JPH02200322A - Mold and stock block for this mold - Google Patents

Mold and stock block for this mold

Info

Publication number
JPH02200322A
JPH02200322A JP1943489A JP1943489A JPH02200322A JP H02200322 A JPH02200322 A JP H02200322A JP 1943489 A JP1943489 A JP 1943489A JP 1943489 A JP1943489 A JP 1943489A JP H02200322 A JPH02200322 A JP H02200322A
Authority
JP
Japan
Prior art keywords
mold
zinc
weight
based alloy
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1943489A
Other languages
Japanese (ja)
Other versions
JPH0641620B2 (en
Inventor
Kohei Kubota
耕平 久保田
Tsutomu Sato
勉 佐藤
Ryuji Ninomiya
隆二 二宮
Tadataka Kogori
古郡 恭敬
Takuji Yoshida
卓司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP1019434A priority Critical patent/JPH0641620B2/en
Publication of JPH02200322A publication Critical patent/JPH02200322A/en
Publication of JPH0641620B2 publication Critical patent/JPH0641620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a mold or a stock block for a mold excellent in strength and wear resistance, good in workability and dimensional accuracy and poor in occurrence of cavities by machining Zn alloy wherein contents of Al, Cu, Mg are specified. CONSTITUTION:The composition of a mold is made up of Al: 12.1-30wt.%, Cu: 6-20%, Mg: 0.01-20% and Zn for the rest except inevitable impurities and, if necessary, at least one element selected from a group of elements such as Ti, Zn, Ni, Co, Mn, Li, Si, La is contained by 2% or under. Zn alloy containing this element is machined, an injection mold for plastic material, etc., and a stock block used for this mold are formed. This is suitable for an injection mold to perform some tens of thousands of shots.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金型および該金型用素材ブロックに関し、詳
しくは一定組成の亜鉛基合金を機械加工してなり、高強
度で、かつ耐摩耗性に優れ、しかも加工性や寸法精度が
良好で、巣の発生の少ない射出成形用金型および該金型
に用いられる素材ブロックに関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a mold and a material block for the mold, and more specifically, the present invention relates to a mold and a material block for the mold, and more specifically, it is made by machining a zinc-based alloy of a certain composition, and has high strength and durability. The present invention relates to an injection mold that has excellent abrasion resistance, good workability and dimensional accuracy, and less occurrence of cavities, and a material block used in the mold.

[従来の技術] プラスチックの射出成形用金型の分野において、数十刃
ショットを超える大規模量産用に鋼製ブロックを機械加
工して製作された金型が使用され、他方、量産前の少量
試作用として亜鉛基合金を砂型鋳造により製作された金
型が使用されている。
[Prior Art] In the field of plastic injection molds, molds manufactured by machining steel blocks are used for large-scale mass production with more than a few dozen blade shots, and on the other hand, molds manufactured by machining steel blocks are used for large-scale mass production with more than a few dozen blade shots. A mold made of zinc-based alloy by sand casting is used as a prototype.

一方、近年の多品種少量生産の潮流の中で致方ショット
程度の寿命を持つ簡便な金型が要求されている。
On the other hand, with the recent trend toward high-mix, low-volume production, there is a demand for a simple mold with a lifespan comparable to that of a shotgun.

このような要求に対して、鋼製金型は機械加工に長時間
を要するという欠点があるため、機動的なモデルチェン
ジに速やかに対応することができない。
In response to such demands, steel molds have the drawback of requiring a long time for machining, so they cannot respond quickly to flexible model changes.

また、アルミニウム合金を機械加工した金型が提案され
ているが、素材ブロックとしてのインゴットに巣が生じ
易いという欠点を有するため、これを圧延することが試
みられている。しかし、この場合には圧延するブロック
寸法に制約が出てくる。更に、加工ミスや設計変更に伴
なって必要とされる補修溶接が難しいとか、また圧延後
も板厚中心部に巣が残存するとか、金型の鏡面仕上が難
しいきいう課題を有する。
Furthermore, a mold machined from an aluminum alloy has been proposed, but it has the disadvantage that cavities are likely to form in the ingot as the material block, so attempts have been made to roll this mold. However, in this case, there are restrictions on the size of the block to be rolled. Furthermore, there are other issues such as difficulty in repair welding that is required due to processing errors or design changes, cavities remaining in the center of the plate thickness even after rolling, and difficulty in achieving a mirror finish on the mold.

さらには、従来より少量試作用として用いられていた鋳
造用亜鉛基合金、−船釣には4.1重量%AJ−3重量
%Cu−0.05重量%M4−Zn(商品名ZAS)は
数千ショットの寿命しかないため、上記要求は満たされ
ない。
Furthermore, the zinc-based alloys for casting that have been used for small-scale trial production in the past - 4.1% by weight AJ for boat fishing - 3% by weight Cu - 0.05% by weight M4-Zn (trade name ZAS) The above requirements are not met because the lifespan is only a few thousand shots.

更に、特開昭63−135043号公報には、高強度、
高耐摩耗性を示唆する亜鉛基合金を用いた鋳造成形した
金型が提案されている。しかし、この亜鉛基合金を従来
の鋳造金型として用いた場合に、上記したZAS合金(
商品名)と異なり、その表面および表面近傍に巣が生成
し易いという課題がある。
Furthermore, Japanese Patent Application Laid-open No. 63-135043 discloses high strength,
Casting molds using zinc-based alloys, which suggest high wear resistance, have been proposed. However, when this zinc-based alloy is used as a conventional casting mold, the above-mentioned ZAS alloy (
Unlike the product name (trade name), there is a problem in that nests are likely to form on and near the surface.

この他、このような鋳造金型は、収縮幅を見込んでも、
得られる金型の0.1〜0.2#程度の寸法誤差は避け
られず、寸法精度に劣るため、嵌合が要求される射出成
形用金型として使用できないことや、鋳造法の特質から
例えばきのこ状等の末広がりな形状の金型が得られず、
得られる形状に制約があるという課題も有する。
In addition, such casting molds, even if the shrinkage width is taken into account,
Dimensional errors of about 0.1 to 0.2# in the resulting mold are unavoidable, and due to poor dimensional accuracy, it cannot be used as an injection molding mold that requires fitting, and due to the characteristics of the casting method. For example, it is not possible to obtain a mold with a shape that widens at the end, such as a mushroom shape.
Another problem is that there are restrictions on the shape that can be obtained.

【発明が解決しようとする課題] 本発明は、このような従来技術の有する課題に鑑みてな
されたもので、高強度で、かつ耐摩耗性に優れ、しかも
加工性や寸法精度が良好で、巣の発生の少ない射出成形
用金型および該金型に用いられる素材ブロックを提供す
ることを目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the problems of the prior art, and it has high strength and excellent wear resistance, as well as good workability and dimensional accuracy. It is an object of the present invention to provide an injection molding die with less occurrence of cavities and a material block used in the die.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の上記目的は、一定組成を有する亜鉛基合金ブロ
ックを機械加工することによって達成される。
The above objects of the invention are achieved by machining a zinc-based alloy block having a constant composition.

すなわち本発明の金型は、アルミニウム12.1〜5o
iii%、銅6〜2DTJ量%、マグネシウム0.01
〜0.20m11%、必要に応じてチタン、ジルコニウ
ム、ニッケル、コバルト、マンガン、リチウム、ケイ素
、ランタン系列元素から選ばれる少なくともIN2重量
%以下、不可避不純物を除いて残部が亜鉛である亜鉛基
合金からなり、機械加工により得られるものである。
That is, the mold of the present invention is made of aluminum 12.1 to 5
iii%, copper 6-2DTJ amount%, magnesium 0.01
~0.20m11%, optionally at least 2% by weight of IN selected from titanium, zirconium, nickel, cobalt, manganese, lithium, silicon, lanthanum series elements, from a zinc-based alloy with the balance being zinc excluding unavoidable impurities. This is obtained by machining.

本願発明の金型に用いられる亜鉛基合金は、上記のよう
な組成を有することが必要で、アルミニウムの含有量が
30重量%を超えると亜鉛基合金が有している良好な溶
接性が失われると共にT相(Cu3ZnAji)を形成
して脆くなる。アルミニウムの含有量が12重量%未満
では添加できる銅の量に限界があり、より高強度゛のも
のが得られない傾向にある。
The zinc-based alloy used in the mold of the present invention must have the above-mentioned composition; if the aluminum content exceeds 30% by weight, the good weldability of the zinc-based alloy will be lost. At the same time, a T phase (Cu3ZnAji) is formed and becomes brittle. If the aluminum content is less than 12% by weight, there is a limit to the amount of copper that can be added, and there is a tendency that higher strength cannot be obtained.

また、銅の含有量が20重量%を超えると50μm以上
の鋳造欠陥が鋳造品内部に迄生成し易くなるため好まし
くなく、また6重量%未満では亜鉛基合金の凝固時に成
分偏析、すなわちアルミニウムが上に集まる傾向が生じ
て高さ方向に機械的特性が変化し、さらには金型に所定
の機械的強度が付与できない。
Furthermore, if the copper content exceeds 20% by weight, casting defects of 50 μm or more are likely to occur inside the cast product, which is undesirable, while if it is less than 6% by weight, component segregation occurs during solidification of the zinc-based alloy, that is, aluminum There is a tendency for the particles to gather at the top, resulting in changes in mechanical properties in the height direction, and furthermore, it is not possible to impart the desired mechanical strength to the mold.

マグネシウムは、Zn −AJ系合金の粒界腐食を防止
するために必要であるが、その含有量が0.20ffI
量%を超えると金型が脆くなり、0.01重量%未満で
は含有効果が小さい。
Magnesium is necessary to prevent intergranular corrosion in Zn-AJ alloys, but its content is 0.20ffI.
If it exceeds 0.01% by weight, the mold becomes brittle, and if it is less than 0.01% by weight, the effect of inclusion is small.

チタン、ジルコニウム、ニッケル、コバルト、マンガン
、リチウム、ケイ素、ランタン系列元素から選ばれる少
なくとも1種は、金型の機械的強度、例えば硬さを改善
するために任意に含有されるが、2.0重量%を超えて
含有してもそれ以上の含有効果は=ない。
At least one selected from titanium, zirconium, nickel, cobalt, manganese, lithium, silicon, and lanthanum series elements is optionally contained in order to improve the mechanical strength of the mold, such as hardness, but 2.0 Even if it is contained in an amount exceeding % by weight, there is no further effect of its inclusion.

本発明の金型は、上記亜鉛基合金からなる素材ブロック
を機械加工することによって得られるが、同一組成の亜
鉛基合金を鋳造して金型を得た場合には、本発明のよう
な良好な金型は得られない。
The mold of the present invention can be obtained by machining a raw material block made of the above-mentioned zinc-based alloy, but when the mold is obtained by casting a zinc-based alloy of the same composition, the mold of the present invention can be It is not possible to obtain a suitable mold.

すなわち、特開昭83−85043号公報に記載されて
いるように鋳造して金型を得た場合には、上述のように
金型の表面および表面近傍に巣が発生し、射出成形品の
品質劣化につながるのみならず、寸法精度に劣り、嵌合
が要求される射出成形用金型として使用できず、しかも
複雑な形状の金型が得られないのである。
That is, when a mold is obtained by casting as described in JP-A No. 83-85043, cavities occur on and near the surface of the mold as described above, and the injection molded product is damaged. Not only does this lead to quality deterioration, but the dimensional accuracy is poor and it cannot be used as an injection mold that requires fitting, and moreover, it is impossible to obtain a mold with a complicated shape.

本発明の金型の製造方法の好ましい一例は次の通りであ
る。
A preferred example of the method for manufacturing the mold of the present invention is as follows.

先ず、上記組成範囲となるように、所定量の各成分を黒
鉛るつぼ等の中に添加し、これを溶解して上記組成範囲
の亜鉛基合金を得る。
First, a predetermined amount of each component is added to a graphite crucible or the like so that the composition falls within the above composition range, and is melted to obtain a zinc-based alloy having the above composition range.

次に、この亜鉛基合金を450〜550℃で溶解し、所
定寸法の鋳型に鋳造し、本発明の素材ブロックを得る。
Next, this zinc-based alloy is melted at 450 to 550°C and cast into a mold with a predetermined size to obtain the material block of the present invention.

ここに用いられる鋳造方法は、アルミニウムの偏析を避
けるために、上部を加熱して底部を冷却するトップヒー
ト法を採用することが望ましい。また、鋳型材料として
は、鋳物砂を使用することができるが、好ましくは鋳鉄
製材料、更に好ましくはグラファイト等の炭素材料やセ
ラミック中に水冷管を配管して用いることができる。こ
のようにグラファイト等を用いる場合には、得られる金
型の機械的強度は、鋳物砂を用いた場合と比較して引張
強さが2に9 r / m 2  ブリネル硬さ(Hs
 )が5程度向上する。
The casting method used here preferably employs a top heat method in which the top part is heated and the bottom part is cooled, in order to avoid segregation of aluminum. Further, as the mold material, foundry sand can be used, but it is preferably a cast iron material, more preferably a carbon material such as graphite, or a ceramic material with a water-cooled pipe installed therein. When graphite or the like is used in this way, the mechanical strength of the mold obtained is such that the tensile strength is 2 to 9 r/m 2 Brinell hardness (Hs
) will improve by about 5.

このようにして得られた本発明の素材ブロック寸法、形
状は任意であるが、−辺100〜11000jの直方体
が一般的である。
Although the dimensions and shape of the material block of the present invention obtained in this manner are arbitrary, it is generally a rectangular parallelepiped with -sides of 100 to 11000j.

次に、この素材ブロックに放電加工等の機械加工を施し
、所望形状の本発明の金型が得られる。
Next, this material block is subjected to mechanical processing such as electric discharge machining to obtain a mold of the present invention having a desired shape.

この際に、表面から数ミリ以内が金型の成形面にならな
いように配慮して機械加工を行なう。好ましくは表面の
5ml程度を最初に研削しておくとよい。
At this time, machining is performed taking care to ensure that the molding surface of the mold does not become within a few millimeters of the surface. Preferably, about 5 ml of the surface should be ground first.

この金型の引張強さは32kgf/jIII2以上、ブ
リネル硬さ(Ha)は130以上である。金型に要求さ
れる寿命は、金型形状、射出成形に用いられる熱可塑性
樹脂の種類によって異なるが、ポリアセタール樹脂を使
用し、精密ギヤ形状の金型を例に挙げれば、15000
〜20000シヨツトが要求されるが、この要求は引張
強さ32 kgr/1ttrx2以上、ブリネル硬さ(
Ha )は100以上、好ましくは105以上で達成さ
れる。本発明の金型は、上記機械的強度の数値から、こ
の要求に充分に対応し得るものである。
This mold has a tensile strength of 32 kgf/jIII2 or more and a Brinell hardness (Ha) of 130 or more. The lifespan required for a mold varies depending on the shape of the mold and the type of thermoplastic resin used for injection molding, but for example, a mold in the shape of a precision gear made of polyacetal resin has a lifespan of 15,000 yen.
~20,000 shots are required, but this requirement requires a tensile strength of 32 kgr/1ttrx2 or more and a Brinell hardness (
Ha ) is achieved at 100 or more, preferably 105 or more. The mold of the present invention can fully meet this requirement due to the above-mentioned mechanical strength values.

また、射出成形した樹脂の表面性として許容されるため
の巣の限界は50μm以下のものが100cIi当り 
5個以内である。本発明の素材ブロックも鋳造により得
られるため巣は発生するが、50μm以上のものは表面
およびその近傍に限られ、この素材ブロックを機械加工
して金型としての所定寸法に仕上げることによって、金
型にはほとんど巣の発生は見られず、このためこの金型
を用いた射出成形品にもこれに起因した欠陥は発生しな
い。
In addition, the limit of cavities that are acceptable for the surface quality of injection molded resin is 50 μm or less per 100 cIi.
No more than 5. Since the material block of the present invention is also obtained by casting, cavities occur, but those with a diameter of 50 μm or more are limited to the surface and its vicinity. Almost no cavities are observed in the mold, and therefore, injection molded products using this mold do not suffer from defects caused by these cavities.

[実施例] 以下、実施例等に基づいて本発明を具体的に説明する。[Example] The present invention will be specifically described below based on examples and the like.

なお、第1表中の数値は特記しない限り重量%基準であ
る。
Note that the values in Table 1 are based on weight % unless otherwise specified.

第1表に示す各成分の所定量を黒鉛るつぼに添加、溶解
して亜鉛基合金を得た。
Predetermined amounts of each component shown in Table 1 were added to a graphite crucible and melted to obtain a zinc-based alloy.

次に、この亜鉛基合金を鋳鉄製の鋳型内に投入し、30
0am X  300aw X  30Gamの素材ブ
ロックを鋳造した。この鋳造は、鋳型の上部をバー ナ
ーで加熱するトップヒート法を用いた。
Next, this zinc-based alloy was put into a cast iron mold, and
A material block of 0am x 300aw x 30gam was cast. This casting used the top heat method, in which the upper part of the mold was heated with a burner.

この素材ブロックの表面を5履研削した後、フライス加
工、放電加工等によりギヤ状金型を得た。
After grinding the surface of this material block, a gear-shaped mold was obtained by milling, electrical discharge machining, etc.

この際の得られた金型の引張強さ、ブリネル硬さ、アル
ミニウムの偏析の有無、巣の状況の良否および溶接性能
の良否について評価し、試験結果を第1表に示した。ま
た、実施例3においては、機械加工性能として旋盤加工
性能および放電加工性能を評価し、結果を第2表に示し
た。
The resulting molds were evaluated for tensile strength, Brinell hardness, presence or absence of aluminum segregation, quality of cavities, and quality of welding performance, and the test results are shown in Table 1. Further, in Example 3, lathe machining performance and electrical discharge machining performance were evaluated as machining performance, and the results are shown in Table 2.

これら各評価の試験方法は次の通りである。The test methods for each of these evaluations are as follows.

(試験条件) (1)引張強さ(kgr/m” )  :インストロン
引張り試験機により引張速度law/win、温度60
”Cで測定。
(Test conditions) (1) Tensile strength (kgr/m”): Tensile speed law/win, temperature 60 by Instron tensile testing machine
“Measured at C.

(2)ブリネル硬さ(Ha):ブリネル硬さ試験機によ
り荷重1000 Kg、30秒保持、温度25℃で測定
(2) Brinell hardness (Ha): Measured using a Brinell hardness tester under a load of 1000 kg, held for 30 seconds, and at a temperature of 25°C.

(3)偏析の有無二金型の上部と底部のアルミニウムの
分析を行ない、偏析のあるものを有、ないものを無とし
た。
(3) Presence or absence of segregation The aluminum at the top and bottom of the mold was analyzed, and those with segregation were classified as "Yes" and those without segregation were classified as "No."

(4)巣の状況二金型の表面から10mm内部迄研削し
て観察し、100ci当りに観察される50μm以上の
微小巣が5個以下のものを良好とし、6個以上のものを
不良とした。
(4) Condition of nests 2. Grind 10 mm inside the mold surface and observe it. If there are 5 or less micro-nests of 50 μm or more observed per 100 ci, it is considered good, and if there are 6 or more, it is considered bad. did.

(5)溶接性能:金型と同一材からなる線材を用いてT
IG溶接によって金型表面に肉盛りし、溶接断面を観察
した。溶接部に割れやブローホールが発生したものを不
良、発生していないものを良好とした。
(5) Welding performance: T
Welding was performed on the mold surface by IG welding, and the welded cross section was observed. Those with cracks or blowholes in the welded part were considered poor, and those with no cracks or blowholes were considered good.

(8)旋盤加工性能:回転数、送り、切込みの総合評価
とした。
(8) Lathe processing performance: Comprehensive evaluation of rotation speed, feed, and depth of cut.

(7)放電加工性能:電圧60v、電流6Aの条件で5
5m X 50JIII x深さ20mg+の穴を仕上
面の面積度28μmで加工するのに必要な時間で計算し
た。
(7) Electrical discharge machining performance: 5 under the conditions of voltage 60V and current 6A
The time required to machine a hole of 5 m x 50 JIII x depth of 20 mg + with a finished surface area of 28 μm was calculated.

比較例6〜7 実施例3で用いたのと同寸法の市販のアルミニウム合金
ブロック(J I S  A 7075−T 61材)
および鉄鋼545Cブロツクを用い、実施例3と同様に
放電加工によりギヤ状金型を得た。
Comparative Examples 6-7 Commercially available aluminum alloy blocks with the same dimensions as those used in Example 3 (J I S A 7075-T 61 material)
A gear-shaped mold was obtained by electrical discharge machining in the same manner as in Example 3 using a 545C steel block.

この際の得られたそれぞれの金型の引張強さ、ブリネル
硬さおよび溶接性能の良否について実施例3と同様に評
価し、試験結果を第1表に示した。
The tensile strength, Brinell hardness, and welding performance of each mold thus obtained were evaluated in the same manner as in Example 3, and the test results are shown in Table 1.

また、比較例6においては金型の表面から中心部迄研削
して観察し、巣の状況の良否を判定して試験結果を第1
表に示した。
In addition, in Comparative Example 6, the mold was ground from the surface to the center and observed, the condition of the cavity was judged as good or bad, and the test results were used in the first test.
Shown in the table.

さらに、得られたそれぞれの金型の旋盤加工性能および
放電加工性能を実施例3と同様に評価し、結果を第2表
に示した。
Furthermore, the lathe machining performance and electric discharge machining performance of each of the obtained molds were evaluated in the same manner as in Example 3, and the results are shown in Table 2.

比較例8 実施例3と同様の亜鉛基合金から鋳造によって、実施例
3と同様の寸法および形状のギヤ状金型を製造した。
Comparative Example 8 A gear-shaped mold having the same dimensions and shape as in Example 3 was produced by casting from the same zinc-based alloy as in Example 3.

得られた金型は、実施例3の所望の寸法に対して寸法誤
差が0.1#程度生じてしまった。また、金型表面およ
び表面近傍には50μm以上の微小巣が6個以上発生し
、その評価は不良であった。
The obtained mold had a dimensional error of about 0.1# with respect to the desired dimensions of Example 3. Further, six or more microscopic cavities of 50 μm or more were generated on the mold surface and near the surface, and the evaluation was poor.

実施例21 実施例3で用いた亜鉛基合金の素材ブロックの表面を5
1m研削した後、放電加工等によりきのこ状金型を調製
した。
Example 21 The surface of the zinc-based alloy material block used in Example 3 was
After grinding for 1 m, a mushroom-shaped mold was prepared by electrical discharge machining or the like.

得られた金型は、寸法精度に優れ、また金型表面および
表面近傍には50μm以上の微小巣が5個以下であり、
その評価は良好であった。
The obtained mold has excellent dimensional accuracy, and has 5 or less microscopic cavities of 50 μm or more on the mold surface and near the surface.
The evaluation was good.

比較例9 実施例3と同様の亜鉛基合金から鋳造によって、実施f
!421と同様の寸法および形状のきのこ状金型の製造
を試みたが、形状が末広がりなため製造が困難であった
Comparative Example 9 By casting from the same zinc-based alloy as in Example 3,
! An attempt was made to manufacture a mushroom-shaped mold with the same dimensions and shape as No. 421, but manufacturing was difficult because the shape was wide at the end.

第2 表 第1表に示されるように、アルミニウム、銅およびマグ
ネシウムを一定量含有する亜鉛基合金からなる素材ブロ
ックを放電加工して得られる実施例1〜10の金型は、
本発明で規定する組成範囲を外れた亜鉛基合金からなる
素材ブロックを放電加工して得られた比較例1〜5の金
型に比較して引張強さや硬さが高い水準にあり、引張強
さ32kgf/ m ”以上、ブリネル硬さ(H8)は
130以上であり、金型に要求される特性をいずれも超
えていた。また、アルミニウムの偏析が無く、巣の状況
も良好であり、溶接性能も良好であった。さらには、第
2表に示されるように、旋盤加工性能や放電加工性能も
極めて優れていた。
Table 2 As shown in Table 1, the molds of Examples 1 to 10 obtained by electrical discharge machining a material block made of a zinc-based alloy containing a certain amount of aluminum, copper, and magnesium were:
Compared to the molds of Comparative Examples 1 to 5 obtained by electrical discharge machining of material blocks made of zinc-based alloys outside the composition range specified in the present invention, the tensile strength and hardness are at a higher level. It had a hardness of over 32 kgf/m'' and a Brinell hardness (H8) of over 130, all of which exceeded the properties required for molds.Also, there was no segregation of aluminum and the condition of cavities was good, making it possible to weld. Performance was also good.Furthermore, as shown in Table 2, lathe machining performance and electrical discharge machining performance were also extremely excellent.

実施例11〜20は、実施例3で用いられた亜鉛基合金
中にチタン等の成分を少量含有させたものであるが、第
1表に示されるように硬さ等の特性がさらに向上する。
Examples 11 to 20 contain a small amount of components such as titanium in the zinc-based alloy used in Example 3, but as shown in Table 1, properties such as hardness are further improved. .

比較例6は、アルミニウム合金ブロックを放電加工等し
て金型としたものであり、第1表に示されるように引張
強さや硬さは高水準にあるものの、特に内部に巣の残存
がみられ、巣の状況は不良であった。また、溶接部には
微細な割れが多数観察され、溶接性能は不良であった。
In Comparative Example 6, an aluminum alloy block was made into a mold by electrical discharge machining, etc., and as shown in Table 1, although the tensile strength and hardness were at a high level, there were still some cavities remaining inside. The condition of the nest was poor. In addition, many fine cracks were observed in the welded area, and the welding performance was poor.

さらに、第2表に記載されるように、加工性は実施例3
に比べて劣ったものであった。
Furthermore, as shown in Table 2, the workability of Example 3
It was inferior to.

比較例7は、鉄鋼ブロックを放電加工等して金型とした
ものであり、第1表に示されるように引張強さや硬さは
高水準であるものの、第2表°に記載されるように、加
工性は実施例3に比べて著しく劣り、放電加工性能では
、実施例3の12倍も長時間を要した。
In Comparative Example 7, a steel block was made into a mold by electrical discharge machining, etc., and as shown in Table 1, the tensile strength and hardness were at a high level, but as shown in Table 2, In addition, the machinability was significantly inferior to that of Example 3, and the electrical discharge machining performance required 12 times as long as that of Example 3.

比較例8は、実施例3と同一組成の亜鉛基合金をそのま
ま鋳造して金型としたものであるが、寸法精度が悪く、
また巣の発生がみられ、巣の状況も不良であった。
In Comparative Example 8, a mold was made by directly casting a zinc-based alloy having the same composition as in Example 3, but the dimensional accuracy was poor.
In addition, nests were observed and the condition of the nests was poor.

実施例21および比較例9は、末広がりな形状であるき
のこ状の金型の製造を試みたものであるが、実施例3と
同一組成の亜鉛基合金からなる素材ブロックを放電加工
した実施例21では、寸法精度が良好で、しかも巣の状
況も良好であるきのこ状の金型が得られたが、実施PJ
3と同一組成の亜鉛基合金をそのまま鋳造した比較例9
は、末広がりな形状であるきのこ状の金型は得られなか
った。
Example 21 and Comparative Example 9 attempted to manufacture a mushroom-shaped mold with a shape that widened at the end. In this method, a mushroom-shaped mold with good dimensional accuracy and good nesting conditions was obtained.
Comparative Example 9, in which a zinc-based alloy with the same composition as 3 was directly cast.
However, a mushroom-shaped mold with a widening shape could not be obtained.

[発明の効果] 以上説明したように、一定組成の亜鉛基合金を機械加工
してなる本発明によって、2万ショット以上の射出成形
に耐える強度および耐摩耗性を有し、しかも加工性や寸
法精度が良好で、巣の発生の少ない金型および該金型に
用いられる素材ブロックが得られる。
[Effects of the Invention] As explained above, the present invention, which is made by machining a zinc-based alloy with a certain composition, has strength and wear resistance that can withstand injection molding of 20,000 shots or more, and has excellent workability and dimensions. A mold with good precision and less occurrence of cavities and a material block used in the mold can be obtained.

このことは、本発明の金型が従来の鋼製ブロックを機械
加工して得られる金中に対し、極めて高い加工性を示し
、機動的なモデルチェンジに対応できることとなる。
This means that the mold of the present invention exhibits extremely high workability compared to molds obtained by machining conventional steel blocks, and can respond to flexible model changes.

また、本発明の金型は、従来提案されているアルミニウ
ム合金ブロックを機械加工して得られる金型に対し、高
い機械加工性を示すのみならず、巣の残存も少なく、ま
た寸法上の制約がなく、かつ補修溶接性等に優れるとい
う利点を有する。
In addition, the mold of the present invention not only exhibits higher machinability than conventionally proposed molds obtained by machining aluminum alloy blocks, but also has fewer remaining cavities and has dimensional limitations. It has the advantage of being free of welding problems and having excellent repair weldability.

さらに、本発明の金型は、従来試作用として用いられて
いる低強度の亜鉛基合金を鋳造して製造した金型に対し
、高い強度や耐摩耗性を有し、また特開昭63−65(
143号公報に記載されているような高強度の亜鉛基合
金を鋳造して製造した金型に対し、巣の生成が許容限度
内であり、かつ寸法精度がよいため、嵌合可能な部材の
製作ができ、また末広がりな形状の金型が製造できると
いう利点を有する。
Furthermore, the mold of the present invention has higher strength and wear resistance than the mold manufactured by casting a low-strength zinc-based alloy that has been conventionally used for prototypes, and also has higher strength and wear resistance. 65(
For molds manufactured by casting high-strength zinc-based alloys such as those described in Publication No. 143, the formation of cavities is within the permissible limit and the dimensional accuracy is good, so it is possible to make parts that can be fitted. It has the advantage that it can be manufactured and that molds with a shape that widens at the end can be manufactured.

従って、本発明の金型は、現在要求されている種々の形
状が必要とされる致方ショットの射出成形用金型として
好適である。
Therefore, the mold of the present invention is suitable as a mold for injection molding of a variety of currently required shots.

Claims (1)

【特許請求の範囲】 1、アルミニウム12.1〜30重量%、銅6〜20重
量%、マグネシウム0.01〜0.20重量%、不可避
不純物を除いて残部が亜鉛である亜鉛基合金からなり、
機械加工してなる金型。 2、アルミニウム12.1〜30重量%、銅6〜20重
量%、マグネシウム0.01〜0.20重量%、不可避
不純物を除いて残部が亜鉛である亜鉛基合金からなり、
機械加工してなる金型用素材ブロック。 3、アルミニウム12.1〜30重量%、銅6〜20重
量%、マグネシウム0.01〜0.20重量%、チタン
、ジルコニウム、ニッケル、コバルト、マンガン、リチ
ウム、ケイ素、ランタン系列元素から選ばれる少なくと
も1種2重量%以下、不可避不純物を除いて残部が亜鉛
である亜鉛基合金からなり、機械加工してなる金型。 4、アルミニウム12.1〜30重量%、銅6〜20重
量%、マグネシウム0.01〜0.20重量%、チタン
、ジルコニウム、ニッケル、コバルト、マンガン、リチ
ウム、ケイ素、ランタン系列元素から選ばれる少なくと
も1種2重量%以下、不可避不純物を除いて残部が亜鉛
である亜鉛基合金からなり、機械加工してなる金型用素
材ブロック。
[Claims] 1. Consisting of a zinc-based alloy consisting of 12.1 to 30% by weight of aluminum, 6 to 20% by weight of copper, 0.01 to 0.20% by weight of magnesium, and the balance excluding unavoidable impurities being zinc. ,
A mold made by machining. 2. Consisting of a zinc-based alloy with 12.1 to 30% by weight of aluminum, 6 to 20% by weight of copper, 0.01 to 0.20% by weight of magnesium, and the balance excluding unavoidable impurities being zinc;
A material block for molds that is machined. 3. At least 12.1 to 30% by weight of aluminum, 6 to 20% by weight of copper, 0.01 to 0.20% by weight of magnesium, titanium, zirconium, nickel, cobalt, manganese, lithium, silicon, and lanthanum series elements. A mold made by machining and made of a zinc-based alloy containing 2% by weight or less of type 1, the balance being zinc except for unavoidable impurities. 4. At least 12.1 to 30% by weight of aluminum, 6 to 20% by weight of copper, 0.01 to 0.20% by weight of magnesium, titanium, zirconium, nickel, cobalt, manganese, lithium, silicon, and lanthanum series elements. A material block for molds made of a zinc-based alloy containing 2% by weight or less of type 1, the balance being zinc except for unavoidable impurities, and machined.
JP1019434A 1989-01-31 1989-01-31 Mold manufacturing method Expired - Lifetime JPH0641620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1019434A JPH0641620B2 (en) 1989-01-31 1989-01-31 Mold manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1019434A JPH0641620B2 (en) 1989-01-31 1989-01-31 Mold manufacturing method

Publications (2)

Publication Number Publication Date
JPH02200322A true JPH02200322A (en) 1990-08-08
JPH0641620B2 JPH0641620B2 (en) 1994-06-01

Family

ID=11999181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1019434A Expired - Lifetime JPH0641620B2 (en) 1989-01-31 1989-01-31 Mold manufacturing method

Country Status (1)

Country Link
JP (1) JPH0641620B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195121A (en) * 1992-01-17 1993-08-03 Mitsui Mining & Smelting Co Ltd Alloy for pressing die
JPH0649572A (en) * 1992-07-01 1994-02-22 Mitsui Mining & Smelting Co Ltd High strength zinc alloy for die casting and zinc alloy die-cast parts
JPH0920982A (en) * 1991-05-10 1997-01-21 Sankyo Seiki Mfg Co Ltd Electroless composite plating treatment of metallic material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852626A (en) * 1971-11-01 1973-07-24
JPS5027718A (en) * 1973-05-08 1975-03-22
JPS6360250A (en) * 1986-08-29 1988-03-16 Sekisui Chem Co Ltd Zinc-base alloy
JPS6365043A (en) * 1986-09-05 1988-03-23 Sekisui Chem Co Ltd Zinc-base alloy
JPS63219542A (en) * 1987-03-09 1988-09-13 Sekisui Chem Co Ltd Manganese-containing zinc based alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852626A (en) * 1971-11-01 1973-07-24
JPS5027718A (en) * 1973-05-08 1975-03-22
JPS6360250A (en) * 1986-08-29 1988-03-16 Sekisui Chem Co Ltd Zinc-base alloy
JPS6365043A (en) * 1986-09-05 1988-03-23 Sekisui Chem Co Ltd Zinc-base alloy
JPS63219542A (en) * 1987-03-09 1988-09-13 Sekisui Chem Co Ltd Manganese-containing zinc based alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920982A (en) * 1991-05-10 1997-01-21 Sankyo Seiki Mfg Co Ltd Electroless composite plating treatment of metallic material
JPH05195121A (en) * 1992-01-17 1993-08-03 Mitsui Mining & Smelting Co Ltd Alloy for pressing die
JPH0649572A (en) * 1992-07-01 1994-02-22 Mitsui Mining & Smelting Co Ltd High strength zinc alloy for die casting and zinc alloy die-cast parts

Also Published As

Publication number Publication date
JPH0641620B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
KR102597784B1 (en) A aluminum alloy and for die casting and method for manufacturing the same, die casting method
CN1969051B (en) Middle alloy for copper alloy casting and its casting method
US7824606B2 (en) Nickel-based alloys and articles made therefrom
CN114080459A (en) Nickel-based alloy for powder and method for producing powder
WO2019188854A1 (en) Powder for mold
US8062441B2 (en) High hardness, high corrosion resistance and high wear resistance alloy
CN100552071C (en) High-density zinc-base alloy counterbalance and preparation method thereof
CN1271228C (en) Copper alloy capable of ageing hardening
JPH02200322A (en) Mold and stock block for this mold
EP0902097A1 (en) Zinc-base alloy for mold, zinc-base alloy block for mold and method for preparing the same
JPH04218640A (en) Die stock
CN100513007C (en) Cooling mould for casting light metal casting materials and use of the cooling mould and a casting material
US5861217A (en) Composite material having anti-wear property and process for producing the same
JPH057987A (en) Production of metallic mold for molding plastic
US4732602A (en) Bronze alloy for glass container molds
JP7524547B2 (en) Cr-Ni alloy member and manufacturing method thereof
JPH02187308A (en) Mold and material block for the same mold
JPH04259344A (en) Alloy for metal mold for molding
JPH02205647A (en) Metallic mold and stock block for metallic mold
JP3152400B2 (en) Hard zinc alloy for hardfacing welding and a mold having a hardfacing portion made of the alloy
JPH0320426A (en) Copper alloy for die
JPH0320427A (en) Alloy for high strength die
Sevastopolev Effect of conformal cooling in Additive Manufactured inserts on properties of high pressure die cast aluminum component
O'Connor TITANIUM RAMMED GRAPHITE CASTINGS.
WO2024019013A1 (en) Steel material