JPS6362089B2 - - Google Patents

Info

Publication number
JPS6362089B2
JPS6362089B2 JP58047956A JP4795683A JPS6362089B2 JP S6362089 B2 JPS6362089 B2 JP S6362089B2 JP 58047956 A JP58047956 A JP 58047956A JP 4795683 A JP4795683 A JP 4795683A JP S6362089 B2 JPS6362089 B2 JP S6362089B2
Authority
JP
Japan
Prior art keywords
laser beam
laser
plate
intensity distribution
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58047956A
Other languages
Japanese (ja)
Other versions
JPS59175115A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58047956A priority Critical patent/JPS59175115A/en
Publication of JPS59175115A publication Critical patent/JPS59175115A/en
Publication of JPS6362089B2 publication Critical patent/JPS6362089B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 この発明は半導体薄膜等の製造に用いられるレ
ーザアニーリング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser annealing apparatus used for manufacturing semiconductor thin films and the like.

近年、半導体集積回路の高密度化が進むに伴
い、半導体集積回路の各素子寸法の微細化をはか
つて横方向の集積度を向上させる他に、いつたん
形成された素子構造の上に絶縁膜を全面にわたつ
て形成し、さらに、この絶縁膜上に半導体薄膜を
設けて、この半導体薄膜を用いて素子を形成する
というようないわゆる三次元構造が盛んに研究開
発されている。とくに絶縁膜上に形成した多結晶
シリコン膜をレーザビームにより照射し再結晶化
させる方法が注目されている。また、半導体集積
回路の高速化が進むに伴い半導体集積回路の各素
子あるいは配線部分と基板シリコンとの間の電気
容量を小さくすることが重要な課題となつてい
る。これまでによく用いられているpn接合分離
と比較すると絶縁膜上に形成したシリコン膜を用
いれば寄生容量を小さくできるので、この意味で
もレーザビームによる再結晶化技術すなわちレー
ザアニーリング技術が注目されている。しかし、
現在の段階では半導体集積回路を形成する目的に
対して十分良好な結晶性を得るに至つていない。
In recent years, as the density of semiconductor integrated circuits has increased, the miniaturization of the dimensions of each element in semiconductor integrated circuits has not only improved the degree of lateral integration, but also increased the number of insulating films on the formed element structures. A so-called three-dimensional structure is being actively researched and developed, in which a semiconductor thin film is formed over the entire surface of the insulating film, a semiconductor thin film is further provided on this insulating film, and an element is formed using this semiconductor thin film. In particular, a method of recrystallizing a polycrystalline silicon film formed on an insulating film by irradiating it with a laser beam is attracting attention. Furthermore, as the speed of semiconductor integrated circuits increases, it has become an important issue to reduce the electric capacitance between each element or wiring portion of the semiconductor integrated circuit and the silicon substrate. Compared to the pn junction isolation that has been commonly used, parasitic capacitance can be reduced by using a silicon film formed on an insulating film, so recrystallization technology using a laser beam, or laser annealing technology, is attracting attention in this sense as well. There is. but,
At the current stage, crystallinity sufficiently good for the purpose of forming semiconductor integrated circuits has not been achieved.

以上説明した絶縁膜上のシリコン膜の結晶性が
十分良好でない原因の一つは、レーザビームの形
状が丸形であるため、レーザビームを第1図のご
とく多結晶シリコン膜に照射しつつ、走査方向8
0の方向に走査すると多結晶シリコン膜はいつた
ん溶融し再結晶化するが、このとき再結晶化の進
行する方向70はレーザビームの形状から決定さ
れ、周辺より中央に集まつてくる。その結果、レ
ーザビームで走査した際、再結晶化の核として特
定の位置の結晶粒が優先されることなく、周辺部
からのランダムな核発生を伴うことになり、広い
面積にわたり単結晶化をはかることができないと
いう欠点があつた。
One of the reasons why the crystallinity of the silicon film on the insulating film described above is not sufficiently good is that the shape of the laser beam is round. Scanning direction 8
When scanning in the 0 direction, the polycrystalline silicon film melts and recrystallizes. At this time, the direction 70 in which the recrystallization proceeds is determined by the shape of the laser beam, and the laser beam concentrates at the center rather than at the periphery. As a result, when scanning with a laser beam, crystal grains at specific positions are not prioritized as nuclei for recrystallization, and nuclei are generated randomly from the periphery, resulting in single crystallization over a wide area. The drawback was that it could not be measured.

本発明の目的はレーザビームで走査する際に再
結晶化の核として特定の位置の結晶粒が優先さ
れ、その結果広い面積にわたり単結晶化をはかる
ことができるレーザアニーリング装置を提供する
ことにある。
An object of the present invention is to provide a laser annealing device that prioritizes crystal grains at specific positions as nuclei for recrystallization when scanning with a laser beam, and as a result, can achieve single crystallization over a wide area. .

本発明によれば強度分布形状として通常のガウ
ス型ではなくガウス分布が複数個連なつた多峰型
の分布を示すようなレーザビームにより絶縁膜上
の多結晶あるいは非晶質薄膜を走査し再結晶化す
ること特徴とするレーザアニーリング装置が得ら
れる。
According to the present invention, a polycrystalline or amorphous thin film on an insulating film is scanned and reproduced by a laser beam whose intensity distribution shape is not a normal Gaussian shape but a multimodal distribution in which multiple Gaussian distributions are connected. A laser annealing device characterized by crystallization is obtained.

次に本発明の実施例について図面を参照して説
明する。本発明の一実施例は、第2図aに示すよ
うにレーザ光源部100から出たガウス型の強度
分布を有するレーザビーム40はレーザビーム走
査部200により任意の速度で走査され、レーザ
ビーム成形部300を通過することによつて多峰
型の強度分布を有するレーザビーム42に変換さ
れ、次いで試料保持部400に保持された試料に
照射される。このとき第2図bに示すようにレー
ザ光源部100から出たガウス型の強度分布を有
するレーザビーム40は、まず先にレーザビーム
成形部300を通過した多峰型の強度分布を有す
るレーザビーム42に変換されしかも後にレーザ
ビーム走査部200により走査されてもよい。
a,bのレーザビーム走査部200は具体的には
回転ミラーかあるいはX−Y移動テーブルに固定
されたミラーのいずれでもよい。また、第2図c
に示すようにレーザ光源部100から出たガウス
型の強度分布を有するレーザビーム40はレーザ
ビーム成形部300を通過して多峰型の強度分布
を右するレーザビーム42に変換され、試料保持
部400に保持された試料に照射され、一方試料
保持部400はレーザビーム走査部200具体的
にはX−Y移動ステージによつて駆動され、結果
としてレーザビーム走査を実現してもかまわな
い。
Next, embodiments of the present invention will be described with reference to the drawings. In one embodiment of the present invention, as shown in FIG. 2a, a laser beam 40 having a Gaussian intensity distribution emitted from a laser light source section 100 is scanned at an arbitrary speed by a laser beam scanning section 200 to form a laser beam. The laser beam 42 is converted into a laser beam 42 having a multimodal intensity distribution by passing through the section 300, and is then irradiated onto the sample held in the sample holding section 400. At this time, as shown in FIG. 2b, the laser beam 40 having a Gaussian intensity distribution emitted from the laser light source section 100 is replaced by a laser beam having a multimodal intensity distribution that first passes through the laser beam shaping section 300. 42 and later scanned by the laser beam scanning section 200.
Specifically, the laser beam scanning units 200 a and b may be either a rotating mirror or a mirror fixed to an XY moving table. Also, Figure 2c
As shown in the figure, a laser beam 40 having a Gaussian intensity distribution emitted from a laser light source section 100 passes through a laser beam shaping section 300 and is converted into a laser beam 42 having a multimodal intensity distribution. The sample held at 400 may be irradiated with light, while the sample holding section 400 may be driven by the laser beam scanning section 200, specifically an XY moving stage, resulting in laser beam scanning.

次に、本発明の要点をさらに詳しく説明するた
めに多峰型の強度分布を有するレーザビーム42
のなかで最も単純で基本的である双峰型の強度分
布を有するレーザビーム41を用いた実施例につ
いて図を用いて説明する。
Next, in order to explain the main points of the present invention in more detail, a laser beam 42 having a multimodal intensity distribution will be described.
An embodiment using a laser beam 41 having a bimodal intensity distribution, which is the simplest and most basic of the two, will be described with reference to the drawings.

第3図に示すように、単結晶シリコン基板10
の表面に熱酸化法により酸化シリコン膜20を形
成し、次いで多結晶シリコン膜30を全面にわた
つて形成する。一方、ガウス型の強度分布を有す
るレーザビームは、一般に特定の方向に偏光して
いるのでまず1/4波長板または1/2波長板51によ
り円偏光となり、さらに水晶等による複屈折板5
2を通過して、常光および異常光の2本のビーム
に分離する。この分離距離が複屈折板入射前のレ
ーザビーム径にくらべ小さくなるように複屈折板
の厚さを決定すれば、第4図に示すように双峰型
の強度分布を有するレーザビーム41が得られ
る。このようにして得られた双峰型レーザビーム
41により前記多結晶シリコン膜30を走査方向
80の方向に走査すると、多結晶シリコン膜はい
つたん溶融し、再結晶化するが、このとき第4図
のごとく再結晶化の進行する方向70はレーザビ
ームの形状から決定され、周辺部61では中央方
向に集まつてくるが、中央部62では周辺方向へ
広がつていく。従つて周辺部61では再結晶化の
核として特定の位置の結晶粒が優先されることな
く周辺部からのランダムな核発生を伴うことにな
り広い面積にわたり単結晶化をはかることができ
ない。これに対し、中央部62では、再結晶化の
核として、双峰型強度分布の中央位置に存在する
結晶粒が再結晶化の核として継続して優先される
ことになり広い面積にわたり単結晶化をはかるこ
とができる。
As shown in FIG. 3, a single crystal silicon substrate 10
A silicon oxide film 20 is formed on the surface by thermal oxidation, and then a polycrystalline silicon film 30 is formed over the entire surface. On the other hand, since a laser beam with a Gaussian intensity distribution is generally polarized in a specific direction, it is first turned into circularly polarized light by a quarter-wave plate or half-wave plate 51, and then by a birefringent plate 5 such as a crystal.
2, and is separated into two beams: ordinary light and extraordinary light. If the thickness of the birefringent plate is determined so that this separation distance is smaller than the laser beam diameter before entering the birefringent plate, a laser beam 41 having a bimodal intensity distribution as shown in FIG. 4 can be obtained. It will be done. When the polycrystalline silicon film 30 is scanned in the scanning direction 80 by the bimodal laser beam 41 obtained in this way, the polycrystalline silicon film is melted and recrystallized. As shown in the figure, the direction 70 in which recrystallization progresses is determined by the shape of the laser beam, and in the peripheral part 61 the recrystallization progresses towards the center, but in the central part 62 it spreads towards the periphery. Therefore, in the peripheral part 61, crystal grains at specific positions are not given priority as nuclei for recrystallization, and nuclei are randomly generated from the peripheral part, making it impossible to achieve single crystallization over a wide area. On the other hand, in the central part 62, the crystal grains located at the center of the bimodal intensity distribution continue to be prioritized as the recrystallization nuclei, and the single crystal grains are spread over a wide area. It is possible to make changes.

以上の説明では複屈折板32は1枚であるため
に得られたレーザビームの強度分布は双峰型とな
つているが、必ずしもこれに限られるわけではな
く第5図に示すように第1の1/4波長板または1/2
波長板53を通過後、第1複屈折板54を通過
し、次に第2の1/4波長板または1/2波長板55を
通過後、第1の複屈折板54での常光と異常光と
の分離距離の2倍の分離距離を実現する第2の複
屈折板56を通過し、さらに、第3の1/4波長板
または1/2波長板57を通過後、第2の複屈析板
56での常光と異常光との分離距離の2倍の分離
距離を実現する第3の複屈折板58を通過すると
いつた構造によりレーザビーム成形部300を構
成すれば、第1の複屈折板54を通過後分離し、
直線偏光となつたレーザビームは第2の1/4波長
板または1/2波長板55により円偏光となる。こ
の段階ではレーザビームの強度分布は第6図aの
ごとく2つのピークを有し、これら2つのピーク
の間隔Lは第1の複屈折板54の厚さによつて決
定される。次に第2の複屈折板56を通過後さら
に分離し、直線偏光となつたレーザビームは第3
の1/4波長板または1/2波長板57により円偏光と
なる。この段階ではレーザビームの強度分布は第
6図bのごとく4つのピークを有し、これら4つ
のピークの間隔はいずれもLとなる。またさらに
第3の複屈折板58を通過すればさらにまた分離
し、レーザビームの強度分離は第6図cのごと
く、8つのピークを有し、これら8つのピークの
間隔はいずれもLとなる。
In the above explanation, since there is only one birefringent plate 32, the intensity distribution of the laser beam obtained is bimodal; however, it is not necessarily limited to this, and as shown in FIG. 1/4 wavelength plate or 1/2
After passing through the wavelength plate 53, passing through the first birefringent plate 54, and then passing through the second 1/4 wavelength plate or 1/2 wavelength plate 55, the ordinary light and the abnormal light at the first birefringent plate 54 are separated. After passing through a second birefringent plate 56 that achieves a separation distance twice the separation distance from the light, and further passing through a third quarter-wave plate or half-wave plate 57, the second birefringent plate 56 If the laser beam shaping unit 300 is constructed with a structure such that the laser beam passes through the third birefringent plate 58 which realizes a separation distance twice the separation distance between the ordinary light and the extraordinary light at the refracting plate 56, the first After passing through a birefringent plate 54, it is separated;
The linearly polarized laser beam becomes circularly polarized by the second 1/4 wavelength plate or 1/2 wavelength plate 55. At this stage, the intensity distribution of the laser beam has two peaks as shown in FIG. 6a, and the interval L between these two peaks is determined by the thickness of the first birefringent plate 54. Next, after passing through the second birefringent plate 56, the laser beam is further separated and becomes linearly polarized light.
The light becomes circularly polarized by the quarter-wave plate or half-wave plate 57. At this stage, the intensity distribution of the laser beam has four peaks as shown in FIG. 6b, and the interval between these four peaks is L. Furthermore, when it passes through the third birefringent plate 58, it is further separated, and the intensity separation of the laser beam has eight peaks as shown in FIG. 6c, and the interval between these eight peaks is L. .

このように多数の複屈折板を組み合わせて使う
ことにより、多数のピークを有するレーザビーム
強度分布が得られ、広い面積を1回の走査で溶融
再結晶化し、広い単結晶化領域を得ることができ
る。
By using a large number of birefringent plates in combination in this way, a laser beam intensity distribution with many peaks can be obtained, and a wide area can be melted and recrystallized in one scan, making it possible to obtain a wide single crystallized region. can.

以上の説明では複屈折板に入射するレーザビー
ムが円偏光である場合について説明したが、必ず
しもこれに限られる必要はなく、楕円偏光あるい
は直接偏光であつても複屈折板の主軸方向に対す
る偏光面の角度を適当に選べば、複屈折板で常光
と異常光に分れる際に両者の強度が等しくなるよ
うに調整することができる。
In the above explanation, we have explained the case where the laser beam incident on the birefringent plate is circularly polarized light, but it is not necessarily limited to this, and even if it is elliptically polarized light or directly polarized light, the polarization plane with respect to the principal axis direction of the birefringent plate is By selecting an appropriate angle, it is possible to adjust the intensity of the two to be equal when the birefringence plate separates the light into ordinary light and extraordinary light.

また、以上の説明におけるレーザ光の光源とし
ては連続発振のレーザであればよく、例えばアル
ゴンレーザなどのガスレーザの他YAGレーザ、
ルビーレーザなどの固体レーザも用いることがで
きる。
In addition, the light source of the laser light in the above explanation may be any continuous wave laser, such as a gas laser such as an argon laser, a YAG laser,
Solid state lasers such as ruby lasers can also be used.

なお、また以上の説明では発振レーザビームの
形状は通常のガウス分布のまま複屈折板を通過さ
せたが、これに限る必要はなく、特定の形状を有
するアパーチヤあるいはレンズまたはミラーなど
の光学系を通すことにより形状を変形させた後で
あつてもよい。
In addition, in the above explanation, the shape of the oscillated laser beam is passed through the birefringent plate with a normal Gaussian distribution, but there is no need to limit it to this. This may be done after the shape is deformed by passing it through.

なお、以上の説明では絶縁膜として熱酸化法に
よる酸化シリコン膜を用いた例について説明した
が、これに限られることなく、CVD法など他の
製法による絶縁膜であつてもよいし、また窒化シ
リコン膜など他の種類の絶縁膜であつてもよい。
In the above explanation, an example was explained in which a silicon oxide film produced by a thermal oxidation method was used as an insulating film, but the insulating film is not limited to this, and an insulating film produced by other methods such as a CVD method may also be used. Other types of insulating films such as silicon films may also be used.

なお、また、以上の説明では、単結晶シリコン
基板上の全面にわたつて絶縁膜が存在している構
造について説明したがこれに限られることなく絶
縁膜の一部が除去され、そこでは単結晶シリコン
基板と絶縁膜上に形成した多結晶シリコン膜が接
しているような構造であつてもよい。
Furthermore, in the above explanation, a structure in which an insulating film is present over the entire surface of a single crystal silicon substrate has been explained, but the present invention is not limited to this. The structure may be such that a silicon substrate and a polycrystalline silicon film formed on an insulating film are in contact with each other.

また、以上の説明では表面に何ら保護膜をほど
こさない多結晶シリコン膜について説明したが、
必ずしもこれに限る必要はなく、表面に酸化シリ
コン膜窒化シリコン膜などの保護膜が形成されて
いてもよい。また、以上の説明では雰囲気ガスに
ついて何ら述べなかつたが、空気中でもよいし真
空中でも又特定のガス例えば窒素やAr中でもよ
い。またガス圧も、低圧中でも大気圧でも加圧中
でもよい。
In addition, in the above explanation, we have described a polycrystalline silicon film without any protective film applied to the surface.
It is not necessarily limited to this, and a protective film such as a silicon oxide film or a silicon nitride film may be formed on the surface. Furthermore, although no mention has been made of the atmospheric gas in the above description, it may be in air, in vacuum, or in a specific gas such as nitrogen or Ar. Further, the gas pressure may be low pressure, atmospheric pressure, or pressurized.

さらにまた、以上の説明では多結晶シリコン膜
を例として説明したが、これに限られることな
く、非晶質シリコン膜であつてもよく、これまで
の実験結果を考慮するとこの多結晶また非晶質シ
リコン膜は不純物を含んでいてもよいし、極めて
純粋なシリコンであつてもよい。あるいはまた他
の半導体例えばゲルマニウムあるいは−族や
−族化合物半導体であつてもよいし、半導体
以外で鉄、銅、アルミニウム、タンタル、ニツケ
ル、モリブデン、タングステン等の金属やニツケ
ルシリサイド、モリブデンシリサイド、タンタル
シリサイド、タングステンシリサイド等のシリサ
イドであつてもよい。
Furthermore, although the above explanation has been made using a polycrystalline silicon film as an example, the present invention is not limited to this, and an amorphous silicon film may also be used. The pure silicon film may contain impurities or may be extremely pure silicon. Alternatively, other semiconductors such as germanium or - group or - group compound semiconductors may be used, or metals other than semiconductors such as iron, copper, aluminum, tantalum, nickel, molybdenum, tungsten, nickel silicide, molybdenum silicide, tantalum silicide, etc. , tungsten silicide, or other silicide.

また前記実施例では複屈折板として水晶を用い
たが、他にも方解石やルチン等も用いることがで
きる。
Furthermore, although quartz was used as the birefringent plate in the above embodiments, other materials such as calcite and rutin may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は、この発明の実施例を説明す
るための図である。 図において、10……単結晶シリコン基板、2
0……酸化シリコン膜、30……多結晶シリコン
膜、40……ガウス型の強度分布を有するレーザ
ビーム、41……双峰型の強度分布を有するレー
ザビーム、42……多峰型の強度分布を有するレ
ーザビーム、51……1/4波長板または1/2波長
板、52……複屈折板、53……第1の1/4波長
板または1/2波長板、54……第1の複屈折板、
55……第2の1/4波長板または1/2波長板、56
……第2の複屈折板、57……第3の1/4波長板
または1/2波長板、58……第3の複屈折板、6
1……レーザビーム周辺部、62……レーザビー
ム中央部、70……再結晶化の進行する方向、8
0……レーザビーム走査方向、100……レーザ
光源部、200……レーザビーム走査部、300
……レーザビーム成形部、400……試料保持
部。
1 to 6 are diagrams for explaining embodiments of the present invention. In the figure, 10... single crystal silicon substrate, 2
0... Silicon oxide film, 30... Polycrystalline silicon film, 40... Laser beam with Gaussian intensity distribution, 41... Laser beam with bimodal intensity distribution, 42... Multimodal intensity laser beam having a distribution, 51...1/4 wavelength plate or 1/2 wavelength plate, 52...birefringence plate, 53...1st 1/4 wavelength plate or 1/2 wavelength plate, 54...1st wavelength plate 1 birefringent plate,
55...Second 1/4 wavelength plate or 1/2 wavelength plate, 56
...Second birefringent plate, 57...Third 1/4 wavelength plate or 1/2 wavelength plate, 58...Third birefringent plate, 6
1... Laser beam periphery, 62... Laser beam center, 70... Direction in which recrystallization progresses, 8
0... Laser beam scanning direction, 100... Laser light source section, 200... Laser beam scanning section, 300
. . . Laser beam shaping section, 400 . . . Sample holding section.

Claims (1)

【特許請求の範囲】[Claims] 1 レーザ光を発振するレーザ光源部と、レーザ
ビーム成形部と、レーザビームを試料上で走査す
るレーザビーム走査部と、試料保持部とを備えた
レーザアニーリング装置において、前記レーザビ
ーム成形部が前記レーザ光源部から見て1/4波長
板と複屈折板あるいは1/2波長板と複屈折板とが
この順にくみあわされたものを少なくとも一組備
えてなることを特徴とするレーザアニーリング装
置。
1. A laser annealing apparatus comprising a laser light source section that oscillates a laser beam, a laser beam shaping section, a laser beam scanning section that scans the laser beam on a sample, and a sample holding section, wherein the laser beam shaping section is A laser annealing device comprising at least one set of a 1/4 wavelength plate and a birefringent plate, or a 1/2 wavelength plate and a birefringent plate combined in this order when viewed from a laser light source.
JP58047956A 1983-03-24 1983-03-24 Laser annealing device Granted JPS59175115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047956A JPS59175115A (en) 1983-03-24 1983-03-24 Laser annealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047956A JPS59175115A (en) 1983-03-24 1983-03-24 Laser annealing device

Publications (2)

Publication Number Publication Date
JPS59175115A JPS59175115A (en) 1984-10-03
JPS6362089B2 true JPS6362089B2 (en) 1988-12-01

Family

ID=12789801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047956A Granted JPS59175115A (en) 1983-03-24 1983-03-24 Laser annealing device

Country Status (1)

Country Link
JP (1) JPS59175115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245090A (en) * 1988-08-03 1990-02-15 Miyamoto Kk Thread edge sandwiching device for sewing machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719745B2 (en) * 1985-07-19 1995-03-06 富士通株式会社 Method for manufacturing semiconductor device
JP2002158184A (en) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp Laser optical system for laser heat treatment
JP5235073B2 (en) * 2007-03-05 2013-07-10 株式会社アルバック Laser annealing apparatus and laser annealing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245090A (en) * 1988-08-03 1990-02-15 Miyamoto Kk Thread edge sandwiching device for sewing machine

Also Published As

Publication number Publication date
JPS59175115A (en) 1984-10-03

Similar Documents

Publication Publication Date Title
KR950005257B1 (en) Metal film forming method
KR100534501B1 (en) Method for processing thin film and apparatus for processing thin film
EP0036137A1 (en) Method for production of semiconductor devices
JPS58164219A (en) Manufacture of laminated semiconductor device
JPH1140499A (en) Semiconductor device and its manufacture
US4861418A (en) Method of manufacturing semiconductor crystalline layer
JPS6362089B2 (en)
KR900002686B1 (en) Recrystalizing method for conductor film
JPS6320012B2 (en)
Aizaki Recrystallization of silicon film on insulating layers using a laser beam split by a birefringent plate
JPS62160712A (en) Manufacture of semiconductor device
JPS59224114A (en) Manufacture of single crystal semiconductor thin-film
JPH0410212B2 (en)
JPH07297289A (en) Method and device for cutting fuse structure
JPS62243314A (en) Manufacture of semiconductor device
JPS59224121A (en) Laser annealing device
JPS6254910A (en) Manufacturing semiconductor device
JP4524413B2 (en) Crystallization method
JPS6074507A (en) Manufacture of semiconductor device
JPS60189216A (en) Laser annealing equipment
JPS62219510A (en) Formation of single crystal island region
JPS58222521A (en) Forming method for semiconductor film
JP2004303972A (en) Apparatus and method for semiconductor thin film crystallization, and method for manufacturing thin-film transistor
JPS59151421A (en) Laser annealing device
JP2999212B2 (en) Manufacture of semiconductor thin film by melting recrystallizing method