JPS59196902A - Stator blade of gas turbine - Google Patents
Stator blade of gas turbineInfo
- Publication number
- JPS59196902A JPS59196902A JP6910183A JP6910183A JPS59196902A JP S59196902 A JPS59196902 A JP S59196902A JP 6910183 A JP6910183 A JP 6910183A JP 6910183 A JP6910183 A JP 6910183A JP S59196902 A JPS59196902 A JP S59196902A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- cooling air
- gas turbine
- leading edge
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/284—Selection of ceramic materials
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は主として高温ガスタービン等に使用される静翼
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates primarily to stator blades used in high-temperature gas turbines and the like.
近年ガスタービンは、そのタービンの性能向」−および
出力上昇のために1すます高温化する傾向にある。した
がって、このようなガスの高温下において、タービン翼
の強度を如何にして保持させるようにするかということ
が大きな技術課題となっている。このような課題を解決
するため、翼を冷却する方法として静翼を中空に構成し
、その中空部を冷却空気供給源に連通させて冷却空気を
導き内部を対流冷却する方法、翼の中空部内に中子を設
け、該中子内に冷却空気を導き中子先端の吹出用孔より
翼内面に吹出し、局所的に熱伝達率を高め、強制冷却す
る方法、翼の中空部内に冷却空気を導き前縁部の吹出用
孔から冷却空気を吹き出し翼の外表面を冷却空気層でお
おい、高温の燃焼ガスから熱を遮断するフィルム冷却の
方法等が採用され、ガスタービンが高温化するにつれて
これらの冷却方法を組合せて使用するに至っている。In recent years, gas turbines have tended to become hotter and hotter in order to increase the performance and output of the turbines. Therefore, a major technical issue is how to maintain the strength of turbine blades under such high temperature gas conditions. In order to solve these problems, we have developed a method for cooling the vanes by configuring the stator vanes to be hollow, communicating the hollow part with a cooling air supply source, guiding the cooling air, and cooling the interior by convection. A method in which cooling air is introduced into the core and blown out to the inner surface of the blade from the blow-off hole at the tip of the core to locally increase the heat transfer coefficient and force cooling. As gas turbines become hotter, methods such as film cooling, which blows cooling air out of the blow-off holes at the leading edge of the guide and covers the outer surface of the blade with a layer of cooling air to block heat from high-temperature combustion gas, are being adopted. A combination of these cooling methods has now been used.
ここで、静翼の前線部は、高温カスがせき止められる部
分であシ、翼のうちでも最も高温となるところであるた
め、この部分の冷却が重要でありガスタービンの高温化
にともなってフィルム冷却を併用し、またこの部分を冷
却するに必要な冷却空気量も多くなっている。しかしな
がら、この冷却空気は、一般にガスタービンのタービン
部によシ駆動される圧縮機より抽気して供給するため、
上述のように冷却空気の供給量が増加することは、それ
だけ圧縮機で圧扁するための所要動力が犬きくな)、そ
の分、ガスタービンの効率低下を招くことになる。さら
には、上述のように冷却空気の供給量が増加することは
それだけ主流ガスに混合する冷却空気の量が増し、主流
ガスの平均ガス温度が低下することにもなり、ガスター
ビンのザイクル効率が低下してし甘うことになる。捷だ
、静翼の前縁部は主流ガスをせき止めるためその動圧が
加わるが冷却空気の吹出しを完全にするためには、冷却
生気の圧力が主流ガスの動圧分を含む圧力より大きい必
要があシ、このため主流ガス側の流路に絞り抵抗等を設
けて主流ガス圧力を低下する場合もある。しかしこの場
合は、このように圧力を下けた分たけガスタービンの仕
事に関与しないことになるので、結局この場合もガスタ
ービンの出力低下を招くことは避けられないことになる
。Here, the front part of the stationary blade is the part where high-temperature debris is dammed up, and it is the highest temperature part of the blade, so cooling this part is important.As the temperature of the gas turbine increases, film cooling is required. In addition, the amount of cooling air required to cool this area is also increasing. However, this cooling air is generally supplied by extraction from a compressor driven by the turbine section of a gas turbine.
As described above, when the amount of cooling air supplied increases, the power required for compressing the air with the compressor increases accordingly), which leads to a corresponding decrease in the efficiency of the gas turbine. Furthermore, as the amount of cooling air supplied increases as mentioned above, the amount of cooling air mixed with the mainstream gas also increases, and the average gas temperature of the mainstream gas decreases, which increases the cycle efficiency of the gas turbine. It will be a shame if it gets worse. The dynamic pressure is applied to the leading edge of the stator vane to stop the mainstream gas, but in order to blow out the cooling air completely, the pressure of the cooling live air must be greater than the pressure that includes the dynamic pressure of the mainstream gas. For this reason, a restrictor or the like is sometimes provided in the flow path on the mainstream gas side to lower the mainstream gas pressure. However, in this case, the reduced pressure does not contribute to the work of the gas turbine, which inevitably leads to a decrease in the output of the gas turbine.
上記目的を達成する本発明によるガスタービンの静翼は
、板頭部を翼本体と分けると共にセラミックで構成する
と共に、翼本体を中空に形成して冷却空気により冷却す
るようにしたことを特徴とするものである。A stationary blade for a gas turbine according to the present invention that achieves the above object is characterized in that the plate head is separated from the blade body and is made of ceramic, and the blade body is formed hollow so that it is cooled by cooling air. It is something to do.
以下、図に示す本発明の実施例により説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below with reference to embodiments shown in the drawings.
図は、本発明の実施例によるガスタービンの静翼を示す
ものである。この図において、1は静翼であり、複数個
が環状に配列されている。The figure shows a stator blade of a gas turbine according to an embodiment of the invention. In this figure, reference numeral 1 indicates stationary blades, and a plurality of them are arranged in a ring shape.
このように配列された静翼群に対し、高温ガスは矢印で
示すように供給されるようになっている。High-temperature gas is supplied to the stator vanes arranged in this manner as shown by the arrows.
との静翼1は、耐熱合金からなる翼本体2と高温ガスを
せき止める前縁側のセラミックからなる板頭部3とから
構成されている。この翼本体2と板頭部6は、翼本体2
側が凸状となるような形状で境界面を形成している。こ
の凸面の境界面を形成する断面の線は曲線でもよく、あ
るいは折線でもよい。さらに両側の翼側面に延長する境
界面の延長線は、それぞれ翼側面の接線に対し鋭角α、
α′をなすようになっている。The stationary blade 1 is composed of a blade main body 2 made of a heat-resistant alloy and a plate head 3 made of ceramic on the leading edge side that dams up high-temperature gas. The wing body 2 and the plate head 6 are
The boundary surface is formed in such a shape that the sides are convex. The cross-sectional line forming the boundary surface of this convex surface may be a curved line or a broken line. Furthermore, the extension lines of the boundary surfaces extending to the wing sides on both sides are at an acute angle α to the tangent to the wing sides, respectively.
It is designed to form α′.
ここで板頭部の範囲は、主流ガスがせき止められる範囲
から熱伝達率の高い範囲までとし、具体的にはキャンバ
−ライン長さの5〜30%程度とするのが透光である。Here, the range of the plate head ranges from the range where the mainstream gas is dammed up to the range where the heat transfer coefficient is high, and specifically, the range of the plate head is about 5 to 30% of the camber line length for light transmission.
一方、翼本体2の内部には、図示しない冷却空気供給源
(ガスタービンのタービン部によシ駆動される圧縮機)
に連通した二つの中空部4゜5が仕切壁乙により区切ら
れて形成されている。On the other hand, inside the blade body 2, a cooling air supply source (not shown) (a compressor driven by a turbine section of a gas turbine) is provided.
Two hollow portions 4°5 communicating with each other are separated by a partition wall B.
一方の中空部4は冷却空気の吹出用孔7,7に連通し、
さらにこの吹出用孔7,7を介して、翼本体2と板頭部
6との間の境界面に沿って設けた冷却空気の吹出通路8
,8に連通し、それぞれ翼の両側面側に開口するように
なっている。One hollow part 4 communicates with cooling air blowing holes 7, 7,
Further, a cooling air blowing passage 8 provided along the boundary surface between the blade body 2 and the plate head 6 through the blowing holes 7, 7.
, 8, and open on both sides of the wing.
したがって、中空部4に供給された冷却空気は、吹出用
孔7,7を介し吹出通路8,8から翼本体20両側面に
沿って吹き出され、その翼本体をフィルム冷却すること
になる。才だ、他方の中空部5は冷却空気の吹出用孔9
を介して翼後縁に開口するようになっている。したがっ
て、この中空部5に供給された冷却空気は内部を対流冷
却し、しかる後、吹出用孔9から翼後縁側へ吹き出され
るようになっている。Therefore, the cooling air supplied to the hollow part 4 is blown out from the blow-off passages 8, 8 through the blow-off holes 7, 7 along both sides of the blade body 20, thereby film-cooling the blade body. The other hollow part 5 is a cooling air blowout hole 9.
It is designed to open at the trailing edge of the wing through. Therefore, the cooling air supplied to the hollow portion 5 convects the inside and is then blown out from the blow-off holes 9 toward the trailing edge of the blade.
・上述した実施例の静翼は、主流ガスをせき止める静翼
のうちでも最も高温となる前縁部が、金属よりも耐熱性
の高いセラミックからなる頭部6により形成されている
ため、この前線部には、従来の静翼の前縁部のように冷
却空気の吹出用孔を設はフィルム冷却する必要がないこ
とになる。一方、翼本体2は前縁部はど高温とはならず
、その先端はセラミック製の板頭部6により、主流ガス
の熱を遮断されると共に、両者の境界面に設けた吹出通
路8によって熱伝達を防止されるため、この翼本体2自
身の冷却のために、従来の機構の静翼はどに多量の冷却
空気を必要としなくなる。その結果、主流ガス中に混合
する冷却空気量が減少して平均ガス温度の低下は抑制さ
れ、ガスタービンの効率は向上し、また圧縮機を駆動す
るだめの動力損失も少なくなるためガスタービンの効率
を一層向上することになる。また、吹出通路8は従来の
静翼のように前縁部に開口するのではなく、翼側面に開
口させたものであるので、従来の静翼の場合のように主
流ガスの動圧が直接作用するようなことがなく、逆に主
流ガスの速度が増し圧力が下がっているため、冷却空気
の吹出しを可能にするために主流ガスとの圧力差を考慮
して主流ガス圧力をわざわさ下けるというような処置も
必要でなくなるので、この面からもガスタービン効率の
向上に寄与することになる。- In the stator vane of the above-mentioned embodiment, the leading edge, which is the hottest among the stator vanes that dams up the mainstream gas, is formed by the head 6 made of ceramic, which has higher heat resistance than metal. Unlike the leading edge of a conventional stator vane, there is no need to provide cooling air blow-off holes for film cooling. On the other hand, the leading edge of the blade body 2 does not reach a high temperature, and its tip is shielded from the heat of the mainstream gas by the ceramic plate head 6, and by the blowout passage 8 provided at the interface between the two. Since heat transfer is prevented, the stationary blades of the conventional mechanism do not require a large amount of cooling air to cool the blade body 2 itself. As a result, the amount of cooling air mixed into the mainstream gas is reduced, suppressing the drop in average gas temperature, improving the efficiency of the gas turbine, and reducing the power loss of the compressor. This will further improve efficiency. In addition, the blowout passage 8 is not opened at the leading edge like in conventional stator vanes, but is opened at the side of the blade, so the dynamic pressure of the mainstream gas is directly applied to it, unlike in the case of conventional stator vanes. On the contrary, the speed of the mainstream gas increases and the pressure decreases, so in order to make it possible to blow out the cooling air, the pressure of the mainstream gas must be adjusted in consideration of the pressure difference with the mainstream gas. Since there is no need to take measures such as lowering the gas turbine, this also contributes to improving gas turbine efficiency.
さらに、セラミックは金属に比べて構造強度が劣るため
、従来はカスタービンの翼に利用することは難しいとさ
れていたが、上述のように仁のセラミックを最も必要と
する翼構成の一部−犬けに使用し、その翼の構造強度は
金属の板本#2により持つように構成するとともに、翼
頭部6にかかる空気力も翼本体2で支えるようにするこ
とによりセラミックの利用を可能にした。Furthermore, ceramics have lower structural strength than metals, so it has traditionally been considered difficult to use them in cast turbine blades. Used for dog hunting, the structural strength of the wing is provided by the metal plate #2, and the aerodynamic force applied to the wing head 6 is also supported by the wing body 2, making it possible to use ceramics. did.
にれに伴い、上述のようにガスタービン効率の一層の向
上を可能にしている。As described above, this makes it possible to further improve gas turbine efficiency.
上述したように、本発明によるガスタービンの静翼ば、
翼頭部を翼本体と分けると共にセラミックで構成すると
共に、この翼本体を中空に形成、し・て冷却空気により
冷却するようにしたので、冷却空気の使用量を低減し、
ガスタービンの効率向上を行うことができる。As mentioned above, the stator blade of the gas turbine according to the present invention,
The wing head is separated from the wing body and made of ceramic, and the wing body is hollow and cooled by cooling air, reducing the amount of cooling air used.
The efficiency of gas turbines can be improved.
図は本発明の実施例によるカスタービンの静翼を示す縦
断面図である。
1・・・静翼、2・・・翼本体、6・・・翼頭部、4,
5ハ(e 畑 をψThe figure is a longitudinal sectional view showing a stationary blade of a cast turbine according to an embodiment of the present invention. 1... Stationary blade, 2... Wing body, 6... Wing head, 4,
5ha (e field ψ
Claims (1)
本体を中空に形成して冷却空気により冷却するようにし
たことを特徴とするガスタービンの静翼。A stationary blade for a gas turbine, characterized in that a blade head is separated from a blade body and is made of ceramic, and the blade body is formed hollow so that it is cooled by cooling air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6910183A JPS59196902A (en) | 1983-04-21 | 1983-04-21 | Stator blade of gas turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6910183A JPS59196902A (en) | 1983-04-21 | 1983-04-21 | Stator blade of gas turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59196902A true JPS59196902A (en) | 1984-11-08 |
Family
ID=13392891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6910183A Pending JPS59196902A (en) | 1983-04-21 | 1983-04-21 | Stator blade of gas turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59196902A (en) |
-
1983
- 1983-04-21 JP JP6910183A patent/JPS59196902A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4509263B2 (en) | Backflow serpentine airfoil cooling circuit with sidewall impingement cooling chamber | |
US4515526A (en) | Coolable airfoil for a rotary machine | |
US4604031A (en) | Hollow fluid cooled turbine blades | |
US9797261B2 (en) | Internal cooling of engine components | |
EP1467064B1 (en) | Cooled Hollow airfoil | |
EP2071126B1 (en) | Turbine blades and methods of manufacturing | |
US5660524A (en) | Airfoil blade having a serpentine cooling circuit and impingement cooling | |
US6183197B1 (en) | Airfoil with reduced heat load | |
JP4184323B2 (en) | Hollow rotor blades for gas turbine engine turbines | |
EP2148042A2 (en) | A blade for a rotor having a squealer tip with a partly inclined surface | |
GB2498551A (en) | Cooled aerofoil with helical passage | |
EP1273758A2 (en) | System and method for airfoil film cooling | |
GB2438861A (en) | Film-cooled component, eg gas turbine engine blade or vane | |
JP7523471B2 (en) | Near-wall leading edge cooling channels for airfoils. | |
CN111156053A (en) | Tail edge offset split structure based on gas turbine blade and cooling method | |
JP3642537B2 (en) | Gas turbine cooling blade | |
JP2003322003A (en) | Turbine airfoil part having single three-passage zigzag cooling circuit flowing rearward | |
JPS59196902A (en) | Stator blade of gas turbine | |
EP1362982A1 (en) | Turbine airfoil with single aft flowing three pass serpentine cooling circuit | |
JP2938506B2 (en) | Turbine vane | |
JPS6360204B2 (en) | ||
JPS59173501A (en) | Stationary blade of gas turbine | |
JPS6359003B2 (en) | ||
JPS59160004A (en) | Stationary blade for gas turbine | |
JPS59160007A (en) | Stationary blade for gas turbine |