JPS6251149A - Sodium-sulfur battery and its manufacture - Google Patents

Sodium-sulfur battery and its manufacture

Info

Publication number
JPS6251149A
JPS6251149A JP60188430A JP18843085A JPS6251149A JP S6251149 A JPS6251149 A JP S6251149A JP 60188430 A JP60188430 A JP 60188430A JP 18843085 A JP18843085 A JP 18843085A JP S6251149 A JPS6251149 A JP S6251149A
Authority
JP
Japan
Prior art keywords
sodium
sulfur
container
battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60188430A
Other languages
Japanese (ja)
Other versions
JPH0624153B2 (en
Inventor
Kazuo Takahashi
和雄 高橋
Hiromi Tokoi
博見 床井
Shigehiro Shimoyashiki
下屋敷 重広
Hisashi Soma
相馬 尚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60188430A priority Critical patent/JPH0624153B2/en
Publication of JPS6251149A publication Critical patent/JPS6251149A/en
Publication of JPH0624153B2 publication Critical patent/JPH0624153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/138Primary casings; Jackets or wrappings adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent any reduction in the capacity of a sodium-sulfur battery which might result from corrosion and simplify the step of assembly and sealing by using a case made of a ceramic material which is highly resistant to corrosion and has shape memory. CONSTITUTION:A sodium-sulfur battery is produced by installing sodium 1 used as the anode active material, sulfur or sodium sulfide 2 used as the cathode active material and a solid electrolyte membrane 3 used as the diaphragm located between the active materials in a cathode case 4. The case 4 is made of a ceramic material which is highly resistant to electric discharge reaction products and has shape memory. After the case 4 and the sealing plate 5 are subjected to plastic deformation by heating them to high temperature in order to increase the internal volume and then the battery elements are placed in the case 4, the case 4 and the plate 5 are heated again to make them recover their original shape, thereby sealing and assembling a sodium-sulfur battery. By the means mentioned above, assembly of the battery is facilitated and its life can be increased by preventing any corrosion.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電力貯蔵用二次電池に係り、特にナトリウム−
硫黄電池の長寿命化を図るに好適な構造のナトリウム−
硫黄電池及びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a secondary battery for power storage, particularly a sodium-
Sodium with a suitable structure for extending the life of sulfur batteries
Concerning sulfur batteries and their manufacturing method.

〔発明の背景〕[Background of the invention]

ナトリウム−硫黄電池は陰極活物質に金属ナトリウム、
陽極活物質に硫黄又は多流化ナトリウムあるいはその双
方、電解質にナトリウムイオンのみ通すことのできるセ
ラミックスからなる固体電解質から構成され、両活物質
が溶融状態にある300℃前後で作動する高温2次電池
である。典型的な従来電池の構造を第2図に示す。固体
電解膜としてβ′−アルミナ(Nazo ・6AQz○
+1)8膜を袋管状にして用い、その内側にナトリウム
1を外周には硫黄2を補助導電材8に含浸して用いる。
Sodium-sulfur batteries use metallic sodium as the cathode active material.
A high-temperature secondary battery consisting of sulfur and/or high-flow sodium as the positive electrode active material and a solid electrolyte made of ceramics that allows only sodium ions to pass through the electrolyte, and operates at around 300°C when both active materials are in a molten state. It is. The structure of a typical conventional battery is shown in FIG. β'-alumina (Nazo ・6AQz○
+1) 8 membrane is used in the form of a bag tube, and the auxiliary conductive material 8 is impregnated with sodium 1 on the inside and sulfur 2 on the outer periphery.

補助導電材は硫黄が絶縁物であるため充放電時に電子の
受けわたしを助ける目的で挿入するものである。第2図
の場合、陽極容器4 (fj1池容温容器陽極活物質で
ある硫黄や多流化す・トリウムが非常に活性で、金属性
の電池容器材料に対して腐食性が強い物質であるため、
耐食性に優れた材料が使用される。
Since sulfur is an insulator, the auxiliary conductive material is inserted to help transfer electrons during charging and discharging. In the case of Fig. 2, the anode container 4 (FJ1 temperature container) is an anode active material such as sulfur, high-flow thorium, and thorium, which are very active and highly corrosive to metal battery container materials. ,
Materials with excellent corrosion resistance are used.

耐食性の優れた材料として、これまで、モリブデン、ク
ロム、チタン等が挙げられており、第2図の例ではモリ
ブデンの内張り11が設けられている。なお、これらの
耐食材料は希少資源で高価であるため、鉄などの安価な
金属を基体として、これらの金属を表面コーティングす
る方法が特開昭48−27531号、特開昭48−27
533号、特開昭54−293号、特開昭54−152
125号および特開昭57−65676号に提案されて
いる。
So far, molybdenum, chromium, titanium, etc. have been cited as materials with excellent corrosion resistance, and in the example shown in FIG. 2, a molybdenum lining 11 is provided. Since these corrosion-resistant materials are rare resources and expensive, methods of coating the surface of these metals using cheap metals such as iron are disclosed in JP-A-48-27531 and JP-A-48-27.
No. 533, JP-A-54-293, JP-A-54-152
No. 125 and Japanese Unexamined Patent Publication No. 57-65676.

しかし上記した耐食材を用いて電池を構成しても、第3
図に示すごとく、充放電サイクルを繰返すと、顕著な容
量低下がみられる。この容量低下の原因は明らかに陽極
容器の腐食によるものである。
However, even if the battery is constructed using the above-mentioned corrosion-resistant material, the third
As shown in the figure, when charge and discharge cycles are repeated, a significant decrease in capacity is observed. This decrease in capacity is clearly due to corrosion of the anode container.

一方、ナトリウム−硫黄電池に使われるナトリウムや硫
黄は、電池作動温度である300〜350℃で、空気中
の酸素と激しく反応するため、電池容器は気密容器でな
ければならない、第2図に示した電池では、陽極4は陽
極蓋12で、陰極6は陰極M13で気密に保たれている
。なお14は陽極部と陰極部を電気絶縁するためのα−
アルミナ(A Q 5on)からなる絶縁リングである
。従って電池作製時には、固体電解質であるβ′−アル
ミナとα−アルミナを接合し、かつα−アルミナと金属
とを接合する必要がある。現在β′−アルミナとα−ア
ルミナの接合には、ガラス半田を用い熱処理して両者を
接合している。またα−アルミナと金属との間は、ガラ
ス半日または熱圧接によって接合する。いずれの方法と
も800℃前後の温度が接合箇所に加えられている。
On the other hand, the sodium and sulfur used in sodium-sulfur batteries react violently with oxygen in the air at the battery operating temperature of 300 to 350°C, so the battery container must be airtight, as shown in Figure 2. In the battery, the anode 4 is kept airtight by an anode cover 12, and the cathode 6 is kept airtight by a cathode M13. Note that 14 is α- for electrically insulating the anode part and the cathode part.
This is an insulating ring made of alumina (AQ5on). Therefore, when manufacturing a battery, it is necessary to bond β'-alumina and α-alumina, which are solid electrolytes, and to bond α-alumina and metal. Currently, β'-alumina and α-alumina are joined by heat treatment using glass solder. Further, α-alumina and metal are bonded by glass bonding or thermo-pressure welding. In both methods, a temperature of around 800° C. is applied to the joint.

この接合方法では電池構成部材に熱歪が残されたり、接
合材と素材の熱膨張率の相異などから、電池の昇温や降
温などのヒートサイクルによって、しばしば電池の破損
が生じている。またこれらの接合には、高度の技術と時
間を要する。
This bonding method leaves thermal strain on the battery components, and due to differences in the coefficient of thermal expansion between the bonding material and the material, battery damage often occurs due to heat cycles such as rising and falling temperatures of the battery. Furthermore, joining these materials requires advanced technology and time.

さらに陽極活物質である硫黄は電池内では補助導電材に
含浸されている必要がある。補助導電材は陽極容器と電
子の交換をするため、陽極容器と充分な電気的接触が望
まれる。そこで一般に補助導電材として使用されるグラ
ファイトフェルトは電池組立前に、厚さ方向に圧縮した
上で硫黄を含浸し、冷却固化して成形体とする。このよ
うな成形体を用いると、陽極容器とグラファイトフェル
トの電気的接触が良好となるばかりでなく、電池組立が
容易となる。しかし成形工程は、不活性ガス雰囲気で温
度を上げる必要があり、かなりの時間と労力をし作業性
に問題があった。
Furthermore, sulfur, which is an anode active material, must be impregnated into an auxiliary conductive material within the battery. Since the auxiliary conductive material exchanges electrons with the anode container, sufficient electrical contact with the anode container is desired. Therefore, before battery assembly, graphite felt, which is generally used as an auxiliary conductive material, is compressed in the thickness direction, impregnated with sulfur, and cooled and solidified to form a molded body. Use of such a molded body not only provides good electrical contact between the anode container and the graphite felt, but also facilitates battery assembly. However, the molding process required raising the temperature in an inert gas atmosphere, which took a considerable amount of time and labor, and caused problems in workability.

上記のような事情のため、これらの問題点を解決して、
充放電サイクルによる容量低下が少なく、電池破損を生
じない長寿命のナトリウム−硫黄電池の開発が望まれて
いる。
Due to the above circumstances, we will solve these problems and
It is desired to develop a long-life sodium-sulfur battery that exhibits less capacity loss due to charging and discharging cycles and that does not cause battery damage.

〔発明の目的〕[Purpose of the invention]

本発明の目的はナトリウム、硫黄及び放電反応により生
成する多硫化ナトリウムに対して優れた耐食性を有する
材料を具備することによって電池の充放電サイクル寿命
を向上せしめること、及び加工組立ての容易なナトリウ
ム−硫黄電池を提供することにある。
The purpose of the present invention is to improve the charge/discharge cycle life of a battery by providing a material with excellent corrosion resistance against sodium, sulfur, and sodium polysulfide produced by a discharge reaction, and to improve the charge/discharge cycle life of a battery by providing a material that has excellent corrosion resistance against sodium, sulfur, and sodium polysulfide produced by a discharge reaction, and to provide a material that can easily process and assemble sodium Our goal is to provide sulfur batteries.

〔発明の概要〕 ナトリウム、硫黄及び多流化ナトリウムと共存性の良い
材料にセラミックスがあり、このセラミックスの中には
加工が容易で、しかも温度と塑性変形条件を整えれば形
状記憶性を有するものがある。そこで1本発明は電池容
器を金属性容器からセラミック性の容器に変えたナトリ
ウム−硫黄電池であり、セラミックの形状記憶性すなわ
ち変形前の形にもどる時の回復力を利用して、従来の熱
圧接やガラス半田によるシール接合及び補助導電材への
硫黄含浸工程を削減し、加工組立てを容易に行えるよう
にしたナトリウム−硫黄電池の製造法である。
[Summary of the invention] Ceramics are materials that have good coexistence with sodium, sulfur, and multi-flow sodium, and some of these ceramics are easy to process and have shape memory properties if temperature and plastic deformation conditions are adjusted. There is something. Therefore, the present invention is a sodium-sulfur battery in which the battery container has been changed from a metal container to a ceramic container. This is a method of manufacturing a sodium-sulfur battery that eliminates the steps of sealing by pressure welding or glass soldering, and impregnating the auxiliary conductive material with sulfur, making processing and assembly easier.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例にもとづき更に詳述する。 Hereinafter, the present invention will be explained in more detail based on Examples.

第1図は本発明に係わるナトリウム−硫黄電池の構造を
示す図である。電池は陽極容器4の内部に陰極活物質で
あるナトリウム1.陽極活物質である硫黄及び多硫化ナ
トリウム2、両活物質の隔壁となる固体電解質膜3、こ
れら内部構造物を外気と遮断するための封止板5とから
成る。陽極容器4には陽極活物質2を注入するための注
入口兼陽極7が設けられてあり、該封止板5には陰極活
物質1を注入するための注入管兼陰極6が設けられてい
る。さらに該ナトリウムの注入管兼陰極6の上部には注
入後に封じ切るためのキャップ9が設けられである。な
お、陽極部にはグラファイトフェルトから成る補助導電
材8と集電体10も組込んである。
FIG. 1 is a diagram showing the structure of a sodium-sulfur battery according to the present invention. The battery contains sodium 1, which is a cathode active material, inside an anode container 4. It consists of sulfur and sodium polysulfide 2 which are anode active materials, a solid electrolyte membrane 3 which serves as a partition between both active materials, and a sealing plate 5 which isolates these internal structures from the outside air. The anode container 4 is provided with an injection port/anode 7 for injecting the anode active material 2, and the sealing plate 5 is provided with an injection tube/cathode 6 for injecting the cathode active material 1. There is. Furthermore, a cap 9 is provided at the top of the sodium injection tube/cathode 6 for sealing off after injection. Incidentally, an auxiliary conductive material 8 made of graphite felt and a current collector 10 are also incorporated in the anode part.

本電池の組立て工程を第4図及び第5図を用いて説明す
る。第4図に示す封止板5及び陽極容器4はセラミック
スで形成されている。このセラミックスは実線で示すよ
うな形状に室温で切削加工し、次に高温にして一点鎖線
で示すように塑性変形され、変形力を負荷したまま室温
に冷却する。
The assembly process of this battery will be explained using FIGS. 4 and 5. The sealing plate 5 and anode container 4 shown in FIG. 4 are made of ceramics. This ceramic is cut into the shape shown by the solid line at room temperature, then raised to a high temperature and plastically deformed as shown by the dashed line, and then cooled to room temperature while the deformation force is applied.

この変形状態は、除荷しても一点鎖線の形状を維持する
0次に、一点鎖線のごとく塑性変形させたセラミックス
を高温にして焼なますと再び実線で示すよなう形状に復
元する。このような形態変化を示すセラミックスは形状
記憶セラミックスと呼ばれている。形状記憶セラミック
スの代表例に雲母を含んだガラス・セラミックスがある
This deformed state maintains the shape shown by the dashed-dotted line even after unloading. When the ceramic is plastically deformed as shown by the dashed-dotted line and is annealed at a high temperature, it is restored to the shape shown by the solid line. Ceramics that exhibit such morphological changes are called shape memory ceramics. A typical example of shape memory ceramics is glass ceramics containing mica.

雲母を含むセラミックスは雲母結晶が亀裂の進展を防止
するために切削加工を容易にする。封止板5の中央に穴
20、下面に円周状の溝21.陽極容器4の底板に穴2
2を室温で実線で示すように切削加工(形状記憶)する
0次に高@(約500℃)に加熱し、穴20.22を一
点1RIIAで示すように拡管、溝21を押し広げ、封
止板5の円板径を押し縮める。一方、陽極容器4の内径
を内圧を加える等の手段を用い拡管する。変形に要する
応力は約15 M P a程度であり、この変形力を負
荷したまま室温まで冷却し、除荷することによって封止
板5と陽極容器4は一点鎖線で示す形状(塑性変形)と
なる6次に第5図に示すように固体電解質3を封止板5
に設けた溝21に、ナトリウム注入管兼陰極6を穴2o
に取付け、他方、陽極容器4の内部には円周状に分割し
たグラファイト製集電材10、その内側に補助導電材8
を挿入し、陽極容器の底板に設けた穴22に硫黄注入口
兼陽極7をを取付ける。次に陽極容器4に上部から封止
板5を挿入し、再加熱(約400〜500℃)し、焼な
まず(形状回復)ことによりほぼ100%の形状回復が
得られ、第1図で示した電池構造が形成される。このと
きの形状回復力は7 M P aであり、気密シール圧
として充分な圧力である。
Ceramics containing mica are easier to cut because the mica crystals prevent crack propagation. There is a hole 20 in the center of the sealing plate 5, and a circumferential groove 21 in the bottom surface. Hole 2 in the bottom plate of anode container 4
2 is cut (shape memory) at room temperature as shown by the solid line. Heat it to a high temperature (approximately 500°C) at room temperature, expand the holes 20 and 22 as shown by point 1RIIA, expand the groove 21, and seal it. The disc diameter of the stop plate 5 is compressed. On the other hand, the inner diameter of the anode container 4 is expanded using means such as applying internal pressure. The stress required for deformation is approximately 15 MPa, and by cooling to room temperature while applying this deformation force and removing the load, the sealing plate 5 and the anode container 4 take the shape shown by the dashed line (plastic deformation). Next, as shown in FIG.
Insert the sodium injection tube/cathode 6 into the groove 21 provided in the hole 2o.
On the other hand, inside the anode container 4 there is a graphite current collector material 10 divided into circumferential shapes, and on the inside thereof there is an auxiliary conductive material 8.
, and attach the sulfur inlet/anode 7 to the hole 22 provided in the bottom plate of the anode container. Next, the sealing plate 5 was inserted into the anode container 4 from above, reheated (approximately 400 to 500°C), and annealed (shape recovery), resulting in almost 100% shape recovery, as shown in Figure 1. A battery structure is formed. The shape recovery force at this time is 7 MPa, which is sufficient pressure as an airtight sealing pressure.

電池活物質であるナトリウムと硫黄は第1図に示したよ
うにそれぞれナトリウム注入口兼陰極6及び硫黄注入口
兼陽極7から液状で規定量注入し、キャップ9,7をし
て封じ込む。陰極及び陽極に負荷及び充電装置(図示せ
ず)を接続して、ナトリウム−硫黄2次電池を形成する
As shown in FIG. 1, sodium and sulfur, which are battery active materials, are injected in specified amounts in liquid form through the sodium injection port/cathode 6 and the sulfur injection port/anode 7, respectively, and are sealed with caps 9, 7. A load and a charging device (not shown) are connected to the cathode and anode to form a sodium-sulfur secondary battery.

本発明による一実施例によれば、従来問題となっていた
陽極構造材の腐食による電池容量の゛低下を、活物質で
ある硫黄及び多硫化ナトリウムと共存性の良いセラミッ
クスを用いることで解消し、固体電解質であるβ“−ア
ルミナとα−アルミナあるいはα−アルミナと金属との
接合に用いていたガラス半田や熱圧接を形状記憶セラミ
ックスを用い、形状回復力によって封止することで削減
した。さらに、電池容器とβ′−アルミナの電気的接触
を良好にするために行っていた補助導電材への硫黄含浸
工程は、封止と同様に陽極容器の形状回復力によって補
助導電材が圧縮されるために不用となる。なお、本発明
の一実施例である第1図では集電材10を挿入し、陽極
7に接合させているが、電池性能がわずかに低下するも
のの補助導電材8と陽極7とを接合させれば集電材10
を撤去することも可能である。
According to an embodiment of the present invention, the conventional problem of reduction in battery capacity due to corrosion of the anode structural material is solved by using ceramics that have good coexistence with the active materials sulfur and sodium polysulfide. The use of glass solder and thermopressure welding, which were used to bond the solid electrolyte β''-alumina and α-alumina or α-alumina and metal, was reduced by using shape memory ceramics and sealing with shape recovery. Furthermore, in the process of impregnating the auxiliary conductive material with sulfur, which was performed to improve electrical contact between the battery container and β'-alumina, the auxiliary conductive material is compressed by the shape recovery force of the anode container, similar to sealing. In FIG. 1, which is an embodiment of the present invention, the current collecting material 10 is inserted and bonded to the anode 7, but the auxiliary conductive material 8 may be used, although the battery performance will be slightly reduced. If the anode 7 is joined to the current collector material 10
It is also possible to remove.

する。ボタン型電池も基本的には第1図に示したナトリ
ウム−硫黄電池と同じ構成要件である。ナトリウムイオ
ンのみを透過させる円板状の固体電解質膜20を隔壁と
して一方に陰極活物質としてのナトリウム21、他方に
陽極活物質としての硫黄及び多硫化ナトリウム22を配
し、これら構成材を保持するための陰極容器26、及び
陽極容器25、及び該陰極容器26にナトリウム注入兼
陰極23を設け、該陽極容器25に硫黄注入口兼陽極2
4を設けた構造のナトリウム−硫黄電池である。なお、
陽極部には補助導電材27が充填されている。陰極容器
26及び陽極容器25は形状記憶セラミックスまたは一
方を活物質と共存性の良く、形状記憶セラミックスと線
膨張係数がほぼ等しい金属材料を用いても良い。形状記
憶セラミックスを用いた容器側は第4図及び第5図を用
いた成形手段をそのまま適用できる。第6図の例は陰極
容器26に金属材料、陽極容器25に形状記憶種容器2
6の凸部内側に固体電解質20、外側に形状記憶セラミ
ックスの陽極容器25を具備する。
do. A button type battery also basically has the same structural requirements as the sodium-sulfur battery shown in FIG. A disk-shaped solid electrolyte membrane 20 that allows only sodium ions to pass through is used as a partition, and sodium 21 as a cathode active material is placed on one side, and sulfur and sodium polysulfide 22 as anode active materials are placed on the other side to hold these constituent materials. A cathode container 26 and an anode container 25 are provided for the purpose, and a sodium injection port and cathode 23 are provided in the cathode container 26, and a sulfur injection port and anode 23 are provided in the anode container 25.
This is a sodium-sulfur battery with a structure provided with 4. In addition,
The anode portion is filled with an auxiliary conductive material 27. The cathode container 26 and the anode container 25 may be made of shape memory ceramics, or one of them may be made of a metal material that is compatible with the active material and has approximately the same coefficient of linear expansion as the shape memory ceramics. For the container side using shape memory ceramics, the molding means shown in FIGS. 4 and 5 can be applied as is. In the example shown in FIG. 6, the cathode container 26 is made of a metal material, and the anode container 25 is made of a shape memory seed container 2.
A solid electrolyte 20 is provided inside the convex portion 6, and an anode container 25 made of shape memory ceramic is provided outside.

陽極容器25には陽極容器25の凸部外径よりもわずか
に小さい径を記憶させ、変形処理で大きい径にする。内
部構造材を組込んだ後、形状記憶セラミックスの回復処
理を行う。反対に陰極容器を金属材料、陽極容器を形状
記憶セラミックスで構成することもできる。次にナトリ
ウム注入口兼陰極23、硫黄注入口兼陽極24からそれ
ぞれの活物質を規定量充填し、ボタン型ナトリウム−硫
黄電池を形成する。
A diameter slightly smaller than the outer diameter of the convex portion of the anode container 25 is stored in the anode container 25, and the diameter is made larger by a deformation process. After incorporating the internal structural materials, the shape memory ceramics are subjected to recovery treatment. Conversely, the cathode container may be made of a metal material and the anode container may be made of shape memory ceramics. Next, prescribed amounts of each active material are filled from the sodium injection port/cathode 23 and the sulfur injection port/anode 24 to form a button-type sodium-sulfur battery.

なお、本発明はナトリウムと硫黄を電池容器内に密閉し
た電池のみならず、ナトリウム及び硫黄の補給排出機構
を備えた流動型ナトリウム−硫黄電池にも適用可能であ
る。
The present invention is applicable not only to batteries in which sodium and sulfur are sealed in a battery container, but also to fluidized sodium-sulfur batteries equipped with a sodium and sulfur supply/discharge mechanism.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電池容器として硫黄や多硫化ナトリウ
ムに対して優れた耐食性を有する形状記憶セラミックス
を使用したことにより、腐食による電池容量の低下を防
止できる。また固体電解質膜とほぼ同等の線膨張係数で
あることから熱膨張差により生ずる歪の防止、及びガラ
ス半田や熱圧接工程を削除できるので熱歪が残らないこ
とから電池性能を長期間維持でき、寿命が大幅に向上す
る。さらに、補助導電材への硫黄含浸工程をも削除でき
ることから、専門技術を駆使せず容易にナトリウム−硫
黄電池を製作できる等の効果がある。
According to the present invention, by using shape memory ceramics having excellent corrosion resistance against sulfur and sodium polysulfide as a battery container, a decrease in battery capacity due to corrosion can be prevented. In addition, since the coefficient of linear expansion is almost the same as that of a solid electrolyte membrane, distortion caused by differences in thermal expansion can be prevented, and since glass soldering and heat pressure welding processes can be eliminated, there will be no residual thermal distortion, so battery performance can be maintained for a long time. The lifespan is greatly improved. Furthermore, since the step of impregnating the auxiliary conductive material with sulfur can be omitted, there are advantages such as the ability to easily manufacture sodium-sulfur batteries without using specialized technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるナトリウム−硫黄電池の一実施例
の断面図である。第2図は従来のナトリウム−硫黄電池
の断面図である。第3図はその寿命特性である。第4図
は本発明の電池容器の形状記憶性を示す図である。第5
図は本発明電池の組立模様を示す図である。第6図及び
第7図は本発明の他の実施例の断面図である。 1.21・・・陰極活物質(ナトリウム)、2.22・
・・陽極活物質(硫黄、多硫化ナトリウム)、3゜20
・・・固体電解質(β′−アルミナ)、4.25・・・
陽極容器、5・・・封止板、6,23・・・ナトリウム
注入管及び陰極、7,24・・・硫黄注入口および陽極
、8,27・・・補助導電材(グラファイトフェルト)
、9・・・ギャップ、10・・・集電材(グラファイト
)、11・・・モリブデン内貼り、12・・・陽極蓋。 13・・・陰極蓋、14・・・絶縁リング(α−アルミ
ナ)、26・・・陰極容器。
FIG. 1 is a cross-sectional view of one embodiment of a sodium-sulfur battery according to the present invention. FIG. 2 is a cross-sectional view of a conventional sodium-sulfur battery. Figure 3 shows its life characteristics. FIG. 4 is a diagram showing the shape memory property of the battery container of the present invention. Fifth
The figure shows an assembly pattern of the battery of the present invention. 6 and 7 are cross-sectional views of other embodiments of the invention. 1.21... Cathode active material (sodium), 2.22.
・・Anode active material (sulfur, sodium polysulfide), 3°20
...Solid electrolyte (β'-alumina), 4.25...
Anode container, 5... Sealing plate, 6, 23... Sodium injection tube and cathode, 7, 24... Sulfur injection port and anode, 8, 27... Auxiliary conductive material (graphite felt)
, 9... Gap, 10... Current collector material (graphite), 11... Molybdenum inner lining, 12... Anode lid. 13... Cathode lid, 14... Insulating ring (α-alumina), 26... Cathode container.

Claims (1)

【特許請求の範囲】 1、ナトリウムイオンが通過可能な固体電解質から成る
膜と、上記固体電解質膜の一方の側に設けられたナトリ
ウムから成る陰極活物質と、他の側に設けられた硫黄ま
たは多硫化ナトリウムあるいはその双方から成る陽極活
物質と、上記固体電解質膜、陰極活物質及び陽極活物質
を包含する容器とから成るナトリウム−硫黄電池に於い
て、上記容器がセラミックスで構成されていることを特
徴とするナトリウム−硫黄電池。 2、セラミックスが、形状記憶セラミックスであること
を特徴とする特許請求範囲第1項記載のナトリウム−硫
黄電池。 3、セラミックスで構成された容器が、陰極活物質を包
含する陰極容器部と、陽極活物質を包含する陽極容器部
とから構成され、少なくともその一方がセラミックスで
構成されていることを特徴とする特許請求の範囲第1項
又は第2項記載のナトリウム−硫黄電池。 4、セラミックスを所望の電池容器形状に切削加工後、
高温で変形後急冷して上記変形した状態を保持した容器
を形成し、しかる後ナトリウムから成る陰極活物質、固
体電解質膜及び硫黄又は多流化ナトリウム又はその双方
から成る陽極活物質を上記容器の所定位置に挿入し、上
記容器を所定の温度に加熱して上記変形状態を元の加工
形状に回復させることを特徴とするナトリウム−硫黄電
池の製造法。
[Claims] 1. A membrane made of a solid electrolyte through which sodium ions can pass, a cathode active material made of sodium provided on one side of the solid electrolyte membrane, and sulfur or sulfur provided on the other side. In a sodium-sulfur battery comprising an anode active material made of sodium polysulfide or both, and a container containing the solid electrolyte membrane, cathode active material, and anode active material, the container is made of ceramics. A sodium-sulfur battery characterized by: 2. The sodium-sulfur battery according to claim 1, wherein the ceramic is a shape memory ceramic. 3. The container made of ceramics is composed of a cathode container part containing a cathode active material and an anode container part containing an anode active material, at least one of which is made of ceramics. A sodium-sulfur battery according to claim 1 or 2. 4. After cutting the ceramic into the desired battery container shape,
After being deformed at a high temperature, the container is rapidly cooled to maintain the deformed state, and then a cathode active material made of sodium, a solid electrolyte membrane, and an anode active material made of sulfur or multi-flow sodium or both are added to the container. A method for manufacturing a sodium-sulfur battery, comprising inserting the container into a predetermined position and heating the container to a predetermined temperature to restore the deformed state to the original processed shape.
JP60188430A 1985-08-29 1985-08-29 Manufacturing method of sodium-sulfur battery Expired - Lifetime JPH0624153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60188430A JPH0624153B2 (en) 1985-08-29 1985-08-29 Manufacturing method of sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60188430A JPH0624153B2 (en) 1985-08-29 1985-08-29 Manufacturing method of sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPS6251149A true JPS6251149A (en) 1987-03-05
JPH0624153B2 JPH0624153B2 (en) 1994-03-30

Family

ID=16223533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60188430A Expired - Lifetime JPH0624153B2 (en) 1985-08-29 1985-08-29 Manufacturing method of sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0624153B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239025A (en) * 2013-05-07 2014-12-18 株式会社神戸製鋼所 Positive electrode container for sodium-sulfur battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588552A (en) * 1981-06-22 1983-01-18 エア−・プロダクツ・アンド・ケミカルス・インコ−ポレ−テツド Method of regenerating palladium chloride catalyst carrying activated carbon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588552A (en) * 1981-06-22 1983-01-18 エア−・プロダクツ・アンド・ケミカルス・インコ−ポレ−テツド Method of regenerating palladium chloride catalyst carrying activated carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239025A (en) * 2013-05-07 2014-12-18 株式会社神戸製鋼所 Positive electrode container for sodium-sulfur battery

Also Published As

Publication number Publication date
JPH0624153B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US3946751A (en) Cell casing with a hermetic mechanical seal and a hermetically sealed sodium-sulfur cell
US3959013A (en) Cathode cell casing portion, a cell casing, and a hermetically sealed sodium-sulfur cell
US4530151A (en) Manufacture method of a sodium-sulfur storage battery
US3841912A (en) Sodium sulfur storage battery
JPH0322028B2 (en)
US3064065A (en) Fusion-sealed metal-encased rechargeable alkaline battery cell
US3960596A (en) Battery casing and hermetically sealed sodium-sulfur battery
US5529858A (en) Hermetically sealed thermocompression feedthrough and peripheral seal for high temperature lithium based battery applications
US4590136A (en) Electrochemical storage cell of the alkali metal and chalcogen type
JPS6251149A (en) Sodium-sulfur battery and its manufacture
US5118574A (en) Alkali metal energy conversion device and method of construction
US3849200A (en) Sealed sodium-iodine battery
JP3652899B2 (en) battery
JPH0733378Y2 (en) Sodium-sulfur battery
KR100563029B1 (en) Cap assembly used in secondary battery and method for assembling the same
JPH01252587A (en) Method for binding ceramic part to metallic part
JP3704241B2 (en) Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery
JPH0449750B2 (en)
JPS6366862A (en) Sodium-sulfur battery
US20210119189A1 (en) Miniature electrochemical cell having a casing of a conductive plate closing an open-ended ceramic container having two via holes supporting opposite polarity platinum-containing conductive pathways
JP4167032B2 (en) Sodium secondary battery
JP2613264B2 (en) Bag tube for Na / S secondary battery, method for producing the same, and Na / S secondary battery using the same
JPS6319773A (en) Sodium-sulfur battery and its manufacture
JPH02165574A (en) Sodium-sulfur battery and its connection
JPH02114463A (en) Sodium-sulfur battery