、8・・・電子伝導材、
9・・・正極率1区 惠7図 高4図 高3図
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of an embodiment of the present invention. FIG. 3 is a partial sectional view of the positive electrode portion, and FIG. 4 is a sectional view of another embodiment of the joint portion between the positive electrode container and the positive electrode auxiliary container. 4... Positive electrode auxiliary container, 5... Solid electrolyte, 6...
Positive electrode container, 7... Positive electrode active material, 8... Electronic conductive material,
9...Positive electrode rate 1 ward Kei 7 figure high 4 figure high 3 figure

Claims (1)

【特許請求の範囲】 1、正極容器の内壁に電子伝導材を中心部を除いて結着
後、上記電子伝導材に正極活物質を含浸させ、上記中心
空部に内部に負極活物質が充填されている固体電解質容
器を挿入することを特徴とするナトリウム−硫黄電池の
製作法。 2、上記正極容器は一端封止の円筒状であることを特徴
とする特許請求の範囲第1項記載のナトリウム−硫黄電
池の製作法。 3、負極活物質は固体電解質容器と負極容器と、上記固
体電解質と上記負極容器とにそれぞれ接着された絶縁体
とによつて密封されていることを特徴とする特許請求の
範囲第1項記載のナトリウム−硫黄電池の製作法。 4、正極容器を正極容器と正極補助容器に分離し、上記
正極補助容器を絶縁体に接合しておき、固定電解質を電
子伝導材の中心空部に挿入した後上記正極容器と上記正
極補助容器とを接合することを特徴とする特許請求の範
囲第3項記載のナトリウム−硫黄電池の製作法。 5、正極容器の内壁に電子伝導材とは焼成により結着さ
せることを特徴とする特許請求の範囲第1項記載のナト
リウム−硫黄電池の製作法。
[Claims] 1. After bonding an electron conductive material to the inner wall of the positive electrode container except for the center part, the electron conductive material is impregnated with a positive electrode active material, and the central cavity is filled with a negative electrode active material. 1. A method for manufacturing a sodium-sulfur battery, which comprises inserting a solid electrolyte container. 2. The method for manufacturing a sodium-sulfur battery according to claim 1, wherein the positive electrode container has a cylindrical shape with one end sealed. 3. The negative electrode active material is sealed by a solid electrolyte container, a negative electrode container, and an insulator bonded to the solid electrolyte and the negative electrode container, respectively. A method for making a sodium-sulfur battery. 4. Separate the cathode container into a cathode container and a cathode auxiliary container, join the cathode auxiliary container to an insulator, insert the fixed electrolyte into the central cavity of the electron conductive material, and then separate the cathode container and the cathode auxiliary container. 4. A method for manufacturing a sodium-sulfur battery according to claim 3, characterized in that the two are joined together. 5. The method for manufacturing a sodium-sulfur battery according to claim 1, wherein the electron conductive material is bonded to the inner wall of the positive electrode container by firing.
JP61203690A 1986-09-01 1986-09-01 Manufacture of sodium-sulfur battery Pending JPS6362165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61203690A JPS6362165A (en) 1986-09-01 1986-09-01 Manufacture of sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203690A JPS6362165A (en) 1986-09-01 1986-09-01 Manufacture of sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPS6362165A true JPS6362165A (en) 1988-03-18

Family

ID=16478228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203690A Pending JPS6362165A (en) 1986-09-01 1986-09-01 Manufacture of sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPS6362165A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2250857A (en) * 1989-07-25 1992-06-17 Chloride Silent Power Ltd A method of closing one end of the case of a sodium/sulphur cell
US5279625A (en) * 1989-07-25 1994-01-18 Chloride Silent Power, Ltd. Method of closing one end of the case of sodium/sulphur cell and a sodium/sulphur cell produced by this method
WO2014192253A1 (en) * 2013-05-27 2014-12-04 Ohkawa Hiroshi Fuel-type solid electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2250857A (en) * 1989-07-25 1992-06-17 Chloride Silent Power Ltd A method of closing one end of the case of a sodium/sulphur cell
GB2250857B (en) * 1989-07-25 1993-07-14 Chloride Silent Power Ltd A method of closing one end of the case of a sodium/sulphur cell and a sodium/sulphur cell produced by this method
US5279625A (en) * 1989-07-25 1994-01-18 Chloride Silent Power, Ltd. Method of closing one end of the case of sodium/sulphur cell and a sodium/sulphur cell produced by this method
WO2014192253A1 (en) * 2013-05-27 2014-12-04 Ohkawa Hiroshi Fuel-type solid electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JPS6362165A (en) Manufacture of sodium-sulfur battery
US6169366B1 (en) High pressure discharge lamp
JPH0254861A (en) Hermetical forming method for storage battery terminal section
US3932782A (en) High pressure sodium vapor lamp having improved monolithic alumina arc tube
JPH11277153A (en) Formation of constriction to cylindrical member
US4661424A (en) Sodium-sulfur storage battery
JP4538115B2 (en) Insulating ring and method of manufacturing the same
JP3704241B2 (en) Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery
JP2693264B2 (en) Sodium-sulfur battery
JPS6226767A (en) Sodium-sulfur battery
US4795389A (en) Method of making an ion laser tube
JPS6366862A (en) Sodium-sulfur battery
JPS62295368A (en) Sodium-sulphur cell and its manufacture
JPH0359960A (en) Glass solder joint method for solid electrolyte tube
JPH02223157A (en) Sodium-sulfur battery and manufacture thereof
JPH0733378Y2 (en) Sodium-sulfur battery
JPH084014B2 (en) Sodium-sulfur battery
JPH0378975A (en) Manufacture of connecting glass ring for forming sodium-sulfur battery
JPH02165574A (en) Sodium-sulfur battery and its connection
JPS6116601Y2 (en)
JPS62234877A (en) Sodium-sulfur battery
JPS6251149A (en) Sodium-sulfur battery and its manufacture
KR20020093181A (en) Header of Lithium-Thionyl Chloride Battery and Method for Producing The Same
KR20000060913A (en) Cap assembly used in secondary battery and method for assembling the same
JPH11214031A (en) Manufacture of sodium-sulfur battery