JPS6360205B2 - - Google Patents

Info

Publication number
JPS6360205B2
JPS6360205B2 JP6910483A JP6910483A JPS6360205B2 JP S6360205 B2 JPS6360205 B2 JP S6360205B2 JP 6910483 A JP6910483 A JP 6910483A JP 6910483 A JP6910483 A JP 6910483A JP S6360205 B2 JPS6360205 B2 JP S6360205B2
Authority
JP
Japan
Prior art keywords
blade
head
cooling air
main body
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6910483A
Other languages
Japanese (ja)
Other versions
JPS59196904A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6910483A priority Critical patent/JPS59196904A/en
Publication of JPS59196904A publication Critical patent/JPS59196904A/en
Publication of JPS6360205B2 publication Critical patent/JPS6360205B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 本発明は主として高温ガスタービン等に使用さ
れるガスタービンの静翼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stationary blade of a gas turbine mainly used in a high-temperature gas turbine or the like.

近年、ガスタービンは、性能向上および出力上
昇のため、ますます高温化の傾向にあり、このた
め、ガスタービンの翼は高温にさらされることに
なるが、現在このような高温下で強度を有する材
料はないため、翼を冷却する方法が採用されてい
る。
In recent years, gas turbines have become increasingly hotter in order to improve performance and increase output, and as a result, gas turbine blades are exposed to high temperatures. Since there is no material available, the method used is to cool the wings.

従来のガスタービンに使用される静翼(以下本
説明では便宜上翼と略称する)は、第1―A図、
第1―B図、第1―C図及び第1―D図の例に示
すように、翼1を中空に形成し、ここに冷却空気
を導き、内部を対流冷却した第1―A図に示した
もの、中空状の翼1内に中子4を設け、その中子
4内に冷却空気を導き、中子4先端の多数の細孔
5より翼内面に向けてその空気を吹出し、局所的
に熱伝達を高め、強制冷却した第1―B図に示し
たもの、さらに中空状の翼1内に冷却空気を導
き、翼前縁部の多数の細孔6より翼外に吹出し、
翼1を冷却空気層でおおい、高温の燃焼ガスから
熱を遮断し、フイルム冷却した第1―C図に示し
たもの等があり、ガスタービンが高温化するにつ
れて、これらを組合せて使用する第1―D図の翼
1に至つている。
Stator blades (hereinafter referred to as blades for convenience in this explanation) used in conventional gas turbines are shown in Figure 1-A,
As shown in the examples in Figure 1-B, Figure 1-C, and Figure 1-D, the blade 1 is formed hollow, cooling air is introduced here, and the inside is cooled by convection. What is shown is that a core 4 is provided inside a hollow blade 1, and cooling air is introduced into the core 4, and the air is blown out toward the inner surface of the blade through a number of pores 5 at the tip of the core 4, and is locally cooled. In addition, cooling air is introduced into the hollow blade 1 and blown out of the blade through numerous pores 6 at the leading edge of the blade, as shown in Figure 1-B, which increases heat transfer and is forcedly cooled.
There are blades 1 covered with a cooling air layer to block heat from high-temperature combustion gas and film-cooled, as shown in Figure 1-C. This leads to wing 1 in Figure 1-D.

なお、上記第1―A図から第1―D図におい
て、同じ部品は同じ部品番号で示している。
Note that in the above-mentioned Figures 1-A to 1-D, the same parts are indicated by the same part numbers.

ここで、ガスタービンの翼1で燃焼ガスにさら
されて最も高温となるのは、主流ガスがせき止め
られる翼1の前縁部であるので、この前縁部の冷
却が最も重要であり、ガスタービンの高温化にと
もなつて、フイルム冷却を併用し、また、この部
分を冷却するのに必要な冷却空気の量も多くなつ
ている。
Here, the leading edge of the gas turbine blade 1 that is exposed to the combustion gas and reaches the highest temperature is the leading edge of the blade 1 where the mainstream gas is dammed up, so cooling this leading edge is the most important. As the temperature of the turbine increases, film cooling is also used, and the amount of cooling air required to cool this part is also increasing.

しかしながら、翼1をフイルム冷却し、これに
必要な冷却空気の量が増加すれば、それだけ主流
ガスに混合する冷却空気の量が増し、平均主流ガ
ス温度が低下し、このためガスタービンのサイク
ル効率は低下することになる。
However, if the blade 1 is film-cooled and the amount of cooling air required for this increases, the amount of cooling air mixed with the mainstream gas will increase accordingly, and the average mainstream gas temperature will decrease, thereby reducing the cycle efficiency of the gas turbine. will decrease.

また、翼1を冷却する冷却空気は、通常第2図
の系統図に示すように、ガスタービンのタービン
部10で駆動される圧縮機8で圧縮された空気
を、燃焼器9前で抽気し、ケーシングあるいは、
これに接続された配管等を通つて翼1内に供給さ
れる。
Cooling air for cooling the blades 1 is usually obtained by extracting air compressed by a compressor 8 driven by a turbine section 10 of a gas turbine before a combustor 9, as shown in the system diagram in FIG. , casing or
It is supplied into the blade 1 through piping etc. connected to this.

このため、冷却空気量が増加すれば圧縮機8で
圧縮するための所要動力が多くなり、この分だけ
ガスタービン10の効率及び出力が低下すること
になる。
Therefore, if the amount of cooling air increases, the power required for compression by the compressor 8 will increase, and the efficiency and output of the gas turbine 10 will decrease by this amount.

また、フイルム冷却を完全に行なうためには、
主流ガスの圧力に対する冷却空気の圧力差が適正
である必要があり、この圧力差が小さいと局所的
に吹出しが行なわれないのみならず、主流ガスが
翼内部へ逆流することもあり、冷却性能が損なわ
れ、逆に圧力差が大きすぎると、冷却空気が勢い
よく吹出し、翼面に対する吹出し角が大きい場
合、翼面に沿つた冷却空気層が形成され難く、空
力性能までもが損なわれる。
In addition, in order to completely cool the film,
The pressure difference between the cooling air and the pressure of the mainstream gas needs to be appropriate. If this pressure difference is small, not only will blowing not occur locally, but the mainstream gas may flow back into the blade, which will affect the cooling performance. On the other hand, if the pressure difference is too large, the cooling air will be blown out forcefully, and if the blowing angle to the blade surface is large, it will be difficult to form a cooling air layer along the blade surface, and even aerodynamic performance will be impaired.

一般に、主流ガスの圧力は、冷却空気の圧力よ
りわずかに低いだけであるため、吹出しが完全に
行なわれるように、主流ガス系の圧縮機8出口か
らガスタービンのタービン部10の翼列に至るま
での間に絞り抵抗等を設け、主流ガスの圧力を下
げる場合もある。
Generally, the pressure of the mainstream gas is only slightly lower than the pressure of the cooling air, so in order to ensure complete blowing, the main stream gas is routed from the outlet of the compressor 8 in the mainstream gas system to the blade row of the turbine section 10 of the gas turbine. In some cases, a throttle resistor or the like is provided between these steps to lower the pressure of the mainstream gas.

このように、主流ガスの圧力を下げることは、
この分が仕事に関与しないため、そのままロスと
なり、出力は低下する。
In this way, lowering the pressure of the mainstream gas is
Since this amount is not involved in work, it becomes a loss and the output decreases.

また、翼1の各部より冷却空気を吹出し、フイ
ルム冷却を行なう場合には、翼面に沿つて主流ガ
スに圧力分布があり、それぞれの位置に所定量の
冷却空気を吹出すための翼構造は、複雑となつて
いる。
In addition, when cooling air is blown out from each part of the blade 1 to perform film cooling, there is a pressure distribution in the mainstream gas along the blade surface, and the blade structure is required to blow out a predetermined amount of cooling air to each location. , is becoming more complex.

また、冷却空気の吹出し孔を設けることは、そ
れだけ加工の手間がかかり、コスト上昇をまね
き、強度が低下し、翼寿命は短かくなる。
Further, providing cooling air blow-off holes requires a lot of processing time, increases costs, reduces strength, and shortens blade life.

以上のように、従来の冷却式の翼の構造では、
ガスタービンの高温化にともない、翼前縁部から
フイルム冷却を行ない、これに必要な冷却空気量
も多くなつているため、主流ガス冷却によるガス
タービン熱効率の低下と、圧縮機所要動力にしめ
るロスが多くなり、また主流ガス圧力を下げるた
めの出力低下等の問題があり、この対策が強く望
まれていた。
As mentioned above, in the structure of conventional cooled blades,
As the temperature of gas turbines increases, film cooling is performed from the leading edge of the blade, and the amount of cooling air required for this is also increasing, resulting in a decrease in gas turbine thermal efficiency due to mainstream gas cooling and a loss in the required power of the compressor. In addition, there were problems such as a reduction in output due to lowering the mainstream gas pressure, and countermeasures against this problem were strongly desired.

そこで、本発明は前記従来の問題点を解消し、
ガスタービンの効率向上を可能ならしめることを
目的としてなされたものである。
Therefore, the present invention solves the above-mentioned conventional problems,
This was done with the aim of making it possible to improve the efficiency of gas turbines.

即ち、本発明は、ガスタービンの静翼の頭部と
本体部とを別体に形成すると共に、該静翼のプラ
ツトフオーム及びシユラウドに該頭部よりやや大
きい寸法を有する穴及び溝を設け、それらの穴及
び溝内に該頭部の上下両端部を装着することによ
り構成される。
That is, the present invention forms the head and main body of a stator vane of a gas turbine separately, and provides holes and grooves having dimensions slightly larger than the head in the platform and shroud of the stator vane. , by fitting both upper and lower ends of the head into the holes and grooves.

以下、図面を参照して本発明の実施例を説明す
るが、第3図は本発明の一実施例におけるガスタ
ービンの静翼の翼部断面図であり、第4図は第3
図の静翼のキヤンバーラインに沿つた断面図で、
第5図は第3図の翼頭部の断面図であり、第1―
Aから第1―D図に示す従来例と同じ部品は同じ
部品番号で示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a sectional view of the stator blade of a gas turbine in one embodiment of the present invention, and FIG.
A cross-sectional view along the camber line of the stationary blade shown in the figure.
FIG. 5 is a sectional view of the wing head in FIG.
The same parts as in the conventional example shown in FIGS. A to 1-D are indicated by the same part numbers.

まず、第2図の従来例で説明したと同様のガス
タービンのタービン部10に適用される本発明の
翼1において、12が頭部、13が本体部、14
が中空の先端部、15が仕切、16が冷却空気通
路、17が先端の冷却空気吹出し孔、18がブラ
ツトフオーム、19がシユラウド、そして20が
キヤツプである。
First, in the blade 1 of the present invention applied to the turbine section 10 of a gas turbine similar to that explained in the conventional example of FIG.
is a hollow tip, 15 is a partition, 16 is a cooling air passage, 17 is a cooling air outlet at the tip, 18 is a bracket form, 19 is a shroud, and 20 is a cap.

次に、この翼1では頭部12と本体部13とが
別体に形成されており、頭部12は、本体部1
3、プラツトフオーム18、シユラウド19と同
じ耐熱合金で形成することも、または本体部13
とは異なるセラミツク材で形成しても良い。
Next, in this wing 1, the head 12 and the main body 13 are formed separately, and the head 12 is formed from the main body 1.
3. The platform 18 and the shroud 19 can be made of the same heat-resistant alloy, or the main body 13
It may be formed from a ceramic material different from the above.

頭部12の範囲は、主流ガスがせき止められる
範囲、あるいは、熱伝達率の高い範囲までとす
る。
The range of the head 12 is the range where the mainstream gas is blocked or the range where the heat transfer coefficient is high.

また、頭部12は本体部13側が凸となるよう
な曲線、あるいは折線等でその分割線が翼外面と
接する角度が大きくなるように本体部13と分け
ている。
Further, the head 12 is separated from the main body 13 by a curve such that the main body 13 side is convex or by a broken line so that the angle at which the dividing line contacts the outer surface of the wing is large.

また、本体部13およびプラツトフオーム18
とシユラウド19とは1体となつている。
In addition, the main body 13 and the platform 18
and Shroud 19 are one body.

更に、プラツトフオーム18に、頭部12寸法
よりやや大きな穴21を設け、シユラウド19に
も頭部12の寸法よりやや大きな溝22を設け、
頭部12を穴21を通して溝22にさし込み、穴
21にキヤツプ20をし、キヤツプ20上端を全
周溶接する。
Further, the platform 18 is provided with a hole 21 that is slightly larger than the head 12, and the shroud 19 is also provided with a groove 22 that is slightly larger than the head 12.
The head 12 is inserted into the groove 22 through the hole 21, the cap 20 is placed in the hole 21, and the upper end of the cap 20 is welded all around.

本体部13には、仕切15によつて先端部14
と後縁部2とに分けた中空部を設け、その先端に
細孔の冷却空気吹出し孔17を多数穿設し、かつ
その外面、即ち、頭部12との合せ面には冷却空
気通路16を設け、後縁部2の中空部は内部対流
冷却構造とする。
The main body part 13 has a distal end part 14 by a partition 15.
A hollow section is provided, which is divided into a rear edge section 2 and a rear edge section 2. A large number of small cooling air blowing holes 17 are provided at the tip of the hollow section, and cooling air passages 16 are provided at the outer surface of the hollow section, that is, the surface where it meets the head section 12. The hollow part of the trailing edge part 2 has an internal convection cooling structure.

本発明の静翼は、以上のように構成されてお
り、本体部13の先端部14および後縁部2に冷
却空気を導き、先端部14の中空部の導かれた冷
却空気は、本体部13先端の冷却空気吹出し孔1
7より頭部12と本体部13との間の冷却空気通
路16に吹出され、その冷却空気通路16を通つ
て翼外に吹出され、本体部13を冷却空気層でお
おい、フイルム冷却する。
The stator vane of the present invention is configured as described above, and the cooling air is guided to the tip portion 14 and the trailing edge portion 2 of the main body portion 13, and the cooling air guided to the hollow portion of the tip portion 14 is directed to the main body portion 13. 13 Tip cooling air outlet 1
7 into the cooling air passage 16 between the head 12 and the main body 13, and is blown out of the blade through the cooling air passage 16, covering the main body 13 with a layer of cooling air and cooling the film.

また、後縁部2の中空部に導かれた冷却空気
は、本体部13の内部を対流冷却し、後縁の冷却
空気吹出し孔3より翼外に吹出される。
Further, the cooling air guided into the hollow portion of the trailing edge portion 2 convects the inside of the main body portion 13 and is blown out of the blade from the cooling air blowing hole 3 at the trailing edge.

なお、ここで、シユラウド19に穴21を設
け、プラツトフオーム18に溝22を設けても、
または双方に穴を設けても良い。
Note that even if the hole 21 is provided in the shroud 19 and the groove 22 is provided in the platform 18,
Alternatively, holes may be provided on both sides.

以上のごとく、本発明では翼1の頭部12を、
他の翼構造部、即ち、本体部13、プラツトフオ
ーム18、シユラウド19等と分けてあり、翼1
の構造強度は後者でもち、頭部12にかかる空気
力も本体部でささえるため、頭部12は構造強度
を必要としない。
As described above, in the present invention, the head 12 of the wing 1 is
It is separated from other wing structural parts, namely, the main body part 13, the platform 18, the shroud 19, etc., and the wing 1
The structural strength of the head 12 is maintained by the latter, and the aerodynamic force applied to the head 12 is also supported by the main body, so the head 12 does not require structural strength.

また、翼1はタービンケーシングの熱伸び等の
影響を受け、あるいは自からの熱伸び等により変
形することもあるが、これらに頭部12を取付け
るためのプラツトフオーム18の穴21と、シユ
ラウド19の溝22とは頭部12より大きく、頭
部12との間に間隙があるため、翼1が変形して
もこの力が頭部12に加わることはない。
In addition, although the blade 1 is affected by the thermal expansion of the turbine casing or deforms due to its own thermal expansion, there are holes 21 in the platform 18 for attaching the head 12 to these, and holes 21 in the shroud. Since the groove 22 of No. 19 is larger than the head 12 and there is a gap between the groove 22 and the head 12, this force will not be applied to the head 12 even if the wing 1 is deformed.

即ち、翼1が変形していなければ、頭部12は
空気力によりその後面が本体部13先端、および
穴21と溝22の後面と接しており、翼1からは
何ら力を受けていないが、翼1が変形すれば穴2
1と溝22の中心がずれたり、曲がつたり、本体
部13がせり出したりし、頭部12に力が作用す
る。
That is, if the wing 1 is not deformed, the rear surface of the head 12 is in contact with the tip of the main body 13 and the rear surfaces of the holes 21 and grooves 22 due to aerodynamic force, and no force is applied from the wing 1. , if wing 1 is deformed, hole 2
1 and the groove 22 may be misaligned, the main body portion 13 may be bent, or the main body portion 13 may protrude, and force acts on the head portion 12.

ここで、穴21と溝22に間隙がなければ、翼
1が変形すれば、その力は全て頭部12にも働く
が、穴21と溝22に間隙があるので、翼1が変
形しても頭部12は穴21と溝22の中で移動し
大きな力は働かない。
Here, if there is no gap between the hole 21 and the groove 22, when the blade 1 deforms, all the force will also act on the head 12, but since there is a gap between the hole 21 and the groove 22, the blade 1 will deform. However, the head 12 moves within the hole 21 and groove 22 and no large force is applied.

従つて、穴21と溝22の間隙は翼1の変形量
より大きいことが必要で、具体的には0.1〜0.15
mmあればよい。
Therefore, the gap between the hole 21 and the groove 22 needs to be larger than the amount of deformation of the blade 1, specifically 0.1 to 0.15
mm is enough.

なお、熱伸びにより翼1全体が膨張する場合
は、穴21と溝22の中心線がずれたり、本体部
13がせり出してくることもないので、翼1の膨
張に対する穴21と溝22の間隙は考慮の必要は
ない。
Note that when the entire blade 1 expands due to thermal expansion, the center lines of the holes 21 and grooves 22 do not shift, and the main body 13 does not protrude. does not need to be considered.

このため頭部12に、構造強度に対する信頼性
が不十分のため、従来翼1を構成できなかつたセ
ラミツクを用いることもできる。
For this reason, it is also possible to use ceramic for the head 12, which could not conventionally be used to construct the wing 1 due to insufficient reliability in terms of structural strength.

なお、キヤツプ20をプラツトフオーム18に
全周溶接したのは、主流ガスが穴21の間隙を通
つて主流ガス通路外にもれることを防止するため
である。
The reason why the cap 20 is welded to the platform 18 all the way around is to prevent the mainstream gas from leaking out of the mainstream gas passage through the gap between the holes 21.

従つて、本発明では主流ガスがせき止められ、
翼として最も高温となる前縁部の頭部が本体部と
は別体に形成されているので、頭部が高温により
膨張しても本体部には影響を与えることがなく、
翼全体としての構造強度を十分に維持することが
できる。
Therefore, in the present invention, the mainstream gas is dammed,
The head of the leading edge, which is the hottest part of the wing, is formed separately from the main body, so even if the head expands due to high temperature, it will not affect the main body.
The structural strength of the wing as a whole can be maintained sufficiently.

また、本発明では、頭部と本体部との分割面に
冷却空気通路を設け、その冷却空気通路より冷却
空気を本体部側面に吹出し、本体部をフイルム冷
却することができ、翼全体としてみれば、前縁吹
出しはなくなり、側面からの吹出しとなる。
In addition, in the present invention, a cooling air passage is provided in the dividing plane between the head and the main body, and cooling air is blown out from the cooling air passage to the side of the main body, so that the main body can be film-cooled, and the blade as a whole can be cooled. For example, there will be no leading edge airflow, and air will be emitted from the side.

翼前縁からフイルム冷却を行なう場合、翼前縁
には主流ガスの動圧分が加わるため、冷却空気の
圧力はこれより高いことが必要で、この圧力差を
保つため、主流ガス系の圧力をわざと下げること
もあるが、翼後縁から吹出す場合は、主流ガスが
加速し、圧力は下つているため、主流ガスと冷却
空気の圧力差は保たれることになり、主流ガス系
の圧力を下げる必要はなくなり、この分ガスター
ビンの効率が向上する。
When performing film cooling from the leading edge of the blade, the dynamic pressure of the mainstream gas is applied to the leading edge of the blade, so the pressure of the cooling air needs to be higher than this.In order to maintain this pressure difference, the pressure of the mainstream gas system must be increased. Sometimes this is intentionally lowered, but when blowing out from the trailing edge of the blade, the mainstream gas accelerates and the pressure decreases, so the pressure difference between the mainstream gas and the cooling air is maintained, and the mainstream gas system There is no need to lower the pressure, which increases the efficiency of the gas turbine.

また、上記の翼では、頭部と本体部との分割線
が翼外面と接する角度を大きくとることができる
ので、分割面にある冷却空気通路を通つて翼外に
吹出す冷却空気は、翼後方に小さな角度で吹出す
ことになる。
In addition, in the above wing, the angle at which the parting line between the head and the main body touches the outer surface of the wing can be set large, so that the cooling air blown out of the wing through the cooling air passage in the parting surface is It will blow out at a small angle backwards.

このため、冷却空気の圧力が主流ガスの圧力よ
り高くなつて勢よく吹出しても、翼面に沿つて冷
却空気層が形成され、冷却性能や空気性能が損な
われることはない。
Therefore, even if the pressure of the cooling air becomes higher than the pressure of the mainstream gas and is blown out vigorously, a cooling air layer is formed along the blade surface, and the cooling performance and air performance are not impaired.

また、本発明では、翼前縁からの冷却空気吹出
しがなくなり、翼側面および翼後縁からの吹出し
となる。
Further, in the present invention, cooling air is no longer blown out from the leading edge of the blade, but instead is blown out from the side surface of the blade and the trailing edge of the blade.

冷却空気を翼内から翼外に吹出す量は、冷却空
気と主流ガスの圧力差に応じて冷却空気吹出し孔
の総断面積で規定するため、翼前縁と翼側面等か
ら吹出しを行なう場合、主流ガスには翼面に沿つ
た圧力分布があり、それぞれの位置の冷却空気吹
出し量を所定の量にするための翼構造は複雑とな
つているが、主流ガスの動圧分を受ける翼前縁か
らの冷却空気吹出しがなくなり、主流ガスが加速
し、圧力の下がつた翼側面および翼後縁からの吹
出しとなれば、翼面に沿つた主流ガスの圧力分布
に応じて冷却空気を所定量吹出すための翼構造は
簡単となる。
The amount of cooling air blown from the inside of the blade to the outside of the blade is determined by the total cross-sectional area of the cooling air outlet, depending on the pressure difference between the cooling air and the mainstream gas, so when blowing from the leading edge of the blade and the side of the blade, etc. , the mainstream gas has a pressure distribution along the blade surface, and the blade structure is complicated to make the amount of cooling air blown out at each position a predetermined amount. If the cooling air is no longer blown out from the leading edge, the mainstream gas is accelerated, and the air is blown out from the lower pressure side of the blade and the trailing edge of the blade, the cooling air will be distributed according to the pressure distribution of the mainstream gas along the blade surface. The blade structure for blowing out a predetermined amount becomes simple.

また、本発明では翼を頭部と本体部に分けると
き、本体部側が凸となるように分けてあるため、
頭部に働く空気力の方向が変化してもこの力は有
効に本体部でささえることができる。
In addition, in the present invention, when dividing the wing into the head and the main body, the wings are separated so that the main body side is convex.
Even if the direction of the aerodynamic force acting on the head changes, this force can be effectively supported by the main body.

また、頭部と本体部との組合せは、凹及び凸と
なり、頭部が本体部とずれて段差ができ、翼面を
流れる主流ガスが剥離し、空力性能が低下するこ
とも防止できる。
Further, the combination of the head and the main body is concave and convex, and it is possible to prevent the head from shifting from the main body, creating a step, causing separation of the mainstream gas flowing on the wing surface, and reducing aerodynamic performance.

また別体に形成した頭部が、何らかの原因で破
損しても、本体部は先端が凸形状の翼形をなして
おり、ある程度の空力性能は保たれると共に、ま
た頭部が破損しても簡単に取替えることができ
る。
In addition, even if the separately formed head is damaged for some reason, the main body has an airfoil shape with a convex tip, so a certain level of aerodynamic performance is maintained, and even if the head is damaged, can also be easily replaced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1―A図、第1―B図、第1―C図及び第1
―D図は、それぞれ異なる従来の冷却式の静翼の
断面図、第2図はガスタービンの系統図、第3図
は本発明の一実施例におけるガスタービンの静翼
の翼部断面図であり、第4図は第3図の静翼のキ
ヤンバーラインに沿つた断面図で、第5図は第3
図の翼頭部の断面図である。 1…翼、10…ガスタービンのタービン部、1
1…発電機、12…頭部、13…本体部、18…
プラツトフオーム、19…シユラウド、20…キ
ヤツプ、21…穴、22…溝。
Figure 1-A, Figure 1-B, Figure 1-C, and Figure 1
-D is a sectional view of different conventional cooling type stator blades, FIG. 2 is a system diagram of a gas turbine, and FIG. 3 is a sectional view of a stator blade of a gas turbine according to an embodiment of the present invention. There is a
FIG. 3 is a cross-sectional view of the wing head shown in the figure. 1... Blade, 10... Turbine part of gas turbine, 1
1... Generator, 12... Head, 13... Main body, 18...
Platform, 19...shroud, 20...cap, 21...hole, 22...groove.

Claims (1)

【特許請求の範囲】[Claims] 1 ガスタービンの静翼の頭部と本体部とを別体
に形成すると共に、該静翼のプラツトフオーム及
びシユラウドに該頭部よりやや大きい寸法を有す
る穴及び溝を設け、それらの穴及び溝内に該頭部
の上下両端部を装着したことを特徴とするガスタ
ービンの静翼。
1. The head and main body of a stator blade of a gas turbine are formed separately, and holes and grooves having dimensions slightly larger than the head are provided in the platform and shroud of the stator blade, and the holes and grooves are formed in the platform and shroud of the stator blade. A stationary blade for a gas turbine, characterized in that both upper and lower ends of the head are mounted in a groove.
JP6910483A 1983-04-21 1983-04-21 Stator blade of gas turbine Granted JPS59196904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6910483A JPS59196904A (en) 1983-04-21 1983-04-21 Stator blade of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6910483A JPS59196904A (en) 1983-04-21 1983-04-21 Stator blade of gas turbine

Publications (2)

Publication Number Publication Date
JPS59196904A JPS59196904A (en) 1984-11-08
JPS6360205B2 true JPS6360205B2 (en) 1988-11-22

Family

ID=13392981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6910483A Granted JPS59196904A (en) 1983-04-21 1983-04-21 Stator blade of gas turbine

Country Status (1)

Country Link
JP (1) JPS59196904A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393825B1 (en) * 2000-01-25 2002-05-28 General Electric Company System for pressure modulation of turbine sidewall cavities

Also Published As

Publication number Publication date
JPS59196904A (en) 1984-11-08

Similar Documents

Publication Publication Date Title
US7303376B2 (en) Turbine airfoil with outer wall cooling system and inner mid-chord hot gas receiving cavity
JP4311919B2 (en) Turbine airfoils for gas turbine engines
US7520723B2 (en) Turbine airfoil cooling system with near wall vortex cooling chambers
US5711650A (en) Gas turbine airfoil cooling
US5927946A (en) Turbine blade having recuperative trailing edge tip cooling
US8668453B2 (en) Cooling system having reduced mass pin fins for components in a gas turbine engine
US7510367B2 (en) Turbine airfoil with endwall horseshoe cooling slot
US7056083B2 (en) Impingement cooling of gas turbine blades or vanes
US7160084B2 (en) Blade of a turbine
US8562286B2 (en) Dead ended bulbed rib geometry for a gas turbine engine
JP4137507B2 (en) Apparatus and method for airfoil film cooling
US6609891B2 (en) Turbine airfoil for gas turbine engine
JPS6242122B2 (en)
JPS6360205B2 (en)
GB2366599A (en) Air-cooled turbine blade
JPS6242121B2 (en)
JPS6310284B2 (en)
JPS6310285B2 (en)
JPS6360204B2 (en)
JPS59173501A (en) Stationary blade of gas turbine
JPS59160006A (en) Stationary blade for gas turbine
JPS6360202B2 (en)
JPS59160004A (en) Stationary blade for gas turbine
GB2366600A (en) Cooling arrangement for trailing edge of aerofoil
JPS6359003B2 (en)