JPS59160006A - Stationary blade for gas turbine - Google Patents

Stationary blade for gas turbine

Info

Publication number
JPS59160006A
JPS59160006A JP3270183A JP3270183A JPS59160006A JP S59160006 A JPS59160006 A JP S59160006A JP 3270183 A JP3270183 A JP 3270183A JP 3270183 A JP3270183 A JP 3270183A JP S59160006 A JPS59160006 A JP S59160006A
Authority
JP
Japan
Prior art keywords
cooling air
blade
core
gas
blade body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3270183A
Other languages
Japanese (ja)
Inventor
Yukimasa Kajitani
梶谷 幸正
Hajime Endo
肇 遠藤
Kiyomi Tejima
手島 清美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3270183A priority Critical patent/JPS59160006A/en
Publication of JPS59160006A publication Critical patent/JPS59160006A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce the volume of cooling air for thereby improving a gas turbine in its operating efficiency, by arranging such that while a blade head portion is separated from a blade body and made of ceramics, a core is provided inside the hollow portion of blade body and a cooling air blow-off port is provided through the top end of core. CONSTITUTION:A plurality of stationary blades 1 arranged in an annular configuration comprises a blade body 2 made of heat resistant alloy and a blade head portion 3 made of ceramics and provided at the leading edge to prevent the flow of high temperature gas. These portions form their boundary face in such a configuration that the blade body side 2 is convexed. On the other hand, the interior of blade body 2 is made hollow 4 in which a core 5 is provided. The core 5 is communicated to a cooling air source and has a plenty of blow- off ports 6 provided at the top end thereof. The rear part of hollow portion 4 is communicated to the rear edge of blade via a cooling air blow-off port 7. In this manner, the volume of cooling air can be reduced and the absence of cooling air blow-off passage eliminates the need to lower the pressure of the main flow gas,thereby improving the gas turbine in its operating efficiency.

Description

【発明の詳細な説明】 本発明は主として高温ガスタービン等に使用される静翼
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates primarily to stator blades used in high-temperature gas turbines and the like.

近年ガスタービンは、そのタービンの性能向上および出
力上昇のためにます捷す高温化する傾向にある。したが
って、このようなガスの高温下において、タービン翼の
強度を如何にして保持させるようにするがということが
大きな枝体」課題となっている。このような課題を解決
するため、翼を冷却する方法として静翼を中空に構成し
、その中空部を冷却空気供給源に連通させて、冷却空気
を導き内部を対流冷却する方法、翼の中空部内に中子を
設け、該中子内に冷却空気を導き中子先端の吹出用孔よ
り翼内面に吹出し、局所的に熱伝達率を高め、強制冷却
する方法、翼の中空部内に冷却空気を導き前線部の吹出
用孔から冷却空気を吹き出し翼の外表面を冷却空気層で
おおい、高温の燃焼ガスから熱を遮断するフィルム冷却
の方法等が採用され、ガスタービンが高温化するにつれ
てこれらの冷却方法を組合せて使用するに至っている。
In recent years, gas turbines have tended to operate at higher temperatures in order to improve their performance and increase their output. Therefore, a major problem is how to maintain the strength of turbine blades under such high temperature gas conditions. In order to solve these problems, we have developed a method for cooling the vanes by configuring the stator vanes to be hollow, communicating the hollow part with a cooling air supply source, guiding the cooling air, and cooling the interior by convection. A method in which a core is provided inside the blade, and cooling air is guided into the core and blown out from the blow-off hole at the tip of the core to the inner surface of the blade to locally increase the heat transfer coefficient and perform forced cooling. As gas turbines become hotter, methods such as film cooling have been adopted, in which cooling air is blown out from blow-off holes in the front section, and the outer surface of the blade is covered with a layer of cooling air to block heat from high-temperature combustion gas. A combination of these cooling methods has now been used.

ここで、静翼の前縁部は、高温ガスがせき止められる部
分であり、翼のうちでも最も高温となるところであるた
め、この部分の冷却が重要であり、ガスタービンの高温
化にともなってフィルム冷却を併用し、またこの部分を
冷却するに必要な冷却空気量も多くなっている。しかし
ながら、この冷却空気は、一般にガスタービンのタービ
ン部により駆動される圧縮機より抽気して供給するため
、上述のように冷却空気の供給量が増加することは、そ
れだけ圧縮機で圧縮するだめの所要動力が大きくなり、
その分、ガスタービンの効率低下を招くことになる。さ
らには、上述のように冷却空気の供給量が増加すること
はそれたけ主流ガスに混合する冷却空気の量が増し、主
流ガスの平均ガス温度が低下すルコトにもなり、ガスタ
ービンのサイクル効率が低下してしまうことになる。ま
た、静翼の前縁部は主流ガスをせき止めるためその動圧
が加わるが、冷却空気の吹出しを完全にするためには、
冷却空気の圧力が主流ガスの動圧分を含む圧力より大き
い必要があり、このため主流ガス側の流路に紋り抵抗等
を設けて主流ガス圧力を低下する場合もある。しかしこ
の場合は、このように圧力を下げた分だけガスタービン
の仕事に関与しないことになるので、結局この場合もガ
スタービンの出力低下を招くことは避けられないことに
なる。
Here, the leading edge of the stationary blade is the part where high-temperature gas is dammed up and is the hottest part of the blade, so it is important to cool this part, and as the temperature of the gas turbine increases, the film Cooling is also used, and the amount of cooling air required to cool this part is also increasing. However, this cooling air is generally supplied by extraction from a compressor driven by the turbine section of the gas turbine, so the increase in the amount of cooling air supplied as described above means that the compressor cannot compress it. The required power increases,
This will cause a reduction in the efficiency of the gas turbine. Furthermore, as the amount of cooling air supplied increases as described above, the amount of cooling air mixed with the mainstream gas also increases, which lowers the average gas temperature of the mainstream gas, which in turn reduces the cycle efficiency of the gas turbine. will decrease. In addition, dynamic pressure is applied to the leading edge of the stator vane to block the mainstream gas, but in order to completely blow out the cooling air,
The pressure of the cooling air needs to be higher than the pressure including the dynamic pressure of the mainstream gas, and for this reason, the mainstream gas pressure may be lowered by providing a resistance or the like in the flow path on the mainstream gas side. However, in this case, since the reduced pressure does not contribute to the work of the gas turbine, a reduction in the output of the gas turbine is inevitable in this case as well.

本発明の目的は、上述のような問題を解消し、ガスター
ビンの効率向上を可能とするガスタービンの静翼を提供
せんとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a stationary blade for a gas turbine that solves the above-mentioned problems and makes it possible to improve the efficiency of the gas turbine.

上記目的を達成する本発明によるガスタービンの静翼は
、高温ガスをせき止める数頭部を翼本体と分けると共に
セラミックで構成し、この数頭部と翼本体の境界面を前
記翼本体側が凸面となるように形成し、この翼本体を中
空に形成すると共に、その中空部内に中子を設け、その
中子先端に中空部の内面に向けた冷却空気の吹出用孔を
設け、かつこの中子を冷却空気供給源に連通させたこと
を特徴とするものである。
A stationary blade for a gas turbine according to the present invention that achieves the above object has several heads that hold back high-temperature gas separated from the blade body and is made of ceramic, and the interface between these heads and the blade body is formed so that the blade body side has a convex surface. The blade body is formed to be hollow, and a core is provided in the hollow part, and a cooling air blowing hole is provided at the tip of the core toward the inner surface of the hollow part, and is characterized in that it is connected to a cooling air supply source.

以下、図に示す本発明の実施例により説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below with reference to embodiments shown in the drawings.

第1図は、本発明の実施例によるガスタービンの静翼を
示すものである。この図において、1は静翼であり、複
数個が環状に配列されている。このように配列された静
翼群に対し、高温ガスは矢印で示すように供給されるよ
うになっている。
FIG. 1 shows a stator blade of a gas turbine according to an embodiment of the present invention. In this figure, reference numeral 1 indicates stationary blades, and a plurality of them are arranged in a ring shape. High-temperature gas is supplied to the stator vanes arranged in this manner as shown by the arrows.

この静翼1は、耐熱合金からなる翼本体2と高温ガスを
せき止める前縁側のセラミックからなる数頭部6とから
構成されている。この翼本体2と数頭部6は、翼本体2
側が凸状となるような形状で境界面を形成している。こ
の凸面の′  境界面を形成する断面の線は曲線でもよ
く、あるいは折線でもよい。ここで頭部の範囲は主流ガ
スかせき止められる範囲あるいはそれ以上とし、具体的
にはキャンバ−ライン長さの約10%以内とするのか適
当である。
The stationary blade 1 is composed of a blade main body 2 made of a heat-resistant alloy and several heads 6 made of ceramic on the leading edge side for damming up high-temperature gas. This wing body 2 and several heads 6 are
The boundary surface is formed in such a shape that the sides are convex. The cross-sectional line forming the boundary surface of this convex surface may be a curved line or a broken line. Here, the range of the head should be the range where the mainstream gas can be blocked or more, and specifically, it is appropriate to set it within about 10% of the length of the camber line.

一方、翼本体2の内部は中空部4となるように形成され
、この中空部4の内部に中子5が設けられ、この中子5
は、図示しない冷却空気供給源(ガスタービンのタービ
ン部により駆動される圧縮機)に連通しでいる。中子5
の先端には多数の吹出用孔6が設けられており、この吹
出用孔6は中空部4の内面に向けて、冷却空気を局所的
に吹出するようになっている。また、中空部4の後部は
冷却空気の吹出用孔7を介して翼後縁に連通ずるよう罠
なっている。
On the other hand, the inside of the wing body 2 is formed to be a hollow part 4, and a core 5 is provided inside this hollow part 4.
is in communication with a cooling air supply source (not shown) (a compressor driven by a turbine section of a gas turbine). Core 5
A large number of blow-off holes 6 are provided at the tip of the hollow portion 4, and the blow-off holes 6 blow out cooling air locally toward the inner surface of the hollow portion 4. Further, the rear portion of the hollow portion 4 is formed into a trap so as to communicate with the trailing edge of the blade via a cooling air blowout hole 7.

したがって、中子5に供給された冷却空気は先端の吹出
用孔6から中空部4の内面に向けて吹き出し、局所的に
熱伝達を高め強制冷却し、次いで中子5の外壁と中壁部
4の内壁との間の間隙8を通りながら翼本体2の側面を
冷却し、後縁の吹出用孔7から高温ガス中に吹き出され
る。
Therefore, the cooling air supplied to the core 5 is blown out from the blow-off hole 6 at the tip toward the inner surface of the hollow part 4, locally increasing heat transfer and forcibly cooling the outer wall and inner wall of the core 5. The side surface of the blade body 2 is cooled while passing through the gap 8 between the blade body 2 and the inner wall of the blade body 2, and is blown out into the hot gas from the blow-off hole 7 at the trailing edge.

第2図は本発明の他の実施例からなる静翼を示すもので
ある。
FIG. 2 shows a stationary blade according to another embodiment of the present invention.

この実施例では、中子5の後端が中空部4の内壁に接合
されて吹出用孔7と連通する構成となっておシ、一方中
空部4の後部に翼本体2の外側面に抜ける吹出用孔9が
設けられる構成と々っている。
In this embodiment, the rear end of the core 5 is joined to the inner wall of the hollow part 4 and communicates with the blowout hole 7, while the rear end of the hollow part 4 is connected to the outer surface of the blade body 2. There are many configurations in which blowout holes 9 are provided.

したがって、との静翼では、中子5に供給された冷却空
気の一部は後部の吹出用孔7がら本、体2の後端に吹き
出し、捷だ他の一部は先端の吹出用孔6から中空部4の
内面を局所的な強制倒動をした後、中子5の外壁と中空
部4の内壁との間の間隙を辿りながら翼本体2の側面を
冷却し、後部の吹出用孔9がら吠き出して翼側面に冷却
空気のフィルム層を形成して冷却を行うようになってい
る。
Therefore, in the stator vane, a part of the cooling air supplied to the core 5 is blown out from the rear blowing hole 7 to the rear end of the body 2, and the other part is blown out from the blowing hole at the tip. After locally forcing the inner surface of the hollow part 4 from 6, the side surface of the blade main body 2 is cooled while following the gap between the outer wall of the core 5 and the inner wall of the hollow part 4, and the rear blowout is cooled. Cooling is performed by blowing out through the holes 9 and forming a film layer of cooling air on the side surfaces of the wings.

なお、上述の各実施例の静翼において、第3図又は第4
図に示すように、数頭部6と翼本体2との境界面に間隙
10を設けるようにすると、数頭部6から翼本体2への
熱伝達を少なくすることができる。
In addition, in the stationary blades of each of the above-mentioned embodiments, FIG. 3 or 4
As shown in the figure, by providing a gap 10 at the interface between the multiple heads 6 and the blade body 2, heat transfer from the multiple heads 6 to the blade body 2 can be reduced.

上述した静翼は、主流ガスをせき止め静翼のうちでも最
も高温となる前縁部が、金属よりも耐熱性の高いセラミ
ックからなる頭部3により形成されているため、この前
線部には、従来の静翼の前縁部のように冷却空気の吹出
用孔を設はフィルム冷却する必要がないことになる。一
方、翼本体2は前縁部はど高温とならずその先端はセラ
ミック製の数頭部乙により、主流ガスこの・熱を遮断さ
れるため、この翼本体2自身の冷却のために、従来の機
構の静翼はどに多量の冷却空気を必要としなくなる。し
かも、翼本体2の冷却は、中空内部の中子5の先端に設
けた多数の吹出用孔6から、先端側の温度の高い場所に
対し局所的に強制冷却するようにするため、極めて効率
的な冷却が行われ、一層少ない冷却空気量での冷却が可
能となる。その結果、主流ガス中に混合する冷却空気量
が絨少して平均ガス温度の低下は抑制されガスタービン
の効率は向上し、また圧縮機を駆動するだめの所要動力
も少なくなるためガスタービンの効率を一層向上するこ
とになる。また、従来の静翼のように主流ガスの動圧が
直接作用する前縁部に吹出用孔を設ける必要がないため
、冷却空気の吹出しを可能にするために主流ガスとの圧
力差を考慮し、主流ガス圧力をわざわざ下げるというよ
うな処置も必要でなくなるので、この面からもガスター
ビン効率の向上に寄与することになる。
In the above-mentioned stator vane, the leading edge, which holds back the mainstream gas and becomes the hottest part of the stator vane, is formed by the head 3 made of ceramic, which has higher heat resistance than metal. Unlike the leading edge of conventional stationary vanes, there is no need to provide cooling air blow-off holes for film cooling. On the other hand, the leading edge of the blade body 2 does not reach a high temperature, and its tip is blocked from the mainstream gas by several heads made of ceramic. The stationary vanes of this mechanism no longer require a large amount of cooling air. Moreover, the cooling of the blade body 2 is extremely efficient as the hot areas on the tip side are locally forcedly cooled through a large number of blow-off holes 6 provided at the tip of the hollow core 5. cooling is performed, making it possible to perform cooling with an even smaller amount of cooling air. As a result, the amount of cooling air mixed into the mainstream gas is reduced, suppressing the drop in average gas temperature and improving the efficiency of the gas turbine.The power required to drive the compressor is also reduced, making the gas turbine more efficient. This will further improve the results. In addition, unlike conventional stationary vanes, there is no need to provide a blowout hole on the leading edge where the dynamic pressure of the mainstream gas directly acts, so the pressure difference with the mainstream gas is taken into consideration to enable cooling air to be blown out. However, since there is no need to take measures such as taking the trouble to lower the mainstream gas pressure, this also contributes to improving gas turbine efficiency.

また、上述の静翼では、主流ガスの動圧を受ける前縁部
に冷却空気の吹出用孔を設けていないため、主流ガスの
圧力分布に応じて冷却空気を吹出すための翼構造を、従
来の前線部から吹出すようにした静翼に比べ簡単にする
ことができる。
In addition, in the above-mentioned stationary blade, since no cooling air blowing hole is provided at the leading edge that receives the dynamic pressure of the mainstream gas, the blade structure for blowing out the cooling air according to the pressure distribution of the mainstream gas is It can be simpler than the conventional stator vane, which blows air from the front part.

さらに、セラミックは金属に比べて構造強度が劣るため
、従来はガスタービンの静翼に利用することは難しいと
されていたが、上述のようにこのセラミックを頭部3の
みにし、その翼の構造強度を金属の翼本体2でもつよう
に構成し、かつ頭部3にかカニる空気力は翼本体2で支
えるようにしたことにより、セラミックの利用を可能に
している。これに伴い、上述のようにガスタービン効率
の一層の向上を可能にしている。
Furthermore, ceramic has inferior structural strength compared to metal, so it was previously considered difficult to use it for the stationary blades of gas turbines. The wing body 2 is made of metal to provide strength, and the aerodynamic force acting on the head 3 is supported by the wing body 2, making it possible to use ceramics. Along with this, as mentioned above, it is possible to further improve the gas turbine efficiency.

しかも、セラミックの数頭部3は翼本体2側が凸となる
ような形状で境界面を形成しているので、数頭@3に作
用する主流ガスの力の方向が変化しても、この力を本体
2で支え−ることができる。また、数頭部3と翼本体2
とは凹凸の組合せであるので、両者の間のずれにより段
差ができガス流れが翼面から剥離して空力性能を低下す
るようなことも防止することができる。また何んらかの
原因によりセラミックの頭部が破損したとしても、翼本
体2.の先端面が凸であるため、ある程度の空力性能は
維持することができ、また簡単に交換ができる。
Moreover, since the ceramic heads 3 form a boundary surface with a convex shape on the wing body 2 side, even if the direction of the force of the mainstream gas acting on the ceramic heads 3 changes, this force can be supported by the main body 2. In addition, several heads 3 and wing bodies 2
Since this is a combination of concave and convex surfaces, it is possible to prevent a difference in level caused by a gap between the two, which would cause the gas flow to separate from the blade surface and degrade aerodynamic performance. Also, even if the ceramic head is damaged for some reason, the wing body 2. Since the distal end surface is convex, a certain level of aerodynamic performance can be maintained and it can be easily replaced.

上述したように、本発明によるガスタービンの静翼は、
主流ガスをせき止める数頭部を翼本体と分けると共にセ
ラミックで構成し、数頭部と翼本体の境界面を翼本体側
が凸面となるように形成し、この翼本体を中空に形成す
ると共に、その中空部内に中子を設け、その中子先端に
中φ部の内面に向けた冷却空気の吹出用孔を設け、かつ
この中子を冷却空気供給源に連通させた構成としたので
、冷却空気量を低減でき、また冷寿空気の吹出路を設け
ない構成にしたので主流lスの圧力を下げる必要がなく
なり、ガスター牢ンの効率向上を行うことができる。
As mentioned above, the stator blade of the gas turbine according to the present invention has the following features:
The several heads that hold back the mainstream gas are separated from the blade body and are made of ceramic, and the boundary surface between the several heads and the blade body is formed so that the side of the blade body is convex. A core is provided in the hollow part, a hole is provided at the tip of the core for blowing cooling air toward the inner surface of the center diameter part, and this core is communicated with a cooling air supply source, so that cooling air is The amount can be reduced, and since the configuration does not provide a blowout passage for cold air, there is no need to lower the pressure of the main stream, and the efficiency of the gas star cell can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例によるガスタービンの静翼を示
す縦断面図、第2図は本発明の他の実施例による静翼の
縦断面図、第3図及び第4図はそれぞれさらに他の実施
例による静翼の要部断面図である。 1・・・静翼、2・・・翼本体、3・・・数頭部、4・
・・中空部、5・・中子、6,7・・吹出用孔。 出願人 工業技術院長 石 坂 誠 −第11A ◇ / ノ 第3図 第4図
FIG. 1 is a longitudinal sectional view showing a stator vane of a gas turbine according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a stator vane according to another embodiment of the invention, and FIGS. FIG. 7 is a sectional view of a main part of a stator blade according to another embodiment. 1... Stationary blade, 2... Wing body, 3... Several heads, 4...
...Hollow part, 5...core, 6,7...blowout hole. Applicant Makoto Ishizaka, Director General of the Agency of Industrial Science and Technology - Figure 11A ◇ / Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 免頭部を翼本体と分けると共にセラミックで構成し、翼
頭部と翼本体の境界面を前記翼本体側が凸面となるよう
に形成し、この翼本体を中空に形成すると共に、その中
空部内に中子を設け、その中子先端に中空部の内面に向
けた冷却空気の吹出用孔を設けたことを特徴とするガス
タービンの静翼。
The cap is separated from the wing body and is made of ceramic, the boundary surface between the wing head and the wing body is formed so that the wing body side is convex, the wing body is formed hollow, and a A stationary blade for a gas turbine, characterized in that a core is provided, and a hole for blowing cooling air toward the inner surface of a hollow portion is provided at the tip of the core.
JP3270183A 1983-03-01 1983-03-01 Stationary blade for gas turbine Pending JPS59160006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3270183A JPS59160006A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3270183A JPS59160006A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Publications (1)

Publication Number Publication Date
JPS59160006A true JPS59160006A (en) 1984-09-10

Family

ID=12366149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270183A Pending JPS59160006A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Country Status (1)

Country Link
JP (1) JPS59160006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175502U (en) * 1985-04-22 1986-11-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175502U (en) * 1985-04-22 1986-11-01

Similar Documents

Publication Publication Date Title
JP4486216B2 (en) Airfoil isolation leading edge cooling
JP4509263B2 (en) Backflow serpentine airfoil cooling circuit with sidewall impingement cooling chamber
JP4801513B2 (en) Cooling circuit for moving wing of turbomachine
EP1221538B1 (en) Cooled turbine stator blade
US6491496B2 (en) Turbine airfoil with metering plates for refresher holes
US7824150B1 (en) Multiple piece turbine airfoil
JPH0370084B2 (en)
JPH10266803A (en) Gas turbine cooling moving blade
JP2953842B2 (en) Turbine vane
US6544001B2 (en) Gas turbine engine system
EP1361337A1 (en) Turbine airfoil cooling configuration
JPS59160006A (en) Stationary blade for gas turbine
JPH0463901A (en) Gas turbine cooling blade
JP2938506B2 (en) Turbine vane
EP1362982A1 (en) Turbine airfoil with single aft flowing three pass serpentine cooling circuit
JPS59160004A (en) Stationary blade for gas turbine
JPS6360204B2 (en)
JPS59173501A (en) Stationary blade of gas turbine
JPS6359003B2 (en)
JPS59160009A (en) Stationary blade for gas turbine
JPS6360203B2 (en)
JPS6360202B2 (en)
JPH0711903A (en) Cooling structure for hollow cooling moving blade
JPS59196902A (en) Stator blade of gas turbine
JPS6242121B2 (en)