JPS6361419A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS6361419A
JPS6361419A JP61206177A JP20617786A JPS6361419A JP S6361419 A JPS6361419 A JP S6361419A JP 61206177 A JP61206177 A JP 61206177A JP 20617786 A JP20617786 A JP 20617786A JP S6361419 A JPS6361419 A JP S6361419A
Authority
JP
Japan
Prior art keywords
magnetic
ferromagnetic metal
gas
layer
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61206177A
Other languages
Japanese (ja)
Inventor
Takashi Kubota
隆 久保田
Kunio Wakai
若居 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61206177A priority Critical patent/JPS6361419A/en
Publication of JPS6361419A publication Critical patent/JPS6361419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve magnetic characteristics and corrosion resistance by forming a magnetic layer into the a-C layer of which a ferromagnetic metal is introduced by glow discharge in a gaseous mixture composed of a gaseous monomer of an org. compd. contg. the ferromagnetic metal and reducing gas. CONSTITUTION:The magnetic layer 12 into the a-C film layer of which the reduced ferromagnetic metal is introduced by executing the glow discharge treatment in the gaseous mixture composed of the gaseous monomer of the org. compd. contg. the ferromagnetic metal and the reducing gas is formed within the substrate 1 consisting of a polyester film, etc. to obtain a magnetic tape A. The ratio of the gaseous monomer contg. the ferromagnetic metal is preferably 10-60vol% with respect to the gaseous mixture. The packing ratio of the ferromagnetic metallic particles in the magnetic layer 12 is preferably 10-60vol%. Sublimating gases such as ferrocene, cobaltcene and nickelocene and gaseous monomers of carbonyl compd. of Fe and Co are used as the gaseous monomer of the org. compd. contg. the ferromagnetic metal. CH4, C2H4, etc., are used for the reducing gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録媒体の製造方法に関し、さらに詳し
くは、磁気特性および耐食性に優れた磁気記録媒体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a magnetic recording medium, and more particularly, to a method for manufacturing a magnetic recording medium with excellent magnetic properties and corrosion resistance.

〔従来の技術〕[Conventional technology]

一般に、磁性粉末を結合剤成分とともに基体フィルム上
に結着させるか、或いは強磁性金属またはそれらの合金
などを真空蒸着等によって基体フィルム上に被着してつ
くられる磁気記録媒体は、記録再生時に磁気ヘッド等と
激しく摺接するため磁性層が摩耗され易く、特に真空蒸
着等によって形成される強磁性金属薄膜型磁気記録媒体
は、高密度記録特性に優れる反面、磁気ヘッドとの摩擦
係数が大きくて摩耗や損傷を受は易く、また空気中で除
々に酸化を受けて最大磁束密度などの磁気特性が劣化す
るなどの難点がある。
In general, magnetic recording media are made by binding magnetic powder together with a binder component onto a base film, or by depositing ferromagnetic metals or their alloys on a base film by vacuum deposition, etc. The magnetic layer is easily worn out due to violent sliding contact with the magnetic head, etc. In particular, ferromagnetic metal thin film magnetic recording media formed by vacuum deposition etc. have excellent high-density recording characteristics, but have a large coefficient of friction with the magnetic head. It is susceptible to wear and damage, and it also suffers from gradual oxidation in the air, resulting in deterioration of magnetic properties such as maximum magnetic flux density.

このため、近年、グロー放電処理により強磁性金属を有
機高分子化合物層内に分散させて磁性層を形成し耐食性
を改善することが行われている。
For this reason, in recent years, a method has been practiced in which a ferromagnetic metal is dispersed within an organic polymer compound layer by glow discharge treatment to form a magnetic layer to improve corrosion resistance.

(特公昭60−31013号) 〔発明が解決しようとする問題点〕 ところが、グロー放電処理により強磁性金属を有機高分
子化合物層内に分散させて磁性層を形成する方法では、
強磁性金属がグロー放電処理により励起された残留ガス
中の酸素原子等と反応して酸化され、磁気特性が劣化す
るという欠点があり、耐食性も未だ充分に改善されてい
ない。
(Japanese Patent Publication No. 60-31013) [Problems to be Solved by the Invention] However, in the method of forming a magnetic layer by dispersing a ferromagnetic metal in an organic polymer compound layer by glow discharge treatment,
There is a drawback that the ferromagnetic metal reacts with oxygen atoms, etc. in the residual gas excited by the glow discharge treatment and is oxidized, resulting in deterioration of magnetic properties, and corrosion resistance has not yet been sufficiently improved.

〔問題点を解決するための手段〕[Means for solving problems]

この発明はかかる現状に鑑み鋭意研究を重ねた結果なさ
れたもので、強磁性金属を含む有機化合物のモノマーガ
スと還元性ガスとの混合ガス中でグロー放電処理を行い
、還元された強磁性金属をアモルファス状のカーボン膜
層内に導入した磁性層を基体上に形成することによって
、磁気特性および耐食性を充分に向上させたものである
This invention was made as a result of intensive research in view of the current situation, and the ferromagnetic metal is reduced by performing a glow discharge treatment in a mixed gas of a monomer gas of an organic compound containing a ferromagnetic metal and a reducing gas. By forming a magnetic layer on a substrate, in which amorphous carbon is introduced into an amorphous carbon film layer, magnetic properties and corrosion resistance are sufficiently improved.

この発明において、磁性層を形成する際使用される強磁
性金属を含む有機化合物のモノマーガスとしては、フェ
ロセン、コバルトセン、ニラケロセン等の昇華ガス、ペ
ンタカルボニル鉄、オクタカルボニルジコバルト等の金
属カルボニル化合物の七ツマーガス等と、CH4、C2
H4等の有機化合物の七ツマーガスとの混合ガスが好適
なものとして使用される。
In this invention, the monomer gas of an organic compound containing a ferromagnetic metal used in forming the magnetic layer includes a sublimation gas such as ferrocene, cobaltocene, and nilakerosene, and a metal carbonyl compound such as pentacarbonyl iron and octacarbonyl dicobalt. Seven gases etc., CH4, C2
A mixture of an organic compound such as H4 with a 7-mer gas is preferably used.

これらの強磁性金属を含む有機化合物の七ツマーガスは
、水素ガスあるいは一酸化炭素ガス等の還元性ガスと混
合し、この混合ガス中でグロー放電処理を行うと、有機
金属化合物の七ツマーガスが分解してこのモノマーガス
中に含まれる強磁性金属がM離し、また水素ガスや一酸
化炭素ガスなどの還元性ガスで、磁性層に取り込まれる
酸素原子や、グロー放電処理の際に残留ガスもしくは吸
着分子から取り込まれる酸素原子が除去され、遊離した
強磁性金属が還元されて、耐酸化性が向上された強磁性
金属を硬質のアモルファス状カーボン膜層内に導入した
磁性層が形成される。従って、強磁性金属の酸化による
磁気特性の劣化が充分に低減されて磁気特性が充分に向
上され、耐食性も充分に向上される。
When the organic compound 7-mer gas containing these ferromagnetic metals is mixed with a reducing gas such as hydrogen gas or carbon monoxide gas, and a glow discharge treatment is performed in this mixed gas, the organic metal compound 7-mer gas is decomposed. Then, the ferromagnetic metal contained in this monomer gas releases M, and oxygen atoms that are taken into the magnetic layer by reducing gases such as hydrogen gas and carbon monoxide gas, and residual gas or adsorption during glow discharge treatment. Oxygen atoms taken in from the molecules are removed and the free ferromagnetic metal is reduced to form a magnetic layer in which the ferromagnetic metal with improved oxidation resistance is introduced into the hard amorphous carbon film layer. Therefore, the deterioration of the magnetic properties due to oxidation of the ferromagnetic metal is sufficiently reduced, the magnetic properties are sufficiently improved, and the corrosion resistance is also sufficiently improved.

このようなグロー放電処理は、通常、高周波電力、直流
電力、交流電力、マイクロ波電力などによりグロー放電
を発生して行われるが、比較的取扱いが容易な13.5
6MHzの高周波電力が好ましく使用される。またこの
グロー放電処理は、強磁性金属の加熱蒸発あるいはスパ
ッタリングと併用して行うことができる。グロー放電処
理する際のガス圧および電力は、強磁性金属をアモルフ
ァス状カーボン膜層内に導入した磁性層が良好に形成さ
れるように、ガス圧をlXl0’〜5トールの範囲内に
するのが好ましく、高周波電力は0.1〜10W/cn
!の範囲内にするのが好ましい。また、グロー放電処理
する際の混合ガス中における還元性ガスの含有割合は、
強磁性金属を含む有機化合物の七ツマーガスとの合計量
に対して10〜60容量%の範囲内にするのが好ましく
、少なすぎると所期の効果が得られず、多すぎると成膜
速度が低減したり、膜の脆性が高くなるなどの問題があ
る。
Such glow discharge treatment is usually performed by generating glow discharge using high frequency power, DC power, AC power, microwave power, etc., but 13.5 is relatively easy to handle.
RF power of 6 MHz is preferably used. Further, this glow discharge treatment can be performed in combination with heating evaporation or sputtering of the ferromagnetic metal. The gas pressure and power during the glow discharge treatment are set within the range of lXl0' to 5 torr so that a magnetic layer in which a ferromagnetic metal is introduced into the amorphous carbon film layer is well formed. is preferable, and the high frequency power is 0.1 to 10 W/cn.
! It is preferable to keep it within the range of . In addition, the content ratio of reducing gas in the mixed gas during glow discharge treatment is
It is preferable that the amount is within the range of 10 to 60% by volume based on the total amount of the organic compound containing the ferromagnetic metal and the ferromagnetic gas. If it is too small, the desired effect will not be obtained, and if it is too large, the film formation rate will be reduced. There are problems such as a decrease in the amount of water and an increase in the brittleness of the film.

このようにして形成される磁性層において、アモルファ
ス状カーボン膜層内に導入された強磁性金属は、使用す
る七ツマーガスにより異なるが、平均粒径が200〜3
00人の範囲内であると、強磁性金属粒子間がアモルフ
ァス状カーボンで磁気的に絶縁されて単磁区粒子的な構
造となり、良好な磁気特性が得られるとともに耐食性も
向上される。また、この強磁性金属粒子の磁性層内にお
ける充填率は、磁性層の全成分に対して10〜60容量
%の範囲内となるようにするのが好ましく、充填率が1
0容量%より少なくては、強磁性金属粒子の充填率が低
くなり、充分な磁気特性が得られず、60容量%より多
くては、各強磁性金属粒子間を良好に磁気的に絶縁して
磁気特性および耐食性を充分に向上することができない
。このような強磁性金属粒子の充填率は、モノマーガス
や添加ガスの種類やそのガス圧によってコントロールさ
れ、強磁性金属粒子が適度にアモルファス状カーボン膜
層内に導入充填された磁性層が形成される。さらに、こ
のような磁性層中における水素原子および酸素原子は、
炭素原子に対する原子数比で、それぞれ0.2倍以下お
よび0.1倍以下であることが好ましく、多すぎると炭
素原子同士の架橋が断たれる箇所が増加するため良好な
耐久性が得られない。
In the magnetic layer formed in this way, the ferromagnetic metal introduced into the amorphous carbon film layer has an average particle size of 200 to 300 ml, although it varies depending on the 70% gas used.
If it is within the range of 0.00, the ferromagnetic metal particles are magnetically insulated by amorphous carbon, resulting in a single-domain particle-like structure, resulting in good magnetic properties and improved corrosion resistance. Further, the filling rate of the ferromagnetic metal particles in the magnetic layer is preferably within the range of 10 to 60% by volume based on the total components of the magnetic layer, and the filling rate is 1.
If it is less than 0% by volume, the filling rate of the ferromagnetic metal particles will be low and sufficient magnetic properties will not be obtained, and if it is more than 60% by volume, there will be no good magnetic insulation between the ferromagnetic metal particles. Therefore, the magnetic properties and corrosion resistance cannot be sufficiently improved. The filling rate of such ferromagnetic metal particles is controlled by the type and gas pressure of the monomer gas and additive gas, and a magnetic layer is formed in which the ferromagnetic metal particles are appropriately introduced and filled into the amorphous carbon film layer. Ru. Furthermore, hydrogen atoms and oxygen atoms in such a magnetic layer are
The atomic ratio to carbon atoms is preferably 0.2 times or less and 0.1 times or less, respectively; if the amount is too large, the number of places where crosslinks between carbon atoms are broken increases, resulting in poor durability. do not have.

このようにして得られる磁気記録媒体としては、ポリエ
ステルフィルム、ポリイミドフィルムなどの合成樹脂フ
ィルムを基体とする磁気テープ、合成樹脂フィルム、ア
ルミニウム板およびガラス板等からなる円盤やドラムを
基体とする磁気ディスクや磁気ドラムなど、磁気ヘッド
と摺接する構造の種々の形態を包含する。
Magnetic recording media obtained in this way include magnetic tapes based on synthetic resin films such as polyester films and polyimide films, and magnetic disks based on disks or drums made of synthetic resin films, aluminum plates, glass plates, etc. It includes various types of structures that come into sliding contact with a magnetic head, such as a magnetic head or a magnetic drum.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 第1図に示すグロー放電処理装置を使用し、厚さが10
μmのポリエステルフィルム1を、処理槽2内の原反ロ
ール3からガイドロール4を介して円筒状キャン5の表
面に沿って移動させ、さらにガイドロール6を介して巻
き取りロール7に巻き取るようにセントした。次いで、
排気系8で処理槽2内をlX104トールに真空排気し
て、ポリエステルフィルム1を3m/minの速度で走
行させ、処理槽2の側壁に取りつけられたガス導入管9
から、シクロペンタジェニルジカルボニルコバルトのモ
ノマーガスを20secmの流量で、また水素ガスを5
 secmの流量で混合して導入した。同時に円筒状キ
ャン5の下方に配設された電極10に13.56MHz
の高周波電力を50W印加してグロー放電処理し、コバ
ルトがアモルファス状のカーボン膜層内に導入された厚
さ2000人の磁性層を形成した。この磁性層における
コバルトの充填率は35容量%であった。しかる後、所
定の巾に裁断して第2図に示すような、ポリエステルフ
ィルム1上に強磁性金属をアモルファス状カーボン膜層
内に導入した磁性層12を形成した磁気テープAをつく
った。なお、第1図中11は電極10に高周波を印加す
る高周波電源である。
Example 1 The glow discharge treatment apparatus shown in Fig. 1 was used, and the thickness was 10
A polyester film 1 having a thickness of 1.0 μm is moved from a raw roll 3 in a processing tank 2 via a guide roll 4 along the surface of a cylindrical can 5, and then wound onto a take-up roll 7 via a guide roll 6. cent. Then,
The inside of the processing tank 2 is evacuated to lx104 Torr by the exhaust system 8, the polyester film 1 is run at a speed of 3 m/min, and the gas introduction pipe 9 attached to the side wall of the processing tank 2 is evacuated.
, cyclopentadienyl dicarbonyl cobalt monomer gas was supplied at a flow rate of 20 sec, and hydrogen gas was supplied at a flow rate of 5 sec.
They were mixed and introduced at a flow rate of sec. At the same time, a frequency of 13.56 MHz is transmitted to the electrode 10 arranged below the cylindrical can 5.
A glow discharge treatment was performed by applying high frequency power of 50 W to form a magnetic layer with a thickness of 2000 nm in which cobalt was introduced into the amorphous carbon film layer. The cobalt filling rate in this magnetic layer was 35% by volume. Thereafter, the tape was cut to a predetermined width to produce a magnetic tape A as shown in FIG. 2, in which a magnetic layer 12 in which a ferromagnetic metal was introduced into an amorphous carbon film layer was formed on a polyester film 1. Note that 11 in FIG. 1 is a high frequency power source that applies high frequency to the electrode 10.

実施例2 実施例1におけるグロー放電処理において、シクロペン
タジェニルジカルボニルコバルトのモノマーガスに代え
て、オクタカルボニルジコバルトのモノマーガスを10
sccm、 C2H4のモノマーガスを10105eの
流量で混合した混合ガスを導入した以外は実施例1と同
様にして、コバルトがアモルファス状のカーボンB5i
内に導入された厚さ2200人の磁性層を形成し、磁気
テープAをつくった。磁性層におけるコバルトの充填率
は40容量%であった。
Example 2 In the glow discharge treatment in Example 1, 10% of octacarbonyl dicobalt monomer gas was used instead of cyclopentadienyl dicarbonyl cobalt monomer gas.
sccm, C2H4 monomer gas mixed at a flow rate of 10105e was introduced in the same manner as in Example 1, and carbon B5i in which cobalt was amorphous was introduced.
A magnetic layer with a thickness of 2,200 layers was formed and magnetic tape A was made. The cobalt filling rate in the magnetic layer was 40% by volume.

実施例3 実施例1におけるグロー放電処理において、水素ガスに
代えて一酸化炭素ガスを同M4人した以外は実施例1と
同様にして、コバルトがアモルファス状のカーボン膜層
内に導入された厚さ1800人の磁性層を形成し、磁気
テープAをつくった。磁性層におけるコバルトの充填率
は50容量%であった。
Example 3 Cobalt was introduced into the amorphous carbon film layer in the same manner as in Example 1 except that carbon monoxide gas was used instead of hydrogen gas in the glow discharge treatment in Example 1. A magnetic tape A was created by forming 1,800 magnetic layers. The cobalt filling rate in the magnetic layer was 50% by volume.

実施例4 実施例3におけるグロー放電処理において、シクロペン
タジェニルジカルボニルコバルトの七ツマーガスに代え
て、オクタカルボニルジコバルトの七ツマーガスを10
sccm、 CH4のモノマーガスを5 secmの流
量で混合した混合ガスを導入した以外は実施例3と同様
にして、コバルトがアモルファス状のカーボン膜層内に
導入された厚さ2000人の磁性層を形成し、磁気テー
プAをつくった。磁性層におけるコバルトの充填率は5
5容量%であった。
Example 4 In the glow discharge treatment in Example 3, octacarbonyl dicobalt 7-mer gas was used in place of cyclopentadienyl dicarbonyl cobalt 7-mer gas.
A magnetic layer with a thickness of 2000 mm in which cobalt was introduced into an amorphous carbon film layer was prepared in the same manner as in Example 3 except that a mixed gas of monomer gas of sccm and CH4 was introduced at a flow rate of 5 seconds. A magnetic tape A was produced. The cobalt filling rate in the magnetic layer is 5
It was 5% by volume.

比較例1 実施例1におけるグロー放電処理において、水素ガスの
導入を省いた以外は、実施例1と同様にして、コバルト
がアモルファス状のカーボン膜層内に導入された厚さ2
200人の磁性層を形成し、磁気テープをつくった。磁
性層におけるコバルトの充填率は30容量%であった。
Comparative Example 1 Cobalt was introduced into the amorphous carbon film layer in the same manner as in Example 1, except that the introduction of hydrogen gas was omitted in the glow discharge treatment in Example 1.
200 people formed a magnetic layer and created a magnetic tape. The cobalt filling rate in the magnetic layer was 30% by volume.

比較例2 実施例2におけるグロー放電処理において、水素ガスの
導入を省いた以外は、実施例2と同様にして、コノマル
トがアモルファス状のカーボン月灸層内に導入された厚
さ2000人の磁性層を形成し、磁気テープをつくった
。磁性層におけるコバルトの充填率は33容量%であっ
た。
Comparative Example 2 Conomalt was introduced into the amorphous carbon moxibustion layer in the same manner as in Example 2, except that the introduction of hydrogen gas was omitted in the glow discharge treatment in Example 2. A layer was formed to create a magnetic tape. The cobalt filling rate in the magnetic layer was 33% by volume.

各実施例および比較例で得られた磁気テープについて、
飽和磁束密度を測定し、耐食性を試験した。耐食性試験
は得られた磁気テープを60°C190%RHの条件下
に7日間放置して最大磁束密度を測定し、放置前の磁気
テープの最大磁束密度からの劣化率を調べて行った。
Regarding the magnetic tapes obtained in each example and comparative example,
Saturation magnetic flux density was measured and corrosion resistance was tested. The corrosion resistance test was carried out by leaving the obtained magnetic tape under conditions of 60° C. and 190% RH for 7 days, measuring the maximum magnetic flux density, and examining the rate of deterioration from the maximum magnetic flux density of the magnetic tape before being left.

下記第1表はその結果である。Table 1 below shows the results.

第1表 〔発明の効果〕 上記第1表から明らかなように、この発明で得られた磁
気テープ(実施例1ないし4)は、いずれも従来の磁気
テープ(比較例1および2)に比し、飽和磁束密度が高
くて最大磁束密度の劣化率が小さく、このことからこの
発明によって得られる磁気記録媒体は、磁気特性および
耐食性が一段と向上されていることがわかる。
Table 1 [Effects of the Invention] As is clear from Table 1 above, the magnetic tapes obtained by the present invention (Examples 1 to 4) are all compared to the conventional magnetic tapes (Comparative Examples 1 and 2). However, the saturation magnetic flux density is high and the deterioration rate of the maximum magnetic flux density is small, which indicates that the magnetic recording medium obtained by the present invention has further improved magnetic properties and corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の磁性層を形成する際に使用するグロ
ー放電処理装置の1例を示す概略断面図、第2図はこの
発明によって得られた磁気テープの部分拡大断面図であ
る。 ■・・・ポリエステルフィルム(基体)、12・・・磁
性層、A・・・磁気テープ(磁気記録媒体)第1図 第2図 A磁気テープ 1ポリエステルフイルム
FIG. 1 is a schematic sectional view showing an example of a glow discharge treatment apparatus used in forming the magnetic layer of the present invention, and FIG. 2 is a partially enlarged sectional view of the magnetic tape obtained by the present invention. ■... Polyester film (substrate), 12... Magnetic layer, A... Magnetic tape (magnetic recording medium) Figure 1 Figure 2 A Magnetic tape 1 Polyester film

Claims (1)

【特許請求の範囲】 1、基体上に磁性層を形成するにあたり、強磁性金属を
含む有機化合物のモノマーガスと還元性ガスとの混合ガ
ス中でグロー放電処理を行い、強磁性金属をアモルファ
ス状のカーボン膜層内に導入した磁性層を形成すること
を特徴とする磁気記録媒体の製造方法 2、還元性ガスが水素ガスである特許請求の範囲第1項
記載の磁気記録媒体の製造方法 3、還元性ガスが一酸化炭素ガスである特許請求の範囲
第1項記載の磁気記録媒体の製造方法
[Claims] 1. When forming a magnetic layer on a substrate, a glow discharge treatment is performed in a mixed gas of a monomer gas of an organic compound containing a ferromagnetic metal and a reducing gas to transform the ferromagnetic metal into an amorphous state. 2. A method for manufacturing a magnetic recording medium, characterized in that a magnetic layer introduced into a carbon film layer is formed; 3. A method for manufacturing a magnetic recording medium according to claim 1, wherein the reducing gas is hydrogen gas. , the method for manufacturing a magnetic recording medium according to claim 1, wherein the reducing gas is carbon monoxide gas.
JP61206177A 1986-09-01 1986-09-01 Production of magnetic recording medium Pending JPS6361419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61206177A JPS6361419A (en) 1986-09-01 1986-09-01 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61206177A JPS6361419A (en) 1986-09-01 1986-09-01 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6361419A true JPS6361419A (en) 1988-03-17

Family

ID=16519085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206177A Pending JPS6361419A (en) 1986-09-01 1986-09-01 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6361419A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445434A (en) * 1987-05-12 1989-02-17 Schering Ag Manufacture of electroconductive polymer-metal compound
JP2002343667A (en) * 2001-05-11 2002-11-29 Miura Hidemi Manufacturing method of ferromagnetic particle, ferromagnetic thin film, and magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445434A (en) * 1987-05-12 1989-02-17 Schering Ag Manufacture of electroconductive polymer-metal compound
JP2002343667A (en) * 2001-05-11 2002-11-29 Miura Hidemi Manufacturing method of ferromagnetic particle, ferromagnetic thin film, and magnetic recording medium

Similar Documents

Publication Publication Date Title
JPH0546014B2 (en)
JPS6361419A (en) Production of magnetic recording medium
JP2761859B2 (en) Magnetic recording media
JPS6361420A (en) Magnetic recording medium and its production
JPS6366727A (en) Production of magnetic recording medium
JPH0546013B2 (en)
JPS62279521A (en) Production of magnetic recording medium
JPS6116028A (en) Magnetic recording medium and its production
JPS5927505A (en) Ferromagnetic metal powder
JPH0630133B2 (en) Magnetic recording medium and manufacturing method thereof
JPS62157324A (en) Magnetic recording medium and its production
JPS61278027A (en) Production of magnetic recording medium
JPS62167616A (en) Magnetic recording medium and its production
JPH04373102A (en) Ferromagnetic metallic fine particle for magnetic recording medium
JPS6122430A (en) Production of magnetic recording medium
JPS62281120A (en) Magnetic recording medium and its production
JPH04343402A (en) Magnetic metal powder
JPS60237634A (en) Magnetic recording medium and its production
JPH038117A (en) Manufacture of magnetic recording tape
JPS5968818A (en) Magnetic recording medium
JPH08102052A (en) Recording medium and production thereof
JPS63113935A (en) Production of magnetic recording medium
JPS6154042A (en) Manufacture of magnetic recording medium
JPS61278015A (en) Magnetic recording medium
JPH0855323A (en) Magnetic recording medium and its production