JPH04373102A - Ferromagnetic metallic fine particle for magnetic recording medium - Google Patents

Ferromagnetic metallic fine particle for magnetic recording medium

Info

Publication number
JPH04373102A
JPH04373102A JP3177348A JP17734891A JPH04373102A JP H04373102 A JPH04373102 A JP H04373102A JP 3177348 A JP3177348 A JP 3177348A JP 17734891 A JP17734891 A JP 17734891A JP H04373102 A JPH04373102 A JP H04373102A
Authority
JP
Japan
Prior art keywords
fine particles
ferromagnetic metal
metal fine
magnetic recording
organic acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3177348A
Other languages
Japanese (ja)
Other versions
JP3057823B2 (en
Inventor
Masafumi Ata
誠文 阿多
Horyu Machida
町田 方隆
Haruo Watanabe
春夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3177348A priority Critical patent/JP3057823B2/en
Publication of JPH04373102A publication Critical patent/JPH04373102A/en
Application granted granted Critical
Publication of JP3057823B2 publication Critical patent/JP3057823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the oxidation resistance and to prevent aging of the title ferromagnetic metallic fine particle. CONSTITUTION:The surface of the title ferromagnetic metallic fine particles is processed using multiple organic acids in different acidities so that the organic acids may efficiently react to a hydroxyl groups produced by the chemically adsorbed water containing said metallic fine particles on the surface of an oxide film. At this time, the multiple organic acids in different acidities are to be divided into those contained in the three regions, i.e., the groups No.1, 2 and 3 respectively having the pi charge of hetero atoms of +0.1 to +0.2, +0.2 to +0.4 and +0.4 to +0.7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、塗布型磁気記録媒体の
磁性粉末として使用される強磁性金属微粒子に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fine ferromagnetic metal particles used as magnetic powder for coated magnetic recording media.

【0002】0002

【従来の技術】一般に磁気テープ等の磁気記録媒体は、
磁性粉末、バインダー樹脂からなる磁性塗料を非磁性支
持体上に塗布、乾燥することにより製造される。近年、
磁気記録の分野、特にビデオテープレコーダ等において
は高画質化をはかるために、より一層の高記録密度化が
要求されている。この高密度化にともない、従来より磁
気記録媒体等の磁性粉末として使用されていた酸化鉄系
材料に代わり、鉄または鉄を主体とする金属材料が用い
られるようになっている。最近ではこのような要求を満
たすために、非常に微細な粒子計上を有するものが供給
されるようになってきており、これを磁気記録媒体の磁
性粉末に用いることで、高記録密度化や高周波数帯域に
おける優れた電磁変換特性が達成されている。
[Prior Art] Generally, magnetic recording media such as magnetic tape are
It is manufactured by applying a magnetic paint consisting of magnetic powder and binder resin onto a non-magnetic support and drying it. recent years,
In the field of magnetic recording, particularly in video tape recorders and the like, higher recording densities are required in order to achieve higher image quality. With this increase in density, iron or iron-based metal materials have come to be used in place of iron oxide materials that have been conventionally used as magnetic powders in magnetic recording media and the like. Recently, in order to meet these demands, products with extremely fine particles have become available, and by using them in the magnetic powder of magnetic recording media, it is possible to achieve higher recording densities and higher performance. Excellent electromagnetic conversion characteristics in the frequency band have been achieved.

【0003】これらの鉄または鉄から構成される強磁性
金属微粒子は、酸化鉄やオキシ水酸化鉄、あるいはCo
,Ni,Mn,Cu,Zn,Ti,V等の鉄以外の金属
を含む酸化鉄やオキシ水酸化鉄等を、水素ガスで還元す
ることにより製造される。これらの強磁性金属粒子は、
従来の酸化鉄系の強磁性微粒子よりも優れた磁気記録特
性を有している。
[0003] These iron or ferromagnetic metal fine particles composed of iron are iron oxide, iron oxyhydroxide, or Co
, Ni, Mn, Cu, Zn, Ti, V, and other metals other than iron, such as iron oxide or iron oxyhydroxide, are reduced with hydrogen gas. These ferromagnetic metal particles are
It has better magnetic recording properties than conventional iron oxide-based ferromagnetic particles.

【0004】ところが、上記強磁性金属微粒子は表面活
性が高く、大気中で酸化され易い特性を有しており、場
合によっては発火を伴う恐れがある。このような性質は
磁気記録媒体の低ノイズ化に伴い磁性粉末の微細化が進
められるにともない、ますます強くなる傾向がある。こ
のために、上記強磁性金属微粒子を磁気記録媒体の磁性
粉末として用いた場合には、強磁性金属微粒子の保存中
、あるいはバインダーや有機溶剤等との組み合わせによ
る塗料化の工程中、さらにはポリエステルフィルム等の
非磁性支持体上に塗布してシート化した後、所定の雰囲
気や温度、湿度等の条件下での保管中に、主として酸素
やある種のガス及び水分等の影響による酸化が進行して
、飽和磁化等の磁気特性に経時劣化がもたらされ、保存
安定性に問題があった。
However, the above-mentioned ferromagnetic metal fine particles have a high surface activity and are easily oxidized in the atmosphere, which may cause ignition in some cases. These properties tend to become stronger as magnetic powders become finer and finer as the noise of magnetic recording media becomes lower. For this reason, when the above-mentioned ferromagnetic metal fine particles are used as magnetic powder for a magnetic recording medium, it is necessary to use polyester or After being coated onto a non-magnetic support such as a film to form a sheet, oxidation progresses mainly due to the influence of oxygen, certain gases, moisture, etc. during storage under specified conditions such as atmosphere, temperature, humidity, etc. As a result, magnetic properties such as saturation magnetization deteriorate over time, resulting in storage stability problems.

【0005】この問題に対して、強磁性金属微粒子の表
面の安定化を図るために、一般的には液相法、または気
相法で粒子の表面に酸化皮膜を形成して不動態化させる
方法がとられてきた。また、強磁性金属微粒子のある種
の金属元素や界面活性剤、樹脂等の有機物で覆う方法等
もとられてきた。
[0005] To solve this problem, in order to stabilize the surface of ferromagnetic metal fine particles, an oxide film is generally formed on the surface of the particles to passivate it using a liquid phase method or a gas phase method. methods have been taken. In addition, methods have been taken in which ferromagnetic metal fine particles are coated with certain metal elements, surfactants, organic substances such as resins, and the like.

【0006】[0006]

【本発明が解決しようとする課題】しかしながら、前述
の酸化皮膜不動態を形成する方法やある種の金属元素や
有機物で覆う方法では、強磁性金属微粒子の酸化を抑え
、磁気記録特性の経時劣化を防ぐ上で必ずしも十分なも
のとは言い難い。また、処理の方法によっては、逆に表
面処理すること自体が磁気記録特性の劣化をもたらす場
合や、塗料化の際の分散性の低下をきたす虞がある。
[Problems to be Solved by the Invention] However, with the method of forming a passive oxide film or the method of covering with a certain metal element or organic substance, the oxidation of ferromagnetic metal fine particles is suppressed, and the magnetic recording characteristics deteriorate over time. It is difficult to say that it is necessarily sufficient to prevent this. Furthermore, depending on the treatment method, surface treatment itself may cause deterioration of magnetic recording properties or may cause a decrease in dispersibility when made into a paint.

【0007】そこで、本発明はこのような実状に鑑みて
提案されたものであり、磁気記録媒体用強磁性金属微粒
子の表面を処理することにより、耐酸化性に優れ、経時
劣化の少ない磁気記録媒体用強磁性金属微粒子を提供す
ることを目的とする。
The present invention was proposed in view of the above-mentioned circumstances, and provides magnetic recording with excellent oxidation resistance and less deterioration over time by treating the surface of ferromagnetic metal fine particles for magnetic recording media. The purpose of the present invention is to provide ferromagnetic metal fine particles for media.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の目
的を達成せんものと鋭意研究の結果、磁気記録媒体用強
磁性金属微粒子の表面を酸性度の異なる複数の有機酸で
処理することにより、著しい保存安定性が実現できるこ
とを見いだし、本発明を完成するに至ったものである。
[Means for Solving the Problem] As a result of intensive research to achieve the above object, the present inventors treated the surface of ferromagnetic metal fine particles for magnetic recording media with a plurality of organic acids having different acidities. It was discovered that remarkable storage stability could be achieved by this, and the present invention was completed.

【0009】本発明における磁気記録媒体用強磁性金属
微粒子としては、Fe,Co,Ni等の強磁性金属材料
や、Fe−Co,Fe−Ni,Fe−Co−Ni,Co
−Ni,Fe−Mn−Zn,Fe−Ni−Zn,Fe−
Co−Ni−Cr、Fe−Co−Ni−P,Fe−Co
−B,Fe−Co−Cr−B、Fe−Co−V等のFe
,Co,Niを主成分とする各種強磁性合金材料からな
る強磁性金属微粒子であり、更に、これらの種々の特性
を改善する目的でAl,Si,Ti,Cr,Mn,Cu
,Zn,Mg,P等の元素が添加されたものであっても
良い。これら強磁性金属微粒子の比表面積は任意である
が、比表面積25m2/g以上、特に30m2 /g以
上のものに適用した場合の有効性が大きい。
The ferromagnetic metal fine particles for magnetic recording media in the present invention include ferromagnetic metal materials such as Fe, Co, and Ni, as well as Fe-Co, Fe-Ni, Fe-Co-Ni, and Co.
-Ni, Fe-Mn-Zn, Fe-Ni-Zn, Fe-
Co-Ni-Cr, Fe-Co-Ni-P, Fe-Co
-B, Fe-Co-Cr-B, Fe-Co-V, etc.
, Co, and Ni as the main components.Al, Si, Ti, Cr, Mn, and Cu are also used to improve these various properties.
, Zn, Mg, P, or other elements may be added. Although the specific surface area of these ferromagnetic metal fine particles is arbitrary, it is most effective when applied to particles with a specific surface area of 25 m2/g or more, particularly 30 m2/g or more.

【0010】一般に有機酸の酸性度は、そのプロトンの
酸としての解離度で表される場合が多い。しかるに、こ
の酸解離度ではイオン強度の問題、溶媒を変えたときの
問題、多官能の酸の逐次解離に伴う多段階の酸解離定数
等の不確定要因が増す。そこで本発明では、芳香族有機
酸の酸性度を表すパラメータとして、単純LCAO法に
よるπ電荷を採用する。本分子軌道法は一般にヒュッケ
ル近似と呼ばれるものであり、既に我々は本分子軌道計
算による防錆剤の防錆性能に、強磁性金属微粒子表面酸
化層の金属イオンと直接結合するヘテロ原子のπ電荷と
密接な相関が存在することを見いだしている。
Generally, the acidity of an organic acid is often expressed by the degree of dissociation of its protons as an acid. However, this degree of acid dissociation increases uncertain factors such as problems with ionic strength, problems when changing the solvent, and multistage acid dissociation constants associated with sequential dissociation of polyfunctional acids. Therefore, in the present invention, the π charge determined by the simple LCAO method is employed as a parameter representing the acidity of the aromatic organic acid. This molecular orbital method is generally called the Huckel approximation, and we have already determined that the anticorrosion performance of the rust inhibitor based on this molecular orbital calculation is based on the π charge of the heteroatom that directly bonds with the metal ion in the oxide layer on the surface of the ferromagnetic metal fine particle. It has been found that there is a close correlation between

【0011】強磁性金属微粒子の表面酸化層には、一般
に化学吸着水に由来する表面水酸基が存在し、とりわけ
6配位の金属イオンに吸着した化学吸着水は塩基性が強
いことが知られている。この塩基性水酸基に対して、有
機酸は脱水反応で化学的に吸着する。このことは、有機
酸で処理する前と後で、強磁性金属磁性粉末のKBr希
釈サンプルの赤外反射吸収スペクトルに観測される、表
面化学吸着水の水酸基に由来する3690cm−1のO
−H伸縮振動が消失することからも明らかである。従っ
て、有機酸と強磁性金属微粒子表面酸化被膜との反応は
、例えば有機酸としてピロカテコールを用いた場合、下
記の(1) 式に示すようになる。
[0011] In the surface oxidation layer of ferromagnetic metal fine particles, surface hydroxyl groups derived from chemically adsorbed water are generally present, and it is known that chemisorbed water that has been adsorbed to six-coordinated metal ions has a strong basicity. There is. Organic acids are chemically adsorbed onto this basic hydroxyl group through a dehydration reaction. This indicates that the 3690 cm -1 O
This is also clear from the fact that -H stretching vibration disappears. Therefore, when pyrocatechol is used as the organic acid, the reaction between the organic acid and the oxide film on the surface of the ferromagnetic metal particles is expressed by the following equation (1).

【0012】0012

【化1】[Chemical formula 1]

【0013】ここで、有効に防錆能を発現する有機酸は
、その官能基が芳香族性の水酸基の場合には、2官能で
しかもオルト位に存在することが望ましい。このことは
、上に示したカテコールの場合に見られるように、カテ
コールの2つの酸素原子間距離が、強磁性金属微粒子酸
化被膜格子の鉄原子間距離にほぼ等しく、価電子状態に
無理のない形で化学吸着反応が起きることに由来する。 官能基が芳香族カルボキシル基の場合には、例えばナフ
タレン骨格を有する場合に、2,3−ナフタル酸のごと
きオルト型の2官能化合物、または1,8−ナフタル酸
の様にクロスリンク結合の炭素原子をはさんでいてもよ
い。これはカルボキシル基が水酸基に比べ、構造がフレ
キシブルであることによる。
[0013] Here, when the functional group of the organic acid that effectively exhibits antirust ability is an aromatic hydroxyl group, it is desirable that the organic acid be difunctional and exist in the ortho position. This means that, as seen in the case of catechol shown above, the distance between the two oxygen atoms in catechol is approximately equal to the distance between the iron atoms in the oxide film lattice of the ferromagnetic metal particles, and the valence state is reasonable. This originates from the chemical adsorption reaction that occurs in the form of When the functional group is an aromatic carboxyl group, for example, when it has a naphthalene skeleton, it is an ortho-type difunctional compound such as 2,3-naphthalic acid, or a cross-linked carbon compound such as 1,8-naphthalic acid. Atoms may be sandwiched between them. This is because the carboxyl group has a more flexible structure than the hydroxyl group.

【0014】上記2,3−ナフタル酸及び1,8−ナフ
タル酸は、下記の化2に示す構造式を有する。
The above-mentioned 2,3-naphthalic acid and 1,8-naphthalic acid have the structural formula shown in the following chemical formula 2.

【0015】[0015]

【化2】[Case 2]

【0016】有機酸の酸性度のパラメータであるヘテロ
原子上のπ電荷と、防錆能の関係は既に報告した通りで
あり、これにより防錆剤の分子設計が効果的に行うこと
が可能である(例えば、特願平2−217226号明細
書参照。)。本発明で言うところの酸性度パラメータも
全く同じ方法を踏襲する。すなわち上記の水酸基、カル
ボキシル基等の酸官能基のうち、酸として解離するプロ
トンが結合しているヘテロ原子上のπ電荷を単純LCA
O法(π電子近似)の分子軌道法によって計算し、この
π電荷を処理剤として用いられる有機酸の酸性度の指標
として用いられる。このπ電荷は、ヘテロ原子がπ電子
共役系に寄与している電子の個数から、分子軌道計算に
おいて得られる結合次数マトリックスの対角項(原子上
の荷子密度)を差し引いた値であり、一般にこの正の値
が大きいほど強い酸性であることを意味する。このよう
に、有機酸の酸性度の指標として上記π電荷を用いれば
、例えばカテコールの様な2価以上の有機酸についても
、酸性度を1つのパラメータで表すことが可能となり、
逐次解離による複数の酸解離定数を用いる煩雑さがなく
なる。従って、有機酸の酸性度と該有機酸により表面処
理された強磁性金属微粒子の耐酸化性との相関を容易に
評価することが可能となる。
As already reported, the relationship between the π charge on a heteroatom, which is a parameter of the acidity of an organic acid, and its rust-preventing ability makes it possible to effectively design the molecules of a rust-preventing agent. (For example, see Japanese Patent Application No. 2-217226.) The acidity parameter referred to in the present invention follows exactly the same method. In other words, among the above acid functional groups such as hydroxyl groups and carboxyl groups, the π charge on the heteroatom to which the proton that dissociates as an acid is bonded is calculated by simple LCA.
It is calculated by the molecular orbital method of the O method (π electron approximation), and this π charge is used as an index of the acidity of the organic acid used as a treatment agent. This π charge is the value obtained by subtracting the diagonal term (charger density on the atom) of the bond order matrix obtained in molecular orbital calculation from the number of electrons that the heteroatom contributes to the π-electron conjugated system. Generally, the larger the positive value, the stronger the acidity. In this way, if the above-mentioned π charge is used as an index of the acidity of an organic acid, it becomes possible to express the acidity of divalent or higher organic acids such as catechol with one parameter,
The complexity of using multiple acid dissociation constants due to sequential dissociation is eliminated. Therefore, it becomes possible to easily evaluate the correlation between the acidity of the organic acid and the oxidation resistance of the ferromagnetic metal fine particles surface-treated with the organic acid.

【0017】なお、2価以上の有機酸のように酸解離す
るプロトンが直接結合しているヘテロ原子が複数個存在
する場合においては、酸性度の大きい方を指標として採
用する。これは、酸性度が等価な有機酸においても、一
般的には第一解離が第二解離よりも数値が大きいことか
ら判断される。なお、計算に用いるクーロン及び共鳴積
分値については、例えば特願平2−217226号明細
書に開示される。
[0017] In the case where there are a plurality of heteroatoms to which acid-dissociable protons are directly bonded, such as in divalent or higher-valent organic acids, the one with greater acidity is used as the index. This is determined from the fact that even in organic acids with equivalent acidity, the first dissociation is generally larger than the second dissociation. The Coulomb and resonance integral values used in the calculation are disclosed in, for example, Japanese Patent Application No. 2-217226.

【0018】このように単純π電子近似LCAO分子軌
道法によるπ電荷と有機酸による表面処理後2週間を経
た強磁性金属微粒子の飽和磁化σsの低下率Δσsの関
係を図1に示す。なお飽和磁化の低下率は下記の(2)
 式で評価した。
FIG. 1 shows the relationship between the π charge determined by the simple π electron approximation LCAO molecular orbital method and the rate of decrease Δσs in the saturation magnetization σs of ferromagnetic metal fine particles two weeks after surface treatment with an organic acid. The rate of decrease in saturation magnetization is shown in (2) below.
It was evaluated using the formula.

【0019】[0019]

【数1】[Math 1]

【0020】ここで、2週間の飽和磁化の低下を顕著に
するために、表面処理された強磁性金属微粒子は、湿度
90%、温度60℃下に置かれた。図1に示したヘテロ
原子上のπ電荷とΔσsとの相関の縦軸、すなわち飽和
磁化の劣化率は強磁性金属微粒子の表面酸化層のミクロ
ポアに依存する。すなわち比表面積の大きい金属微粒子
ほど低下率が大きい傾向が存在する。しかしながら、相
関カーブそのものはほとんどすべての強磁性金属微粒子
について成り立つ。
[0020] Here, in order to make the decrease in saturation magnetization noticeable for two weeks, the surface-treated ferromagnetic metal fine particles were placed at a humidity of 90% and a temperature of 60°C. The vertical axis of the correlation between the π charge on the heteroatom and Δσs shown in FIG. 1, that is, the deterioration rate of saturation magnetization, depends on the micropores of the surface oxide layer of the ferromagnetic metal fine particles. That is, there is a tendency that metal fine particles having a larger specific surface area have a larger reduction rate. However, the correlation curve itself holds true for almost all ferromagnetic metal particles.

【0021】図1は、強磁性金属微粒子の酸化に由来す
る飽和磁化の経時劣化は、有機酸のヘテロ原子上のπ電
荷に依存していることを示しており、この値が大きくな
るにつれて、経時による飽和磁化の低下率は減少するが
、ある一定の値を越えると逆に飽和磁化の劣化率は増大
する傾向がある。そこでこのπ電荷で示される有機酸の
酸性度を規定することにより、飽和磁化の低下率が抑え
られ、強磁性金属微粒子の耐酸化性を改善することが可
能となる。種々の強磁性金属微粒子で図1に示した相関
を確認したところ、一般に酸性度の指標であるところの
π電荷の最適値は+0.3程度であることがわかった。
FIG. 1 shows that the aging deterioration of saturation magnetization due to oxidation of ferromagnetic metal fine particles depends on the π charge on the heteroatom of the organic acid, and as this value increases, Although the rate of decrease in saturation magnetization over time decreases, once a certain value is exceeded, the rate of deterioration in saturation magnetization tends to increase. Therefore, by regulating the acidity of the organic acid represented by the π charge, it is possible to suppress the rate of decrease in saturation magnetization and improve the oxidation resistance of the ferromagnetic metal fine particles. When the correlation shown in FIG. 1 was confirmed using various ferromagnetic metal fine particles, it was found that the optimum value of π charge, which is generally an index of acidity, is about +0.3.

【0022】前述したとおり、一般に強磁性金属微粒子
表面には安定化のための酸化被膜が形成されているが、
しかしこの酸化被膜形成は体積の膨張を伴い、その酸化
被膜は整然とした酸化格子とは異なり、構造の不整が著
しい。従って、強磁性金属微粒子の酸化被膜表面に存在
する化学吸着水に由来する水酸基も、この構造不整によ
り、酸及び塩基性度に分布が生じているはずであろう事
が容易に推察される。
As mentioned above, an oxide film is generally formed on the surface of ferromagnetic metal fine particles for stabilization.
However, this oxide film formation is accompanied by volume expansion, and the oxide film has a markedly irregular structure, unlike a well-ordered oxide lattice. Therefore, it is easily inferred that the hydroxyl groups derived from chemically adsorbed water present on the oxide film surface of the ferromagnetic metal fine particles should also have a distribution in acidity and basicity due to this structural asymmetry.

【0023】以上の点に鑑み、本発明においては、前述
のような強磁性金属微粒子の表面を酸性度の異なる複数
の有機酸で処理し、強磁性金属微粒子の酸化被膜表面の
化学吸着水に由来する水酸基に対して、効率よく有機酸
を反応させ、この事によりさらに有効な耐酸化性を実現
できる事を見いだしたものである。すなわち、図1にお
けるヘテロ原子のπ電荷を+0.1〜+0.2、+0.
2〜+0.4、+0.4〜+0.7の3つの領域に分割
し、有機酸をそのヘテロ原子上のπ電荷の値に応じてこ
の3つの領域に含まれるものに分割する。π電荷が+0
.1〜+0.2の有機酸を第1グループ、+0.2〜+
0.4のものを第2グループ、+0.4〜+0.7のも
のを第3グループと分類する事とする。それぞれのグル
ープに含まれる有機酸については、特願平2−2172
26号明細書に開示される。代表的なものをいくつか挙
げると、第1グループとしては、オルトジチオール、カ
テコール、2,3−ジヒドロキシナフタレン等が挙げら
れ、第2グループとしては、2,3−及び1,8−ナフ
タレンジカルボン酸、多くのカテコール及び2,3−ジ
ヒドロキシナフタレンのニトロ誘導体等が挙げられ、第
3グループとしては、フタルイミド、フタルヒドラジド
、及びこれら化合物のアミノ基、メトキシ基を導入した
誘導体等が挙げられる。
In view of the above points, in the present invention, the surface of the ferromagnetic metal fine particles as described above is treated with a plurality of organic acids having different acidities, and the chemically adsorbed water on the oxide film surface of the ferromagnetic metal fine particles is treated. It was discovered that the derived hydroxyl groups can be efficiently reacted with an organic acid, thereby achieving even more effective oxidation resistance. That is, the π charge of the heteroatom in FIG. 1 is set to +0.1 to +0.2, +0.
The organic acid is divided into three regions: 2 to +0.4 and +0.4 to +0.7, and the organic acid is divided into those included in these three regions according to the value of the π charge on its heteroatom. π charge is +0
.. 1 to +0.2 organic acids in the first group, +0.2 to +
The values of 0.4 are classified as the second group, and the values of +0.4 to +0.7 are classified as the third group. Regarding the organic acids contained in each group, please refer to Japanese Patent Application No. 2-2172.
It is disclosed in the specification of No. 26. To name a few representative ones, the first group includes orthodithiol, catechol, 2,3-dihydroxynaphthalene, etc., and the second group includes 2,3- and 1,8-naphthalene dicarboxylic acids. , many catechols and nitro derivatives of 2,3-dihydroxynaphthalene, and the third group includes phthalimide, phthalhydrazide, and derivatives of these compounds into which an amino group or a methoxy group is introduced.

【0024】上記有機酸により強磁性金属微粒子を表面
処理する方法としては、例えば有機溶媒に溶解させた処
理液中に強磁性金属微粒子を浸漬する方法が挙げられる
。この場合、上記有機酸の溶媒としては、特に限定され
ないが、水、エタノール等のアルコール系溶媒、アセト
ン等のケトン系溶媒、トルエン等の芳香族系溶媒がいず
れも使用可能である。
[0024] As a method for surface-treating the ferromagnetic metal fine particles with the above organic acid, for example, a method of immersing the ferromagnetic metal fine particles in a treatment liquid dissolved in an organic solvent can be mentioned. In this case, the solvent for the organic acid is not particularly limited, but any of water, alcohol solvents such as ethanol, ketone solvents such as acetone, and aromatic solvents such as toluene can be used.

【0025】これら3グループの有機酸の金属微粒子に
対する被着量としては、強磁性金属微粒子100重量部
に対し、0.03〜30重量部である事が望ましく、0
.1〜10重量部であることがより好ましい。前記範囲
を越えて上記有機酸が過剰に存在してもその効果は変わ
らず、過剰分が無駄になる。また、あまり過剰に被着し
ておくと、磁気記録媒体の磁性塗膜の物性に悪影響を与
える虞もある。逆に前記範囲を下回ると、すなわち、0
.03重量部以下であると効果が不足して充分な経時安
定性が得られない。
The amount of these three groups of organic acids deposited on the metal fine particles is desirably 0.03 to 30 parts by weight per 100 parts by weight of the ferromagnetic metal fine particles.
.. More preferably, it is 1 to 10 parts by weight. Even if the organic acid is present in excess beyond the above range, the effect remains unchanged and the excess amount is wasted. Furthermore, if too much of the coating is applied, there is a possibility that the physical properties of the magnetic coating film of the magnetic recording medium will be adversely affected. Conversely, if it falls below the above range, that is, 0
.. If the amount is less than 0.3 parts by weight, the effect will be insufficient and sufficient stability over time will not be obtained.

【0026】本発明の磁気記録媒体用金属微粒子は、バ
インダーや有機溶剤、各種添加剤と共に磁性塗料とする
事ができ、この磁性塗料を非磁性支持体上に塗布する事
により磁気記録媒体が作製される。この場合、バインダ
ーや有機溶剤、各種添加剤としては通常の磁気記録媒体
に用いられる物が何れも使用可能であり、配合比等も通
常の磁気記録媒体の場合に準じて設定される。
The metal fine particles for magnetic recording media of the present invention can be made into a magnetic paint together with a binder, an organic solvent, and various additives, and a magnetic recording medium can be produced by coating this magnetic paint on a non-magnetic support. be done. In this case, the binder, organic solvent, and various additives used in ordinary magnetic recording media can all be used, and the compounding ratio and the like are set in accordance with those for ordinary magnetic recording media.

【0027】[0027]

【作用】金属と錯形成する典型的な化合物である2,2
’−ビピリジルや9,10−フェナンスロリンによる強
磁性金属微粒子の表面処理では、金属微粒子の表面にこ
れら化合物が多量に吸着するにもかかわらず、飽和磁化
の保持率は未処理の場合とほぼ同じ程度であり、耐酸化
性の効果が全く発現しない。これに対し本発明において
使用される一定範囲の酸性度を有する有機酸は処理反応
において水を生成している事が確認された。この事は処
理剤と強磁性金属微粒子表面との吸着反応が脱水型であ
り、処理剤としての有機酸のヘテロ原子と強磁性金属微
粒子の表面(例えば鉄)とが直接結合する構造を取って
いる事を示唆する。この事については前述したとおりで
ある。
[Action] 2,2 is a typical compound that forms complexes with metals.
When the surface of ferromagnetic metal particles is treated with '-bipyridyl or 9,10-phenanthroline, the retention rate of saturation magnetization is almost the same as in the untreated case, although a large amount of these compounds are adsorbed to the surface of the metal particles. The results are about the same, and the oxidation resistance effect does not appear at all. On the other hand, it has been confirmed that the organic acids used in the present invention having acidity within a certain range generate water in the treatment reaction. This is because the adsorption reaction between the treatment agent and the surface of the ferromagnetic metal fine particles is a dehydration type, and the heteroatom of the organic acid as the treatment agent is directly bonded to the surface of the ferromagnetic metal fine particle (e.g. iron). It suggests that there is. This matter has been described above.

【0028】従って、一定範囲の酸性度を有する有機酸
による表面処理においては、その溌水性により耐酸化性
が得られるのではなく、強磁性金属微粒子の表面に存在
するFe−OHと処理剤としての有機酸がイオン性の強
い結合を形成し、この結合形成のポテンシャルが内部構
造に影響を与え、耐酸化性向上に寄与すると考えられる
Therefore, in surface treatment with an organic acid having acidity within a certain range, oxidation resistance is not obtained due to its water repellency, but rather due to the Fe-OH present on the surface of the ferromagnetic metal particles and the treatment agent. It is thought that the organic acids form strong ionic bonds, and the potential of this bond formation affects the internal structure and contributes to improving oxidation resistance.

【0029】即ち、強磁性金属微粒子を一定範囲の酸性
度を有する有機酸によって表面処理すると、前記有機酸
と強磁性金属微粒子の表面が脱水反応を起こし、強磁性
金属微粒子の表面に前記有機酸の被膜が形成される。こ
の有機酸の被膜によって強磁性金属微粒子の保存中、強
磁性金属微粒子を含む磁性塗料の調製中、及び磁気記録
媒体の保存中等に進行する強磁性金属微粒子の表面の酸
化反応が防止される。また、本発明では用いられる有機
酸が各々酸性度の異なる酸の混合物であり、強磁性金属
微粒子の表面の構造不整による異なる塩基性度を有する
化学吸着水に由来する水酸基と有効に反応し、強磁性金
属微粒子表面での有機酸の被膜形成がより効果的に進行
し、この事により高い耐酸化性が実現する。
That is, when the surface of ferromagnetic metal fine particles is treated with an organic acid having acidity within a certain range, a dehydration reaction occurs between the organic acid and the surface of the ferromagnetic metal fine particles, and the organic acid is applied to the surface of the ferromagnetic metal fine particles. A film is formed. This organic acid coating prevents an oxidation reaction on the surface of the ferromagnetic metal particles that occurs during storage of the ferromagnetic metal particles, preparation of a magnetic paint containing the ferromagnetic metal particles, storage of a magnetic recording medium, and the like. In addition, the organic acids used in the present invention are a mixture of acids having different acidities, and react effectively with hydroxyl groups derived from chemisorbed water having different basicities due to structural irregularities on the surface of the ferromagnetic metal fine particles. Formation of an organic acid film on the surface of the ferromagnetic metal fine particles progresses more effectively, thereby realizing high oxidation resistance.

【0030】[0030]

【実施例】次に実施例により本発明を説明するが、言う
までもなく本発明はこの実施例により制限されるもので
はない。以下の表1に、実施例に用いた第1〜第3グル
ープの化合物名と、比較例に用いた化合物を示す。前述
したとおり、これら化合物の総和は2.5×10−3m
olであるが、実施例は全て第1グループの化合物が2
0%、第2グループの化合物が70%、第3グループの
化合物が10%のモル比で混合されている。
EXAMPLES Next, the present invention will be explained with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. Table 1 below shows the names of the compounds of the first to third groups used in the examples and the compounds used in the comparative examples. As mentioned above, the total amount of these compounds is 2.5 x 10-3m
ol, but in all Examples, the first group of compounds was 2
0%, the second group compound is 70%, and the third group compound is 10%.

【0031】[0031]

【表1】[Table 1]

【0032】この溶液50mlに強磁性金属微粒子2.
5gを加え、2時間放置した。その後、膜フィルターを
用いて濾過し、物理吸着状態にある有機酸を除去するた
めにメタノールで繰り返し洗浄した。得られた強磁性金
属微粒子を30℃に保った状態で8時間真空乾燥し、処
理粉末を得た。得られた処理粉末について、乾燥直後の
保磁力Hc、飽和磁化σsを測定した。その後湿度90
%、温度60℃に保持した恒温恒湿漕中で2週間放置し
た後、再度同じ測定を行い、経時低下量を評価した。な
お比較例として、表面処理を行わず、メタノールで洗浄
した後乾燥させた強磁性金属微粒子についても、上述の
方法により磁気特性の経時変化を調べた。ここでは2週
間の保存期間中の飽和磁化及び保持力の低下を表す指標
としてΔσs、ΔHcを用いる。なお、これらΔσs、
ΔHcは、下記の(3) 式及び(4) 式で表される
。この結果を表2に表す。
Add 2. ferromagnetic metal fine particles to 50 ml of this solution.
5g was added and left to stand for 2 hours. Thereafter, the mixture was filtered using a membrane filter and washed repeatedly with methanol to remove physically adsorbed organic acids. The obtained ferromagnetic metal fine particles were vacuum dried for 8 hours while being kept at 30° C. to obtain a treated powder. The coercive force Hc and saturation magnetization σs of the obtained treated powder were measured immediately after drying. Then humidity 90
%, after being left for 2 weeks in a constant temperature and humidity chamber maintained at a temperature of 60° C., the same measurement was performed again to evaluate the amount of decrease over time. As a comparative example, ferromagnetic metal fine particles that were not subjected to surface treatment but were washed with methanol and then dried were also examined for changes in magnetic properties over time using the method described above. Here, Δσs and ΔHc are used as indicators representing the decrease in saturation magnetization and coercive force during the two-week storage period. Note that these Δσs,
ΔHc is expressed by the following equations (3) and (4). The results are shown in Table 2.

【0033】[0033]

【数2】[Math 2]

【0034】[0034]

【表2】[Table 2]

【0035】[0035]

【発明の効果】実施例から明らかなように、未処理の磁
性粉末に比べ、処理を行うことにより、著しい飽和磁化
の経時劣化の低減が見られ、同時に保磁力も安定に保た
れる。従って本発明により磁気記録媒体用強磁性金属磁
性粉末は、磁気特性の経時安定性や保存安定性が著しく
向上される。
[Effects of the Invention] As is clear from the examples, the treatment significantly reduces the aging deterioration of saturation magnetization compared to untreated magnetic powder, and at the same time, the coercive force is kept stable. Therefore, according to the present invention, the ferromagnetic metal magnetic powder for magnetic recording media has significantly improved stability of magnetic properties over time and storage stability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】有機酸のヘテロ原子上のπ電荷と表面処理後2
週間を経た強磁性金属微粒子の飽和磁化σsの低下率Δ
σsの関係を示す特性図である。
[Figure 1] π charge on heteroatoms of organic acids and after surface treatment 2
Decrease rate Δ of saturation magnetization σs of ferromagnetic metal fine particles after a week
FIG. 3 is a characteristic diagram showing the relationship between σs.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  表面が酸性度の異なる複数の有機酸で
処理されたことを特徴とする磁気記録媒体用強磁性金属
微粒子。
1. Ferromagnetic metal fine particles for use in magnetic recording media, the surfaces of which are treated with a plurality of organic acids having different acidities.
JP3177348A 1991-06-21 1991-06-21 Ferromagnetic metal particles for magnetic recording media Expired - Fee Related JP3057823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177348A JP3057823B2 (en) 1991-06-21 1991-06-21 Ferromagnetic metal particles for magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177348A JP3057823B2 (en) 1991-06-21 1991-06-21 Ferromagnetic metal particles for magnetic recording media

Publications (2)

Publication Number Publication Date
JPH04373102A true JPH04373102A (en) 1992-12-25
JP3057823B2 JP3057823B2 (en) 2000-07-04

Family

ID=16029399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177348A Expired - Fee Related JP3057823B2 (en) 1991-06-21 1991-06-21 Ferromagnetic metal particles for magnetic recording media

Country Status (1)

Country Link
JP (1) JP3057823B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114040B2 (en) * 2013-01-18 2017-04-12 株式会社フジクラ Optical connector cap, optical connector with cap

Also Published As

Publication number Publication date
JP3057823B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
US4475946A (en) Ferromagnetic metal particles of iron alloyed with Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Si, P, Mo, Sn, Sb and Ag coated with mono- or dialkoxysilanes
JPH0544162B2 (en)
US4923519A (en) Magnetic iron oxide pigments and a process for their preparation
JPH04373102A (en) Ferromagnetic metallic fine particle for magnetic recording medium
CA1148417A (en) Process for production of magnetic recording elements
JPH06180838A (en) Ferromagnetic fine metal powder for magnetic recording medium and magnetic recording medium
JP3041880B2 (en) Ferromagnetic metal particles for magnetic recording
JPH04373101A (en) Ferromagnetic metallic fine particle for magnetic recording medium
JP2940117B2 (en) Ferromagnetic metal particles for magnetic recording media
JP3018447B2 (en) Ferromagnetic metal particles for magnetic recording media
JP3041912B2 (en) Metal magnetic powder
JP2903614B2 (en) Ferromagnetic metal particles for magnetic recording
JPH04343402A (en) Magnetic metal powder
JPH05144619A (en) Metallic magnetic powder for magnetic recording medium
JPH0630133B2 (en) Magnetic recording medium and manufacturing method thereof
JPS62156201A (en) Ferromagnetic metallic powder treated with carbon dioxide
JPH04364703A (en) Ferromagnetic metallic particulate for magnetic recording medium
JP3103906B2 (en) Metallic magnetic powder for magnetic recording media
JPH05144618A (en) Metallic magnetic powder for magnetic recording medium
JPH0540934A (en) Ferromagnetic metallic fine particle for magnetic recording medium
JPS59107504A (en) Treating method of ferromagnetic metal powder
JPS62156209A (en) Ferromagnetic metallic powder
JPS6361420A (en) Magnetic recording medium and its production
JPH02162703A (en) Manufacture of metallic magnetic powder
JPS5853681B2 (en) Metal magnetic powder and its processing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000321

LAPS Cancellation because of no payment of annual fees