JPH01234538A - Zinc-based alloy - Google Patents

Zinc-based alloy

Info

Publication number
JPH01234538A
JPH01234538A JP5881088A JP5881088A JPH01234538A JP H01234538 A JPH01234538 A JP H01234538A JP 5881088 A JP5881088 A JP 5881088A JP 5881088 A JP5881088 A JP 5881088A JP H01234538 A JPH01234538 A JP H01234538A
Authority
JP
Japan
Prior art keywords
zinc
based alloy
alloy
mold
mechanical strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5881088A
Other languages
Japanese (ja)
Inventor
Mikio Kaneko
三樹男 金子
Shigemasa Kawai
河合 重征
Seiichi Enomoto
榎本 聖一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5881088A priority Critical patent/JPH01234538A/en
Publication of JPH01234538A publication Critical patent/JPH01234538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To improve the mechanical strength, ductility and hardness of the title alloy without impairing its castability and workability by specifying the contents of Al, Cu and Mg in a zinc-based alloy and adding trace amounts of Si and Sr thereto. CONSTITUTION:The compsn. of a Zr-based alloy is formed with, by weight percentage, 6-15% Al, 8-15% Cu, 0.01-1% Si, 0.001-0.1% Sr, 0.01-0.3% Mg and the balance consisting of Zn with inevitable impurities. In the Zn-based alloy, mechanical strength and hardness are improved by the strict regulation of the adding amounts of Al and Cu and by the addition of Si, and the influence of aging (dimentional change and lowering of strength) can furthermore be suppressed. At the time of using the alloy as a mold for the molding of plastics, there is no apprehension of generating cleavage and cracks on the surface and the accuracy of the mold does not decrease even when molding operation is repeated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主としてプラスチックの成形に用いられる金
型等に好適に使用される高強度の亜鉛基合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-strength zinc-based alloy suitable for use in molds and the like mainly used for molding plastics.

(従来の技術) 近年、OA機器等の各種機器のハウジング、部品等がプ
ラスチック化されるとともに、機器の性能を向上させる
べくモデルチェンジが頻繁に行われている。
(Prior Art) In recent years, housings, parts, etc. of various devices such as OA devices have been made of plastic, and model changes have been frequently made to improve the performance of the devices.

それに伴って、プラスチック製品の成形サイクルの短縮
が計られ、多品種少量生産が実施されている。
Along with this trend, molding cycles for plastic products are being shortened and high-mix low-volume production is being implemented.

このことから、プラスチックの成形用金型には、従来の
材料に代わって、鋳造、加工が容易で、短期間に製作が
可能な新しい材料が求められている。
For this reason, there is a need for new materials for plastic molds that can be easily cast and processed, and can be manufactured in a short period of time, in place of conventional materials.

従来、プラスチックの成形用金型、特に射出成形用金型
には、寸法精度、成形ショット数の面から、鋳鉄、鋳鋼
等の金属が用いられてきた。
Conventionally, metals such as cast iron and cast steel have been used for plastic molding molds, particularly injection molding molds, from the viewpoint of dimensional accuracy and number of molding shots.

これらの金属は、機械的強度は優れるものの、鋳造・加
工が困難であり、鋳造温度が高いため、鋳造に大規模な
設備を必要とする。
Although these metals have excellent mechanical strength, they are difficult to cast and process, and their casting temperatures are high, so large-scale equipment is required for casting.

又、鋳造は砂型でなされるため、鋳造品の表面が粗くな
り、そのために、表面研磨に多大の工数が必要となる。
Further, since casting is performed in a sand mold, the surface of the cast product becomes rough, and therefore a large number of man-hours are required for surface polishing.

しかも、精密な金型を製作するためには、切削、放電加
工等の機械加工に多大の時間を必要とする。
Moreover, in order to manufacture a precise mold, a large amount of time is required for machining such as cutting and electrical discharge machining.

従って、納期、コストの面から多品種少量生産の要求に
合わなくなってきている。
Therefore, in terms of delivery time and cost, it has become difficult to meet the demands for high-mix, low-volume production.

そこで、鋳鉄、鋳鋼に代わって、銅合金が使用されてい
るが、銅合金は鋳造温度が高いため、鋳造には酸化防止
等の設備や処理が、特別に必要となる。さらに、その鋳
造温度が1000°Cを越えるため、鋳型には石膏が使
用できず、セラミックモールドが用いられので、鋳型の
製作が困難で、高価になるという問題点があった。
Therefore, copper alloys are used instead of cast iron and cast steel, but since copper alloys have a high casting temperature, special equipment and treatments such as oxidation prevention are required for casting. Furthermore, since the casting temperature exceeds 1000° C., gypsum cannot be used for the mold, and a ceramic mold is used, making it difficult and expensive to manufacture the mold.

しかも銅合金から金型を製作する場合は、鋳鉄や鋳鋼と
同様に長時間の放電加工を必要とするため、多品種少量
生産用金型の要求には合わなくなってきている。
Moreover, when making molds from copper alloys, as with cast iron and cast steel, long-time electric discharge machining is required, which is no longer meeting the requirements for molds for high-mix, low-volume production.

このような欠点を解決するために、鋳造温度が低(、鋳
造、加工が容易なプラスチック成形用金型材料として、
亜鉛基合金が提案されている。
In order to solve these drawbacks, we have developed a mold material for plastic molding that has a low casting temperature (and is easy to cast and process).
Zinc-based alloys have been proposed.

この亜鉛基合金の多くば、グイキャスト用亜鉛合金(Z
DC−1)をヘースとしており、亜鉛のほかにアルミニ
ウム、銅、マグネシウム等を含有している。
Many of these zinc-based alloys are zinc alloys for gui casting (Z
DC-1) and contains aluminum, copper, magnesium, etc. in addition to zinc.

例えば、特公昭48−209 G 7号公報にυJ、ア
ルミニウム、銅、マグネシウム、ヘリリウム、チタニウ
ム、及び残部亜鉛からなる耐摩耗性亜鉛基合金が、また
、特公昭48−20967号公報には、アルミニウム、
j同、マグネシウム、ヘリリウム、チタニウム、銀及び
残部亜鉛からなる耐摩耗性亜鉛基合金が開示されている
For example, Japanese Patent Publication No. 48-209 G7 discloses a wear-resistant zinc-based alloy consisting of υJ, aluminum, copper, magnesium, helium, titanium, and the balance zinc, and Japanese Patent Publication No. 48-20967 discloses aluminum ,
The same discloses a wear-resistant zinc-based alloy consisting of magnesium, helium, titanium, silver and the balance zinc.

しかしながら、上記亜鉛基合金は機械的強度が不十分で
あり、プラスチック成形用金型として使用した場合、成
形作業を重ねるにつれて、金型の精度が低下し、製品に
いわゆるばりが発生ずる恐れがある。
However, the above zinc-based alloy has insufficient mechanical strength, and when used as a mold for plastic molding, the precision of the mold decreases as molding operations are repeated, and there is a risk that so-called burrs may occur on the product. .

又、合金の延性が不足するため、金型加工時やプラスチ
ック成形時に、割れやクランクを発生し易い等の欠点が
あり、そのために試作用金型程度にしか用いることがで
きなかった。
Furthermore, due to the lack of ductility of the alloy, it has the disadvantage of being prone to cracking and cranking during mold processing and plastic molding, and for this reason, it could only be used for prototype molds.

そこで、亜鉛基合金の強度を高めるために、アルミニウ
ムもしくは銅の添加量を増加させることが考えられるが
、これらの元素が増加すると、時効による寸法変化が大
きくなり、精密金型や複雑な形状の金型には向かなくな
るという問題点があった。
Therefore, in order to increase the strength of zinc-based alloys, it is possible to increase the amount of aluminum or copper added, but when these elements increase, dimensional changes due to aging become large, making it difficult to manufacture precision molds and complex shapes. There was a problem that it was not suitable for molds.

(発明が解決しようとする課題) 本発明の目的は、上記欠点に鑑がみ、機械的強度が大き
く、延性がすぐれ、時効による寸法変化が小さく、鋳造
性、加工性のすくれた亜鉛基合金を提供することにある
(Problems to be Solved by the Invention) In view of the above-mentioned drawbacks, the object of the present invention is to provide a zinc-based material with high mechanical strength, excellent ductility, little dimensional change due to aging, and excellent castability and workability. Our goal is to provide alloys.

(課題を解決するための手段) 本発明は、上記従来の問題点を解決するためになされた
ものであり、重量百分率で、アルミニウム6〜15%、
銅8〜15%、珪素0.01〜1%、ストロンチウム0
.001〜0.1%、マグネシウム0.01〜0.3%
を含有し、残部が亜鉛及び不可避的不純物からなること
により、上記目的が達成される。
(Means for Solving the Problems) The present invention was made to solve the above-mentioned conventional problems.
8-15% copper, 0.01-1% silicon, 0 strontium
.. 001-0.1%, magnesium 0.01-0.3%
The above object is achieved by containing zinc and inevitable impurities.

即ち、本発明は亜鉛基合金のアルミニウム及び銅の添加
量を厳しく制御すると共に、珪素の添加により、機械的
強度、硬度を向上させるほかに、ストロンチウムの添加
により、時効の影響(寸法変化、強度低下)を最小限に
抑える。
That is, the present invention strictly controls the amounts of aluminum and copper added to the zinc-based alloy, and also improves mechanical strength and hardness by adding silicon, as well as improving the effects of aging (dimensional changes, strength (deterioration) to a minimum.

本発明において、アルミニウムの量は、その添加効果を
十分に発揮させるために、6〜15重景%重量される。
In the present invention, the amount of aluminum is 6 to 15% by weight in order to fully exhibit the effect of its addition.

過小の場合は十分な機械的強度や硬度を得るごとができ
ず、過多の場合は凝固開始点が上昇し、相分離を起こし
易くなり、合金内部にひ&Jや巣が発生する原因となる
If it is too small, it will not be possible to obtain sufficient mechanical strength and hardness, and if it is too large, the solidification starting point will rise, making phase separation more likely to occur, and causing cracks and Js or cavities to occur inside the alloy.

銅及び珪素の添加量は、それぞれ、8〜15重量%、0
.01〜1重量%である。
The amounts of copper and silicon added are 8-15% by weight and 0% by weight, respectively.
.. 01-1% by weight.

過小の場合は十分な機械的強度や硬度を得ることができ
ず、過多の場合は硬度は高くなるものの、脆性が増し、
十分な機械的強度が得られなくなる。
If it is too small, it will not be possible to obtain sufficient mechanical strength or hardness, and if it is too large, the hardness will increase, but brittleness will increase.
Sufficient mechanical strength cannot be obtained.

また、ストロンチウムの添加量は、0.001〜0.1
重量%である。
In addition, the amount of strontium added is 0.001 to 0.1
Weight%.

過小の場合は時効の影響(寸法変化、強度低下)を低減
させることが不可能になり、過多の場合は脆性が増し、
十分な機械的強度が得られなくなる。
If it is too small, it will be impossible to reduce the effects of aging (dimensional changes, strength reduction), and if it is too large, brittleness will increase.
Sufficient mechanical strength cannot be obtained.

マグネシウムは結晶粒界に析出し、特に粒界腐食の防止
に効果を有することが知られており、その添加量は0.
01−”0.3重量%である。
Magnesium precipitates at grain boundaries and is known to be particularly effective in preventing intergranular corrosion, and the amount added is 0.
01-''0.3% by weight.

過少の場合は効果がなく、過多の場合は合金の強度が低
下し、脆性が増す。
If it is too small, there will be no effect, and if it is too large, the strength of the alloy will decrease and brittleness will increase.

尚、ここで不可避的不純物とは、通常ダイキャス1〜用
亜鉛合金として使用される最純亜鉛地金を原料としても
、なお精錬の過程で混入を避けがたい元素、並びに鋳造
等の過程で、外部から混入の可能性のあるすべての元素
を指し、具体的にはJIs−H2SO4一種で規定され
るように、重量百分率でP b O,OO7以下、F 
e 0.10以下、cd 0.005以下、Sn0.0
05以下を指す。
Incidentally, unavoidable impurities here are elements that are unavoidable from being mixed in during the refining process even if the purest zinc ingot, which is normally used as zinc alloy for die casting 1~, is used as a raw material, as well as elements that cannot be avoided during the casting process, etc. Refers to all elements that may be mixed in from the outside, specifically, as specified by JIs-H2SO4, P b O, OO 7 or less, F
e 0.10 or less, cd 0.005 or less, Sn 0.0
Refers to 05 or below.

(実施例) 以下に本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例1〜9、比較例1〜5 所定量の亜鉛、アルミニウム、銅、マグネシウム、珪素
、ストロンチウムを均一に溶解して、表1に示す組成を
有する合金を作製した後、この合金からJIS−H53
01参考図八に示される引張試験片(1)及び参考図B
に示される硬さ試験片(2)を作成した。
Examples 1 to 9, Comparative Examples 1 to 5 Predetermined amounts of zinc, aluminum, copper, magnesium, silicon, and strontium were uniformly melted to produce an alloy having the composition shown in Table 1. H53
01 Tensile test piece (1) shown in Reference Figure 8 and Reference Figure B
A hardness test piece (2) shown in (2) was prepared.

この試験片(1)の引張強度Ckg/曲イ)をJIS−
Z2241に従って測定した。
The tensile strength of this test piece (1) is JIS-
Measured according to Z2241.

又、試験片(2)のブリネル硬度(HB)をJIs−Z
2243に従って測定した。
In addition, the Brinell hardness (HB) of the test piece (2) was determined by JIs-Z
Measured according to 2243.

更に、試験片(2)を、90℃で720時間時効処理し
、時効処理前後の寸法変化(%)を測定した。以上の測
定結果を表2に示した。
Furthermore, the test piece (2) was aged at 90° C. for 720 hours, and the dimensional change (%) before and after the aging treatment was measured. The above measurement results are shown in Table 2.

表1 表2 以上の結果より、珪素及びストロンチウムの添加効果は
、それぞれ、0.01〜1重量%、o、ooi〜0.1
重量%の範囲で明確に認められる。
Table 1 Table 2 From the above results, the effects of adding silicon and strontium are 0.01 to 1% by weight, o, and ooi to 0.1%, respectively.
It is clearly recognized in the range of % by weight.

(発明の効果) 本発明の亜鉛基合金は、叙上の如く、珪素とストロンチ
ウムの添加と、アルミニウム、銅の混合比を厳しく制御
することにより、亜鉛基合金の鋳造性並びに加工性を損
なうことなく、機械的強度、延性及び硬度を向上させる
と共に、時効による寸法変化を抑制することができ、亜
鉛基台金の欠点である割れ易さを改善することができる
(Effects of the Invention) As mentioned above, the zinc-based alloy of the present invention does not impair the castability and workability of the zinc-based alloy by strictly controlling the addition of silicon and strontium and the mixing ratio of aluminum and copper. Therefore, mechanical strength, ductility, and hardness can be improved, and dimensional changes due to aging can be suppressed, and the flaw in zinc-based metals, which is easy to crack, can be improved.

従って、本合金をプラスチックの成形用金型として使用
した場合、表面に割れやクラックの発生する恐れがなく
、又、成形作業を重ねても、金型の精度が低下しないの
で、プラスチック製品にばりの発生がなく、ラスチック
の成形用金型として非常に有用である。
Therefore, when this alloy is used as a mold for plastic molding, there is no risk of cracks or cracks occurring on the surface, and the accuracy of the mold will not deteriorate even after repeated molding operations, so there will be no burrs on plastic products. It is very useful as a mold for plastic molding.

Claims (1)

【特許請求の範囲】[Claims] 1、重量百分率で、アルミニウム6〜15%、銅8〜1
5%、珪素0.01〜1%、ストロンチウム0.001
〜0.1%、マグネシウム0.01〜0.3%を含有し
、残部が亜鉛及び不可避的不純物からなることを特徴と
する亜鉛基合金。
1. By weight percentage, aluminum 6-15%, copper 8-1
5%, silicon 0.01-1%, strontium 0.001
-0.1%, magnesium 0.01-0.3%, and the balance consists of zinc and unavoidable impurities.
JP5881088A 1988-03-11 1988-03-11 Zinc-based alloy Pending JPH01234538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5881088A JPH01234538A (en) 1988-03-11 1988-03-11 Zinc-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5881088A JPH01234538A (en) 1988-03-11 1988-03-11 Zinc-based alloy

Publications (1)

Publication Number Publication Date
JPH01234538A true JPH01234538A (en) 1989-09-19

Family

ID=13094962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5881088A Pending JPH01234538A (en) 1988-03-11 1988-03-11 Zinc-based alloy

Country Status (1)

Country Link
JP (1) JPH01234538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317779A (en) * 1982-06-29 1994-11-15 Uk Government Liquid-crystal device
CN103993200A (en) * 2014-04-30 2014-08-20 山东省科学院新材料研究所 Silicon-containing wear-resistant zinc-based alloy and preparation method thereof
CN105132746A (en) * 2015-09-29 2015-12-09 无锡贺邦金属制品有限公司 Low-creep zinc alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317779A (en) * 1982-06-29 1994-11-15 Uk Government Liquid-crystal device
JPH06342142A (en) * 1982-06-29 1994-12-13 Uk Government Liquid crystal device
JPH0756139A (en) * 1982-06-29 1995-03-03 Uk Government Liquid crystal device
CN103993200A (en) * 2014-04-30 2014-08-20 山东省科学院新材料研究所 Silicon-containing wear-resistant zinc-based alloy and preparation method thereof
CN103993200B (en) * 2014-04-30 2016-03-23 山东省科学院新材料研究所 A kind of siliceous abrasion-proof zinc-base alloy and preparation method thereof
CN105132746A (en) * 2015-09-29 2015-12-09 无锡贺邦金属制品有限公司 Low-creep zinc alloy

Similar Documents

Publication Publication Date Title
JP2009203545A (en) Zn ALLOY FOR DIE CASTING, AND METHOD FOR PRODUCING DIE-CAST MEMBER USING THE Zn ALLOY FOR DIE CASTING
KR101274089B1 (en) High strength aluminum alloys for die casting
JPH01234538A (en) Zinc-based alloy
KR950014423B1 (en) A copper-based metal alloy of improved type particularly for the contruction of electronic components
US2795501A (en) Copper base alloys
JPH01234539A (en) Zinc-based alloy
JPS63219542A (en) Manganese-containing zinc based alloy
JPH01147036A (en) High strength zinc-based alloy
JPH01165740A (en) Zinc-based alloy
JPH01230742A (en) Zinc-based alloy
JPH01247541A (en) Zinc-base alloy
JPS6338551A (en) Zinc alloy containing rare earth element
JPH01246338A (en) Zinc-based alloy
JPH01246336A (en) Zinc-base alloy of low aging characteristic
JPS63203740A (en) Zinc-base alloy
JPS63203741A (en) Titanium-containing zinc-based alloy
JPH01246335A (en) Zinc-base alloy of low aging characteristic
JPH01147035A (en) Alloy having low aging characteristics
JPH01255633A (en) Low aging zinc-based alloy
KR101269516B1 (en) Scandium free high strength aluminum alloys for die casting
JPH0819504B2 (en) Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast parts
JPH01263250A (en) Manufacture of zinc-based alloy
JPH01159342A (en) Zinc-based alloy
JPH01142045A (en) Zinc-base alloy having low aging characteristic
JPH0320426A (en) Copper alloy for die