JPS6360250A - Zinc-base alloy - Google Patents

Zinc-base alloy

Info

Publication number
JPS6360250A
JPS6360250A JP20486186A JP20486186A JPS6360250A JP S6360250 A JPS6360250 A JP S6360250A JP 20486186 A JP20486186 A JP 20486186A JP 20486186 A JP20486186 A JP 20486186A JP S6360250 A JPS6360250 A JP S6360250A
Authority
JP
Japan
Prior art keywords
zinc
test piece
alloy
copper
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20486186A
Other languages
Japanese (ja)
Inventor
Mikio Kaneko
三樹男 金子
Shigemasa Kawai
河合 重征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP20486186A priority Critical patent/JPS6360250A/en
Publication of JPS6360250A publication Critical patent/JPS6360250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a zinc-base alloy having high surface hardness, excellent in mechanical strength, free from brittleness, and easy of casting and working, by specifying a composition consisting of Al, Cu, Mg, and Zn. CONSTITUTION:The zinc-base alloy has a composition which consists of, by weight, 11-20% Al, 8-15% Cu, 0.03-0.2% Mg, and the balance Zn with inevitable impurities and in which relationship between Al and Cu contents satisfies an inequality 0<Al-0.85Cu<=10 and is applicale to metal mold for plastic molding. The above alloy is improved in surface hardness due to precipitation of CuAl2 in the surface layer part and also is improved in plastic deformability and reduced in brittleness in the inside and, moreover, it has high mechanical strength and low casting temp. As a result, when used for the above metal mold, the above alloy is free from cracks on the surface, also free from deterioration in metal mold accuracy even after subjected to repeated molding operations, and easy to be cast and worked.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、機械的強度に優れかつ鋳造・加工が容易であ
るため、プラスチックの成形用金型などに使用可能な亜
鉛基合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a zinc-based alloy that has excellent mechanical strength and is easy to cast and process, and thus can be used for molds for molding plastics and the like.

(従来の技術) 近年、OA機器などの各濡損器の/%ウジング、部品な
どがプラスチック化されるとともに、機器の性能を向上
させるべくモデルチェンジが頻繁に行われている。それ
に伴って、プラスチックの成形サイクルが短くなり、多
品種少量生産が実施されている。このことから、プラス
チックの成形用金型には、鋳造・加工が容易な材料が求
められている。
(Prior Art) In recent years, plastic parts have been used for various damping devices such as OA equipment, and model changes have been made frequently in order to improve the performance of the equipment. Along with this, plastic molding cycles have become shorter, and high-mix, low-volume production is being implemented. For this reason, plastic molds are required to be made of materials that are easy to cast and process.

プラスチックの成形用金型、特に射出成形用金型には、
鋳鉄、鋳鋼、銅合金などの金属が用いられている。しか
し、これらの金属は、機械的強度には優れるものの、#
造・加工が困難である。鋳鉄・#鋼は鋳造温度が高いた
め、鋳造には大規模な設備を要する。鋳造は砂型でなさ
れるため、鋳造品の表面が粗くなり、そのために、表面
研磨に多大な工数を必要とする。しかも、精密な金型を
製作するためには、長時間の放電加工を施す必要がある
。銅合金も鋳造温度が高いため、鋳造には酸化防止など
の設備や処理を要する。鋳造温度は1000℃を越える
ため、鋳型には石こうが使用できず、セラミックモール
ドが用いられる。セラミックモールドは高価であるうえ
に鋳型の製作が困難である。しかも、銅合金は同様に長
時間の放電加工が必要である。
Plastic molds, especially injection molds,
Metals such as cast iron, cast steel, and copper alloys are used. However, although these metals have excellent mechanical strength, #
Difficult to manufacture and process. Because cast iron and #steel have high casting temperatures, large-scale equipment is required for casting. Since casting is performed in a sand mold, the surface of the cast product becomes rough, and therefore, a large number of man-hours are required for surface polishing. Moreover, in order to manufacture precise molds, it is necessary to perform electric discharge machining for a long time. Copper alloys also require high casting temperatures, so casting requires equipment and treatments to prevent oxidation. Since the casting temperature exceeds 1000°C, gypsum cannot be used for the casting mold, so a ceramic mold is used. Ceramic molds are expensive and difficult to manufacture. Moreover, copper alloys similarly require long electrical discharge machining.

このような欠点を解決するために、鋳造温度が低く、鋳
造・加工が容易なプラスチック成形用金型材料として、
亜鉛基合金が提案されている。この亜鉛基合金は、グイ
キャスト用亜鉛合金(2DC−1)をベースとしており
、亜鉛のほかにアルミニウム、銅、マグネシウムなどを
含有している。例えば、特開昭51−79633号公報
には、重量百分率で、アルミニウム8〜11チ、銅8〜
11チ、ニッケル8〜11チ、マグネシウム0.03〜
0.06 %を含有し、残部が亜鉛と不可避的不純物よ
りなる高強度耐摩耗亜鉛基合金が開示されている。しか
し、これらの亜鉛基合金は機械的強度が不充分であり、
プラスチックの成形用金型とした場合、表面クラックの
発生するおそれがある。また、この金型を用いて成形作
業を重ねるにつれて、金型の精度が低下し、成形品にパ
リが発生する。
In order to solve these drawbacks, we developed a mold material for plastic molding that has a low casting temperature and is easy to cast and process.
Zinc-based alloys have been proposed. This zinc-based alloy is based on the zinc alloy for gui casting (2DC-1), and contains aluminum, copper, magnesium, etc. in addition to zinc. For example, in Japanese Patent Application Laid-open No. 51-79633, aluminum is 8 to 11 inches, copper is 8 to 10 inches by weight percentage,
11 inches, nickel 8-11 inches, magnesium 0.03-
A high-strength, wear-resistant zinc-based alloy is disclosed containing 0.06% of zinc, with the remainder consisting of zinc and unavoidable impurities. However, these zinc-based alloys have insufficient mechanical strength;
When used as a mold for plastic molding, surface cracks may occur. Furthermore, as molding operations are repeated using this mold, the precision of the mold decreases and cracks occur in the molded product.

(発明が解決しようとする問題点) 本発明は上記従来の問題点を解決するものであり、その
目的とするところは、機械的強度に優れかつ鋳造・加工
が容易な亜鉛基合金を提供することにある。
(Problems to be Solved by the Invention) The present invention solves the above conventional problems, and its purpose is to provide a zinc-based alloy that has excellent mechanical strength and is easy to cast and process. There is a particular thing.

(問題点を解決するための手段) 本発明の要旨は、ff1ji百分率で、アルミニウム1
1〜20%、銅8〜15チ及びマグネシウム0.03〜
0.2チを含有し、アルミニウムの含有率が銅に対し+
11式を満たし、残部が亜鉛と不可避的不純物よりなる
ことを特徴とする亜鉛基合金に存する。
(Means for solving the problem) The gist of the present invention is that aluminum 1
1-20%, copper 8-15% and magnesium 0.03-
Contains 0.2 h, and the aluminum content is ++ compared to copper.
It is a zinc-based alloy that satisfies formula 11, with the remainder consisting of zinc and inevitable impurities.

0<[AI(%)]−0,85[Cu(%)]≦10・
・・・・・・・・・・・・・・(1)即ち、本発明は、
重量分率で、アルミニウム11〜20チ、銅8〜15%
及びマグネシウム0゜03〜0.2チを含有し、残部が
亜鉛と不可避的不純物よりなり、かつ、アルミニウムの
銅に対する比率は銅の0.85倍、即ちCuAl2の化
学当量を満たす量より多い+11式の関係を満たすこと
が必須の要件である。
0<[AI(%)]-0,85[Cu(%)]≦10・
・・・・・・・・・・・・・・・(1) That is, the present invention:
Weight fraction: 11-20% aluminum, 8-15% copper
and 0.03 to 0.2% of magnesium, the balance being zinc and unavoidable impurities, and the ratio of aluminum to copper is 0.85 times that of copper, that is, more than the amount that satisfies the chemical equivalent of CuAl2+11 It is an essential requirement that the relationship in the formula be satisfied.

この合金は、実際Cζは、合金の表111部にCu A
 12が析出するため表面硬度が増大し、内部は亜鉛と
アルミニウムの超塑性合金と亜鉛−銅のε相よりなるた
め、結晶粒の成長が押えられると共薯ζ、塑性変形性が
増大し、これらの高硬度合金にありがちな脆さがなくな
っているのが特徴である。
In fact, Cζ of this alloy is Cu A in Table 111 of the alloy.
12 precipitates, the surface hardness increases, and the interior consists of a superplastic alloy of zinc and aluminum and the ε phase of zinc-copper, so when the growth of crystal grains is suppressed, the eutectic ζ and plastic deformability increase, It is characterized by the absence of the brittleness that is common with these high-hardness alloys.

この合金において、マグネシウムの添加は粒間腐食の抑
制に必須である。添加量が多すぎると合金の脆性が増し
、強度低下を生じる。アルミニウムの含有量が少なすぎ
ると硬度不足を生じるとともに強度も不十分であり、多
すぎると硬度は増大するが、脆くなり、強度が低下する
In this alloy, the addition of magnesium is essential to suppress intergranular corrosion. If the amount added is too large, the brittleness of the alloy increases and strength decreases. If the aluminum content is too low, the hardness will be insufficient and the strength will also be insufficient; if the aluminum content is too high, the hardness will increase, but it will become brittle and the strength will decrease.

銅についてはその傾向が顕著になり、特に、添加量が多
すぎる場合は合金の流動性を著しく阻害するため、アル
ミニウム以上に成分比の管理を必要とする。
This tendency is more pronounced with copper, and in particular, if the amount added is too large, the fluidity of the alloy is significantly inhibited, so the component ratio must be controlled even more than with aluminum.

(実施例) 以下に本発明を実施例について述べる。(Example) The present invention will be described below with reference to examples.

実施例1 アルミニウム11.0重量1%、銅8.0重量%、マグ
ネシウム0.05重量%及び残分亜鉛を均一に溶融させ
た後、JIS  H5301参考図Aに示される引張り
試験片を作成した。この試験片ノ引張り強度(kV/d
 ’)をJIS  Z  2241に従って求めた。さ
らに、試験片のブリネル硬度(I(B)を、JIS  
Z  2243に従って測定した。その結果、引張り強
度は4s、5(kg/−)、そしてブリネル硬度は16
0(HB)であった。これらの結果を第1表に示す。
Example 1 After uniformly melting aluminum 11.0% by weight, copper 8.0% by weight, magnesium 0.05% by weight and residual zinc, a tensile test piece shown in JIS H5301 reference diagram A was created. . The tensile strength of this test piece (kV/d
') was determined according to JIS Z 2241. Furthermore, the Brinell hardness (I(B)) of the test piece was determined by JIS
Measured according to Z 2243. As a result, the tensile strength was 4s, 5 (kg/-), and the Brinell hardness was 16.
It was 0 (HB). These results are shown in Table 1.

実施例2 アルミニウムを15.0重量%としたこと以外は、実施
例1と同様にして引張り試験片を作成した。この試験片
の引張り強度およびブリネル硬度を測定したところ、引
張り強度は45.6(ki/d )、そしてブリネル硬
度は210 (HB)であった。これらの結果を第1表
に示す。
Example 2 A tensile test piece was prepared in the same manner as in Example 1, except that the aluminum content was 15.0% by weight. When the tensile strength and Brinell hardness of this test piece were measured, the tensile strength was 45.6 (ki/d) and the Brinell hardness was 210 (HB). These results are shown in Table 1.

実施例3 銅を11.0重量多としたこと以外は、実施例1と同様
にして引張り試験片を作成した。この試験片の引張り強
度およびブリネル硬度を測定したところ、引張り強度は
45.3(kq/−)、そしてブリネル硬度は175(
HB)であった。
Example 3 A tensile test piece was prepared in the same manner as in Example 1 except that the weight of copper was increased by 11.0%. When the tensile strength and Brinell hardness of this test piece were measured, the tensile strength was 45.3 (kq/-) and the Brinell hardness was 175 (
HB).

これらの結果を第1表に示す。These results are shown in Table 1.

実施例4 アルミニウムを18.07tjlチ、銅を11.0重量
%とした以外は、実施例1と同様に引張り試験片を作成
した。この試験片の引張り強度およびブリネル硬度を測
定したところ、引張り強度は49.2(#/aJ)、そ
してブリネル硬度は215(HB)であった。これらの
結果を第1表に示す。
Example 4 A tensile test piece was prepared in the same manner as in Example 1, except that the aluminum content was 18.07 tjl and the copper content was 11.0% by weight. When the tensile strength and Brinell hardness of this test piece were measured, the tensile strength was 49.2 (#/aJ) and the Brinell hardness was 215 (HB). These results are shown in Table 1.

実施例5 アルミニウムを13.0重ji襲、Mを15.0重量%
とした以外は、実施例1と同様に引張り試験片を作成し
た。この試験片の引張り強度及びブリネル硬度を測定し
たところ、引張り強度は47.8(kq/−)、そして
ブリネル硬度は205(HB)であった。これらの結果
を第1表に示す。
Example 5 13.0% aluminum and 15.0% M
A tensile test piece was prepared in the same manner as in Example 1, except for the following. When the tensile strength and Brinell hardness of this test piece were measured, the tensile strength was 47.8 (kq/-) and the Brinell hardness was 205 (HB). These results are shown in Table 1.

実施例6 アルミニウムを20.0重量%、銅を15.0重j1%
とした以外は、実施例1と同様に引張り試験片を作成し
た。この試験片の引張り強度およびブリネル硬度を測定
したところ、引張り強度は45.1(kg/lj)、そ
してブリネル硬度は250(HB)であった。これらの
結果を第1表に示す。
Example 6 20.0% by weight of aluminum, 15.0% by weight of copper
A tensile test piece was prepared in the same manner as in Example 1, except for the following. When the tensile strength and Brinell hardness of this test piece were measured, the tensile strength was 45.1 (kg/lj) and the Brinell hardness was 250 (HB). These results are shown in Table 1.

(以下余白) 比較例1 アルミニウムを10.61!flチ、銅を10.2ii
量チ、マグネシウムを0.041fi<とし、さらIζ
ニッケル9.9重量%を追加した以外は、実施例1と同
様に引張り試験片を作成した。この試験片の引張り強度
およびブリネル硬度を測定したところ、ブリネル硬度は
200(HB)を示したが、引張強度は35.0(kg
/lj)と低く、また非常に脆く、加工の際に破壊した
。これらの結果を第2表に示す。
(Left below) Comparative Example 1 Aluminum 10.61! fl chi, copper 10.2ii
The amount of magnesium is 0.041fi<, and Iζ
A tensile test piece was prepared in the same manner as in Example 1, except that 9.9% by weight of nickel was added. When the tensile strength and Brinell hardness of this test piece were measured, the Brinell hardness was 200 (HB), but the tensile strength was 35.0 (kg
/lj), and was very brittle and broke during processing. These results are shown in Table 2.

比較例2 アルミニウムを4.0重量%、銅を3.0重量%、マグ
ネシウムを0.04M#チとした以外は、実施例1と同
様に引張り試験片を作成した。この試験片の引張り強度
およびブリネル硬度を測定したところ、引張り強度は2
5.6(〜/−)、そしてブリネル硬度は110(HB
)であった。
Comparative Example 2 A tensile test piece was prepared in the same manner as in Example 1, except that the aluminum content was 4.0% by weight, the copper content was 3.0% by weight, and the magnesium content was 0.04M#. When the tensile strength and Brinell hardness of this test piece were measured, the tensile strength was 2.
5.6 (~/-), and the Brinell hardness is 110 (HB
)Met.

これらの結果を第2表に示す。These results are shown in Table 2.

比較例3 アルミニウムを3.5重量%、銅を3.5重量%、マグ
ネシウムを0.04重量%とした以外は、実施例1と同
様に引張り試験片を作成した。この試験片の引張り強度
およびブリネル硬度を測定したところ、引張り強度は2
7.6(kg/lj)、ブリネル硬度は115(HB)
であった。これらの結果を第2表に示す。
Comparative Example 3 A tensile test piece was prepared in the same manner as in Example 1, except that the aluminum content was 3.5% by weight, the copper content was 3.5% by weight, and the magnesium content was 0.04% by weight. When the tensile strength and Brinell hardness of this test piece were measured, the tensile strength was 2.
7.6 (kg/lj), Brinell hardness is 115 (HB)
Met. These results are shown in Table 2.

比較例4 アルミニウムを20.0311J3t%とした以外は、
実施例1と同様に引張り試験片を作成した。この試験片
の引張り強度及びブリネル硬度を測定したところ、引張
り強度は25.3(#/d)、そしてブリネル硬度は2
25(HB)であった。
Comparative Example 4 Except that aluminum was 20.0311J3t%,
A tensile test piece was prepared in the same manner as in Example 1. When the tensile strength and Brinell hardness of this test piece were measured, the tensile strength was 25.3 (#/d) and the Brinell hardness was 2.
It was 25 (HB).

これらの結果を第2表に示す。These results are shown in Table 2.

比較例5 アルミニウムを20.0重量%、銅を11.0重量%と
した以外は、実施例1と同様に引張り試験片を作成した
。この試験片の引張り強度及びブリネル硬度を測定した
ところ、引張り弛度は39.2ckg/d’)、そして
ブリネル硬度は235(FIB)であった。これらの結
果を第2表に示す。
Comparative Example 5 A tensile test piece was prepared in the same manner as in Example 1, except that the aluminum content was 20.0% by weight and the copper content was 11.0% by weight. When the tensile strength and Brinell hardness of this test piece were measured, the tensile sag was 39.2 ckg/d') and the Brinell hardness was 235 (FIB). These results are shown in Table 2.

比較例6 銅を15.0重f1チとした以外は、実施例1と同様に
引張り試験片を作成した。この試験片の引張り強度及び
ブリネル硬度を測定したところ、引張り強度は37.8
(kg/−)、そしてブリネル硬度は245(HB)で
あった。これらの結果を第2表に示す。
Comparative Example 6 A tensile test piece was prepared in the same manner as in Example 1, except that the copper was 15.0 weight f1 thick. When the tensile strength and Brinell hardness of this test piece were measured, the tensile strength was 37.8.
(kg/-), and the Brinell hardness was 245 (HB). These results are shown in Table 2.

比較例7 アルミニウムを20.0I!ffi%、銅を15.0重
j1%、マグネシウムを0.35 !! m %とした
以外は、実施例1と同様に引張り試験片を作成した。
Comparative Example 7 Aluminum 20.0I! ffi%, copper 15.0w1%, magnesium 0.35! ! A tensile test piece was prepared in the same manner as in Example 1, except that m % was used.

この試験片の引張り強度及びブリネル硬度を測定したと
ころ、引張り強度は35.1(kg/i)、そしてブリ
ネル硬度は250(I(B)であった。
When the tensile strength and Brinell hardness of this test piece were measured, the tensile strength was 35.1 (kg/i), and the Brinell hardness was 250 (I(B)).

これらの結果を第2表に示す。These results are shown in Table 2.

(以下余白) (発明の効果) 本発明亜鉛基合金は、上記の如き構成とされているので
、表面硬度が高く、かつ機械的強度に優れて詔り、しか
も脆さがない。従って、この合金をプラスチックの成形
用金型とした場合、表面にクラックが発生するおそれは
ない。この合金を用いて成形作業を重ねても、金型の精
度が低下しない。この合金は鋳造温度が低く、鋳造・加
工も容易である。その結果、本発明亜鉛基合金は、プラ
スチックの成形用金型の材料として有用である。
(The following is a blank space) (Effects of the Invention) Since the zinc-based alloy of the present invention has the above-described structure, it has high surface hardness, excellent mechanical strength, and is not brittle. Therefore, when this alloy is used as a plastic mold, there is no risk of cracks occurring on the surface. Even after repeated molding operations using this alloy, the accuracy of the mold does not deteriorate. This alloy has a low casting temperature and is easy to cast and process. As a result, the zinc-based alloy of the present invention is useful as a material for plastic molds.

Claims (1)

【特許請求の範囲】 1、重量分率で、アルミニウム11〜20%、銅8〜1
5%及びマグネシウム0.03〜0.2%を含有し、ア
ルミニウムの含有率が銅に対し(1)式を満たし、残部
が亜鉛と不可避的不純物よりなることを特徴とする亜鉛
基合金。 0<〔Al(%)〕−0.85〔Cu(%)]≦10・
・・・・・・・・・・・・・・(1)
[Claims] 1. Aluminum 11-20%, copper 8-1% by weight
5% and magnesium 0.03 to 0.2%, the aluminum content satisfies formula (1) with respect to copper, and the balance is zinc and inevitable impurities. 0<[Al(%)]-0.85[Cu(%)]≦10・
・・・・・・・・・・・・・・・(1)
JP20486186A 1986-08-29 1986-08-29 Zinc-base alloy Pending JPS6360250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20486186A JPS6360250A (en) 1986-08-29 1986-08-29 Zinc-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20486186A JPS6360250A (en) 1986-08-29 1986-08-29 Zinc-base alloy

Publications (1)

Publication Number Publication Date
JPS6360250A true JPS6360250A (en) 1988-03-16

Family

ID=16497609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20486186A Pending JPS6360250A (en) 1986-08-29 1986-08-29 Zinc-base alloy

Country Status (1)

Country Link
JP (1) JPS6360250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02200322A (en) * 1989-01-31 1990-08-08 Mitsui Mining & Smelting Co Ltd Mold and stock block for this mold
JPH0649572A (en) * 1992-07-01 1994-02-22 Mitsui Mining & Smelting Co Ltd High strength zinc alloy for die casting and zinc alloy die-cast parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02200322A (en) * 1989-01-31 1990-08-08 Mitsui Mining & Smelting Co Ltd Mold and stock block for this mold
JPH0649572A (en) * 1992-07-01 1994-02-22 Mitsui Mining & Smelting Co Ltd High strength zinc alloy for die casting and zinc alloy die-cast parts

Similar Documents

Publication Publication Date Title
KR101274089B1 (en) High strength aluminum alloys for die casting
JPS6360250A (en) Zinc-base alloy
US2795501A (en) Copper base alloys
CN108265209B (en) A kind of aluminum alloy materials and its preparation method and application
JPS6338551A (en) Zinc alloy containing rare earth element
JPH01234539A (en) Zinc-based alloy
JP6267408B1 (en) Aluminum alloy and aluminum alloy castings
JPH01234538A (en) Zinc-based alloy
KR20190106170A (en) High strength aluminium-zinc alloy and high strength aluminium-zinc alloy casting
JPS63203741A (en) Titanium-containing zinc-based alloy
JPS63219542A (en) Manganese-containing zinc based alloy
JPS6338550A (en) Zinc alloy containing zirconium
JPS63203740A (en) Zinc-base alloy
KR101269516B1 (en) Scandium free high strength aluminum alloys for die casting
KR101181846B1 (en) High strength copper alloys for die casting
JPH01230742A (en) Zinc-based alloy
JPH01247541A (en) Zinc-base alloy
JPH01246338A (en) Zinc-based alloy
JPS6360249A (en) Zinc-base alloy
JPH0819504B2 (en) Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast parts
JPS6232255B2 (en)
JPH01255633A (en) Low aging zinc-based alloy
JPH01165740A (en) Zinc-based alloy
JP2002226932A (en) Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor
JPS6338549A (en) Zinc alloy