JPH01147035A - Alloy having low aging characteristics - Google Patents

Alloy having low aging characteristics

Info

Publication number
JPH01147035A
JPH01147035A JP30678387A JP30678387A JPH01147035A JP H01147035 A JPH01147035 A JP H01147035A JP 30678387 A JP30678387 A JP 30678387A JP 30678387 A JP30678387 A JP 30678387A JP H01147035 A JPH01147035 A JP H01147035A
Authority
JP
Japan
Prior art keywords
alloy
zinc
mold
casting
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30678387A
Other languages
Japanese (ja)
Inventor
Shigemasa Kawai
河合 重征
Mikio Kaneko
三樹男 金子
Seiichi Enomoto
榎本 聖一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP30678387A priority Critical patent/JPH01147035A/en
Publication of JPH01147035A publication Critical patent/JPH01147035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To manufacture the title alloy useful as the material of a mold for molding of plastics by adding a specific amount of Sr to a zinc-based alloy contg. specific ratios of Al, Cu and Mg. CONSTITUTION:50-200ppm Sr, by weight, is added to the zinc-based alloy consisting of 9-15% Al, 7-12% Cu, 0.01-0.1% Mg and the balance Zn consisting substantially of Zn with inevitable impurities. By this method, the alloy for a mold having excellent mechanical strength, having small dimensional and physical change by aging and easily executable of casting and working is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主としてプラスチックの成形に用いられる金
型として使用可能な低時効性合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a low aging alloy that can be used as a mold mainly used for molding plastics.

(従来の技術) 近年、OAi器等の各種機器のハウジング、部品等がプ
ラスチック化されるとともに、機器の性能を向上させる
べくモデルチェンジが頻繁に行われている。
(Prior Art) In recent years, the housings, parts, etc. of various devices such as OAi devices have been made of plastic, and model changes have been frequently made to improve the performance of the devices.

それに伴って、プラスチック製品の成形サイクルの短縮
が計られ、多品種少量生産が実施されている。
Along with this trend, molding cycles for plastic products are being shortened and high-mix low-volume production is being implemented.

このことから、プラスチックの成形用金型には、従来の
材料に代わって、鋳造・加工が容易な新しい材料が求め
られている。
For this reason, new materials that are easy to cast and process are required for plastic molds in place of conventional materials.

従来、プラスチックの成形用金型、特に射出成形用金型
には、鋳鉄、鋳鋼等の金属が用いられてきたが、これら
の金属は、機械的強度は優れるものの、鋳造・加工が困
難であり、鋳造温度が高いため、鋳造に大規模な設備を
必要とする。
Traditionally, metals such as cast iron and cast steel have been used for plastic molds, especially injection molds, but although these metals have excellent mechanical strength, they are difficult to cast and process. , Due to the high casting temperature, large-scale equipment is required for casting.

又、鋳造は砂型でなされるため、鋳造品の表面が粗くな
り、そのために、表面研磨に多大の工数を必要とする。
Further, since casting is performed in a sand mold, the surface of the cast product becomes rough, and therefore a large number of man-hours are required for surface polishing.

しかも、精密な金型を製作するためには、切削、放電加
工等の機械加工に多大の時間を必要とする。
Moreover, in order to manufacture a precise mold, a large amount of time is required for machining such as cutting and electrical discharge machining.

そこで、鋳鉄、鋳鋼に代わって、銅合金が使用されてい
るが、銅合金は鋳造温度が高いため、鋳造には酸化防止
等の設備や処理を要し、又、その鋳造温度が1ooo″
Cを越えるため、鋳型には石膏が使用できず、セラミッ
クモールドが用いられる。
Therefore, copper alloys are used instead of cast iron and cast steel, but copper alloys have high casting temperatures, so casting requires equipment and treatments such as oxidation prevention, and the casting temperature is 1ooo''.
Since the temperature exceeds C, plaster cannot be used for the mold, and a ceramic mold is used.

セラミックモールドは高価であるうえに、鋳型の製作が
困難である。
Ceramic molds are expensive and difficult to manufacture.

しかも銅合金は、鋳鉄や鋳鋼と同様に長時間の放電加工
を必要とする。
Moreover, copper alloys require long electrical discharge machining, just like cast iron and cast steel.

このような欠点を解決するために、鋳造温度が低く、鋳
造・加工が容易なプラスチック成形用金型材料として、
亜鉛合金が提案されている。
In order to solve these drawbacks, we developed a mold material for plastic molding that has a low casting temperature and is easy to cast and process.
Zinc alloys have been proposed.

この亜鉛合金は、ダイキャスト用亜鉛合金(ZDC−1
)をベースとしており、亜鉛のほかにアルミニウム、銅
、マグネシウム等を含有している。
This zinc alloy is a zinc alloy for die casting (ZDC-1
), and contains aluminum, copper, magnesium, etc. in addition to zinc.

例えば、特公昭51−5342号公報Gこは、アルミニ
ウム、銅、マグネシウム、ベリリウム、チタニウム、銀
及び残部亜鉛からなる耐摩耗性亜鉛基合金が開示されて
いる。
For example, Japanese Patent Publication No. 51-5342 G discloses a wear-resistant zinc-based alloy consisting of aluminum, copper, magnesium, beryllium, titanium, silver, and the balance zinc.

(発明が解決しようとする問題点) しかしながら、これらの亜鉛基合金は機械的強度が不充
分であるうえに、粒界腐食を防止する目的で添加したマ
グネシウムが時効による寸法変形をもたらし、プラスチ
ックの成形用金型として使用した場合、金型表面にクラ
ックの発生するおそれがある。
(Problems to be Solved by the Invention) However, these zinc-based alloys have insufficient mechanical strength, and the magnesium added for the purpose of preventing intergranular corrosion causes dimensional deformation due to aging, causing plastics to deteriorate. When used as a mold, there is a risk of cracks occurring on the surface of the mold.

又、この金型を用いて成形作業を重ねるにつれて、金型
の精度が低下し、成形品にいわゆるばりが発生する恐れ
があり、そのために試作用金型程度にしか用いることが
できない。
Further, as molding operations are repeated using this mold, the accuracy of the mold decreases, and there is a risk that so-called burrs may occur in the molded product, so that it can only be used as a prototype mold.

そこで、更に、合金の強度をあげるためには、アルミニ
ウム、もしくは銅の含有量を増大させることが考えられ
る。
Therefore, in order to further increase the strength of the alloy, it is conceivable to increase the content of aluminum or copper.

特に、アルミニウム、銅の添加は強度の増加に著しい効
果がある。
In particular, the addition of aluminum and copper has a remarkable effect on increasing strength.

しかしながら、これらの元素の添加量が増えると、時効
による寸法変化、強度低下が大きくなる。
However, as the amount of these elements added increases, dimensional changes and strength decreases due to aging increase.

特に、銅の関与した寸法変化は、ときには1%に達する
ことがあり、精密金型のみならず、形状の複雑な金型に
は向かないのが実状である。
In particular, the dimensional change caused by copper can sometimes reach 1%, and the actual situation is that it is not suitable not only for precision molds but also for molds with complex shapes.

又、この場合銅は機械的強度にも影響するが、相変態温
度が高いため、溶体化処理等の方法が取りにくい等の欠
点がある。
Further, in this case, copper has an effect on mechanical strength, but because of its high phase transformation temperature, it has drawbacks such as difficulty in applying methods such as solution treatment.

本発明は、上記従来の問題点を解決するものであり、そ
の目的とするところは機械的強度に優れ、且つ、時効に
よる寸法・物性変化が小さく、鋳造・加工が容易で、し
かも短時間で製作可能な金型用合金を提供することにあ
る。
The present invention solves the above-mentioned conventional problems, and its purpose is to provide a material with excellent mechanical strength, small changes in dimensions and physical properties due to aging, easy casting and processing, and rapid processing. The purpose of the present invention is to provide an alloy for molds that can be manufactured.

(問題点を解決するための手段) 本発明はアルミニウム、銅と少量のマグネシウムを含有
する従来の亜鉛基合金に、更に微量のストロンチウムを
添加することにより、機械的強度を向上させるとともに
、銅の析出による体積腫脹を抑え、時効の影響(寸法変
化、強度低下)を最小限に抑えることを主旨とする。
(Means for Solving the Problems) The present invention improves mechanical strength by adding a small amount of strontium to a conventional zinc-based alloy containing aluminum, copper, and a small amount of magnesium. The main purpose is to suppress volumetric swelling due to precipitation and minimize the effects of aging (dimensional changes, strength reduction).

本発明の亜鉛基合金は、アルミニウム9〜15重量%、
f17〜12重量%、マグネシウム0.01〜0.1重
量%、残分が主として亜鉛と不可避的不純物よりなる亜
鉛基合金に対し、重量比で50〜200ppmのストロ
ンチウムを添加することにより、上記目的が達成される
The zinc-based alloy of the present invention contains 9 to 15% by weight of aluminum,
The above purpose can be achieved by adding 50 to 200 ppm of strontium by weight to a zinc-based alloy consisting of f17 to 12% by weight, magnesium 0.01 to 0.1% by weight, and the remainder mainly consisting of zinc and unavoidable impurities. is achieved.

本発明のように亜鉛を主成分とし、亜鉛は各含有元素と
合金結晶を形成し、微小な結晶体とじて析出しているが
、相当量のアルミニウム、銅を含有する合金の場合は、
経時的変化あるいは熱の影響により、ゆっくりと結晶変
化が起こり、時効(寸法変化、物性低下)といわれる現
象が起こる。
As in the present invention, zinc is the main component, and zinc forms alloy crystals with each contained element and precipitates as minute crystals, but in the case of alloys containing considerable amounts of aluminum and copper,
Due to changes over time or the influence of heat, crystal changes occur slowly, resulting in a phenomenon called aging (dimensional change, decrease in physical properties).

本発明において添加される微量のストロンチウムは、一
般に金属中、特に本発明のようにアルミニウムを多量に
含有している合金では、金属の結晶粒界(結晶界面)に
集中しやすく、その結果亜鉛合金結晶の成長、肥大を抑
制する作用がある。
The small amount of strontium added in the present invention generally tends to concentrate in metals, especially in alloys containing a large amount of aluminum as in the present invention, at the crystal grain boundaries (crystal interfaces) of the metal, and as a result, the zinc alloy It has the effect of suppressing crystal growth and enlargement.

従って、上記ストロンチウムは、本発明のZn−Al−
Cu−Mg系亜鉛基合金の結晶成長を抑制し、該亜鉛基
合金をミクロクリスタリン状態に保ち、機械強度を向上
させるとともに、時効による物性低下や寸法変化を抑制
する。
Therefore, the above strontium is the Zn-Al-
It suppresses crystal growth of the Cu-Mg zinc-based alloy, keeps the zinc-based alloy in a microcrystalline state, improves mechanical strength, and suppresses deterioration of physical properties and dimensional changes due to aging.

又、添加されるストロンチウムの量は、上記亜鉛系合金
に対し、重量比で50〜200ppmに瞑定され、過少
の場合は効果がなく、過多の場合は硬度は増大するもの
の、脆性が発現し、機械的強度が低下する。
In addition, the amount of strontium added is set at 50 to 200 ppm by weight relative to the above zinc-based alloy; if it is too little, it will not be effective, and if it is too much, hardness will increase but brittleness will develop. , mechanical strength decreases.

ストロンチウムの添加効果を十分に発揮させるには、溶
融状態の合金中から脱ガスを行った後に、添加する方が
望ましい。
In order to fully exhibit the effect of adding strontium, it is preferable to add strontium after degassing the molten alloy.

マグネシウムも結晶粒界に析出し、特に粒界腐食の防止
に効果を有することは知られているが、特に、本発明の
如く少量のマグネシウムが共存した場合は、粒界を固定
して、合金結晶の成長を阻害する作用が強(なるものと
考えられる。
It is known that magnesium also precipitates at grain boundaries and is particularly effective in preventing intergranular corrosion, but especially when a small amount of magnesium coexists as in the present invention, the grain boundaries are fixed and the alloy It is thought to have a strong effect of inhibiting crystal growth.

この作用は添加マグネシウムが少量の場合であり、大量
の場合は、添加されたストロンチウムの粒界析出にたい
して、妨害作用を示すため、マグネシウム、ストロンチ
ウムの添加量は注意を要する。
This effect occurs when the amount of added magnesium is small; when a large amount is added, it interferes with grain boundary precipitation of added strontium, so care must be taken in the amount of magnesium and strontium added.

従って、マグネシウムの添加量は0.01〜0.1重量
%である。
Therefore, the amount of magnesium added is 0.01 to 0.1% by weight.

アルミニウム及び銅の添加量は、その添加効果を十分に
発揮させるためには、それぞれ9〜15重量%、7〜1
2重量%であり、過少の場合は機械的強度や硬度が不足
し、過多の場合は硬度は増大するものの、脆性が発現す
る。
The amounts of aluminum and copper to be added should be 9 to 15% by weight and 7 to 1% by weight, respectively, in order to fully exhibit their addition effects.
The amount is 2% by weight, and if it is too little, the mechanical strength and hardness will be insufficient, and if it is too much, the hardness will increase but brittleness will develop.

尚、ここで不可避的不純物とは、通常グイキャスト用亜
鉛合金として使用される最純亜鉛地金を原料としても、
なお精錬の過程で混入を避けがたい元素、並びに鋳造等
の過程で、外部から混入の可能性のあるすべての元素を
指し、具体的にはJIs−H5301一種で規定される
ように、重量百分率でPbO,007以下、F e 0
.10以下、Cd O,OO5以下、Sn0.005以
下、及び特許請求の範囲に記載されていないすべての金
属、半金属元素の総和0.05%までを指す。
Incidentally, unavoidable impurities here refer to unavoidable impurities, even if the purest zinc ingot, which is normally used as a zinc alloy for Gui casting, is used as a raw material.
In addition, it refers to all elements that are unavoidably mixed in during the refining process and all elements that may be mixed in from the outside during the casting process, etc. Specifically, as specified in JIs-H5301 type, weight percentage and PbO,007 or less, F e 0
.. 10 or less, Cd 2 O, OO5 or less, Sn 0.005 or less, and up to a total of 0.05% of all metals and metalloid elements not listed in the claims.

(実施例) 以下に本発明の実施例について述べる。(Example) Examples of the present invention will be described below.

実施例1〜6、比較例1〜6゜ 所定量の亜鉛、アルミニウム、銅、マグネシウムを十分
に溶解して、均一な組成の合金となし、塩素を含む脱ガ
ス剤、ヘキサクロロエタンを添加して、溶湯中の溶存ガ
スを除去した後、溶湯から分離した酸化物やのろを除去
した。
Examples 1 to 6, Comparative Examples 1 to 6゜ Predetermined amounts of zinc, aluminum, copper, and magnesium were sufficiently dissolved to form an alloy with a uniform composition, and a degassing agent containing chlorine and hexachloroethane was added. After removing the dissolved gas in the molten metal, the oxides and slag separated from the molten metal were removed.

次いで、上記合金に所定量のアルミニウムーストロンチ
ウム合金を添加し、均一に溶解して、最終的に表1に示
す組成を有する合金を作製した。
Next, a predetermined amount of aluminum-strontium alloy was added to the above alloy and uniformly melted to produce an alloy having the composition shown in Table 1.

この合金からJ l5−H5301参考図Aに示される
引張試験片(1)及び参考図Bに示される硬さ試験片(
2)を作成した。
From this alloy, Jl5-H5301 tensile test piece (1) shown in reference figure A and hardness test piece (1) shown in reference figure B were prepared.
2) was created.

この試験片(1)の鋳造直後(鋳造後30時間以内)の
引張強度(kg / mll1′)はJIS−Z224
1に従って測定した。
The tensile strength (kg/ml1') of this test piece (1) immediately after casting (within 30 hours after casting) is in accordance with JIS-Z224.
Measured according to 1.

又、試験片(2)のプリンネル硬度(HB)をJIS−
Z2243に従って測定するとともに、その長さを測定
した。
In addition, the purinnel hardness (HB) of the test piece (2) was determined according to JIS-
The length was measured according to Z2243.

上記試験片(1)及び(2)を200″Cで24時間熱
処理して、時効を完了させた後、同様な方法で、引張強
度、硬度、長さを測定した。
The above test pieces (1) and (2) were heat treated at 200''C for 24 hours to complete aging, and then tensile strength, hardness, and length were measured in the same manner.

以上の測定結果を表2に示した。The above measurement results are shown in Table 2.

(以下余白) 表  1 (AI、Cu、Mgの単位は重量%であり、Znを含め
て100重量%になる。
(The following is a margin) Table 1 (The units of AI, Cu, and Mg are weight %, and including Zn, it becomes 100 weight %.

SrはAI、Cu、Mg及びZnの合計量に対するl)
pm) 表2 (以下余白) 以上の結果より、前記特定の組成を有するZn−Al−
Cu−Mg系亜鉛基合金において、ストロンチウムを添
加することにより、時効による特性変化、寸法変化が抑
制されているのは明白である。
Sr is l) relative to the total amount of AI, Cu, Mg and Zn.
pm) Table 2 (blank below) From the above results, Zn-Al-
It is clear that changes in properties and dimensions due to aging are suppressed by adding strontium to Cu-Mg zinc-based alloys.

(発明の効果) 本発明の低時効性合金は、上記の如き構成となされてい
るので、機械的強度が向上するとともに、鋳造性並びに
加工性を損なうことなく、時効による機械的強度の低下
、硬度の低下、寸法変化を抑制することができる。
(Effects of the Invention) Since the low aging alloy of the present invention has the above-mentioned structure, it has improved mechanical strength, and does not reduce mechanical strength due to aging without impairing castability or workability. Decrease in hardness and dimensional change can be suppressed.

従って、本合金をプラスチックの成形用金型として使用
した場合、表面にクラックの発生するおそれがなく、又
、成形作業を重ねても、金型の精度が低下しないので、
プラスチック成形用金型の材料として非常に有用である
Therefore, when this alloy is used as a plastic mold, there is no risk of cracks occurring on the surface, and the precision of the mold will not deteriorate even after repeated molding operations.
Very useful as a material for plastic molds.

Claims (1)

【特許請求の範囲】[Claims] 1、重量百分率で、アルミニウム9〜15%、銅7〜1
2%、マグネシウム0.01〜0.1%、残分が主とし
て亜鉛及び不可避的不純物からなる亜鉛基合金に対し、
重量比で50〜200ppmのストロンチウムが添加さ
れていることを特徴とする低時効性合金。
1. By weight percentage, aluminum 9-15%, copper 7-1
2%, magnesium 0.01-0.1%, the balance mainly consisting of zinc and unavoidable impurities,
A low aging alloy characterized in that strontium is added in a weight ratio of 50 to 200 ppm.
JP30678387A 1987-12-03 1987-12-03 Alloy having low aging characteristics Pending JPH01147035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30678387A JPH01147035A (en) 1987-12-03 1987-12-03 Alloy having low aging characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30678387A JPH01147035A (en) 1987-12-03 1987-12-03 Alloy having low aging characteristics

Publications (1)

Publication Number Publication Date
JPH01147035A true JPH01147035A (en) 1989-06-08

Family

ID=17961207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30678387A Pending JPH01147035A (en) 1987-12-03 1987-12-03 Alloy having low aging characteristics

Country Status (1)

Country Link
JP (1) JPH01147035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195368A (en) * 2014-08-21 2014-12-10 北京大学 Zn-Sr series zinc alloy as well as preparation method and application of Zn-Sr series zinc alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195368A (en) * 2014-08-21 2014-12-10 北京大学 Zn-Sr series zinc alloy as well as preparation method and application of Zn-Sr series zinc alloy
CN104195368B (en) * 2014-08-21 2016-09-21 北京大学 A kind of Zn-Sr system kirsite and preparation method and application

Similar Documents

Publication Publication Date Title
KR102597784B1 (en) A aluminum alloy and for die casting and method for manufacturing the same, die casting method
JP5305323B2 (en) Zinc alloy for die casting and method for producing die cast member using Zn alloy for die casting
KR101606525B1 (en) Aluminum alloy for die casting having excellent corrosion resistance
KR950014423B1 (en) A copper-based metal alloy of improved type particularly for the contruction of electronic components
JPH01147035A (en) Alloy having low aging characteristics
JP2016102246A (en) Aluminum alloy for die casting excellent in ductility and cast product using the same
JPH01147036A (en) High strength zinc-based alloy
US2795501A (en) Copper base alloys
JPH01234538A (en) Zinc-based alloy
JPS63219542A (en) Manganese-containing zinc based alloy
JPH01165740A (en) Zinc-based alloy
JPH01234539A (en) Zinc-based alloy
JPH01246338A (en) Zinc-based alloy
JPS63203741A (en) Titanium-containing zinc-based alloy
JPH01230742A (en) Zinc-based alloy
JPH01255633A (en) Low aging zinc-based alloy
JPS63203740A (en) Zinc-base alloy
JPH01246336A (en) Zinc-base alloy of low aging characteristic
JPH01247541A (en) Zinc-base alloy
JPH01263250A (en) Manufacture of zinc-based alloy
JPH01142045A (en) Zinc-base alloy having low aging characteristic
JPH01246335A (en) Zinc-base alloy of low aging characteristic
JPH01142046A (en) Boron-containing zinc-base alloy
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JPS6338549A (en) Zinc alloy