JPS59160004A - Stationary blade for gas turbine - Google Patents

Stationary blade for gas turbine

Info

Publication number
JPS59160004A
JPS59160004A JP3269983A JP3269983A JPS59160004A JP S59160004 A JPS59160004 A JP S59160004A JP 3269983 A JP3269983 A JP 3269983A JP 3269983 A JP3269983 A JP 3269983A JP S59160004 A JPS59160004 A JP S59160004A
Authority
JP
Japan
Prior art keywords
blade
cooling air
blade body
gas
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3269983A
Other languages
Japanese (ja)
Inventor
Hajime Endo
肇 遠藤
Kiyomi Tejima
手島 清美
Yukimasa Kajitani
梶谷 幸正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3269983A priority Critical patent/JPS59160004A/en
Publication of JPS59160004A publication Critical patent/JPS59160004A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve a gas turbine in its operating efficiency, by arranging such that while the part of blade head where a heat transmission rate is high is separated away from a blade body, and formed with a ceramics, the blade body is made hollow and cooled by means of a cooling air for thereby lowering the volume of cooling air. CONSTITUTION:A plurality of stationary blades 1 is arranged in an annular configuration. In this case, the stationary blade 1 comprises a blade body 2 made of heat resistant alloy and the ceramics head portion of blade provided at a forward end for preventing the flow of main stream gas. These elements 2, 3 form their boundary in such a configuration that the blade body 2 side may take a convexed shape. On the other hand, the interior of blade body 2 is made as a hollow portion 4. The hollow portion 4 communicates to a cooling air source, having a blow-off port 5 provided at the rear end thereof to open towards the rear edge of stationary blade 1. In consequence, a cooling air supplied to the hollow portion 4 is blown into a high temperature gas through a blow-off port 5, after it has cooled the interior of blade body 2 through a convection. In this manner, the volume of cooling air can be reduced, eliminating the need to lower the pressure of the main stream gas.

Description

【発明の詳細な説明】 本発明は主として高温ガスタービン等に使用される静翼
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates primarily to stator blades used in high-temperature gas turbines and the like.

近年ガスタービンは、そのタービンの性能向上および出
力上昇のためにますます高温化する傾向にある。したが
って、このようなガスの高温下において、タービン翼の
強度を如何にして保持させるようにするかということが
大きな技術課題となっている。このような課題を解決す
るため、翼を冷却する方法として静翼を中空に構成し、
その中空部を冷却空気゛供給源に連通させて、冷却空気
を導き内部を対流冷却する方法、翼の中空部内に中子を
設け、該中子内に冷却空気を導き中子先端の吹出用孔よ
り翼内面に吹出し、局所的に熱伝達率を高め、強制冷却
する方法、翼の中空部内に冷却空気を導き前縁部の吹出
用孔から冷却空気を吹き出し、翼の外表面を冷却空気層
でおおい、高温の燃焼ガスから熱を遮断するフィルム冷
却の方法等が採用されガスタービンが高温化するにつれ
てこれらの冷却方法を組合せて使用するに至っている。
In recent years, gas turbines have tended to become increasingly hotter in order to improve their performance and increase their output. Therefore, a major technical issue is how to maintain the strength of turbine blades under such high temperature gas conditions. In order to solve these problems, we have developed a hollow stator vane as a way to cool the vane.
A method in which the hollow part is communicated with a cooling air supply source and the cooling air is guided to cool the inside by convection.A core is provided in the hollow part of the blade, and cooling air is guided into the core for blowing out the tip of the core. A method in which cooling air is blown into the inner surface of the blade through the holes to locally increase the heat transfer coefficient and forced cooling. Cooling air is guided into the hollow part of the blade and is blown out from the blow-off holes in the leading edge, thereby cooling the outer surface of the blade. Film cooling methods have been adopted in which the gas turbine is covered with layers to block heat from the high-temperature combustion gas, and as gas turbines become hotter, these cooling methods have come to be used in combination.

ここで、静翼の前−縁部は、高温ガスがせき止められる
部分であり、翼のうちでも最も高温となるところである
ため、この部分の冷却が重要宇あり、ガスタービンの高
温化にともなってフィルム冷却を併用し、またこの部分
を冷却するに必要な冷却空気量も多くなっている。しが
しながら、この冷却空気は、一般にガスタービンのター
ビン部により駆動される圧縮機より抽気して供給するた
め、上述のように冷却空気の供給量が増加することは、
それだけ圧縮機で圧縮するための所要動力が大きくなり
、その分、pスタービンの効率低下を招くことになる。
Here, the front edge of the stationary blade is the part where high-temperature gas is dammed up and is the hottest part of the blade, so cooling this part is important, and as the temperature of the gas turbine increases, Film cooling is also used, and the amount of cooling air required to cool this area is also increasing. However, since this cooling air is generally supplied by extraction from a compressor driven by the turbine section of a gas turbine, the increase in the supply amount of cooling air as described above means that
The power required for compression by the compressor increases accordingly, leading to a corresponding decrease in the efficiency of the p-turbine.

さらにしま、上述のように冷却空気の供給量が増加する
こ・としまそれたけ主流ガスに混合する冷却空気の量が
増し、主流ガスの平均ガス温度が低下することにもなり
、ガスタービンのサイクル効率が低下してしまうことに
なる。また、静翼の前縁部は主流ガスをせき止めるため
、その動圧が加わるが冷却空気の吹出を完全にするため
には冷却空気の圧力が主流ガスの動圧分を含む圧力より
大きい必要があり、このため主流ガス側の流路に絞り抵
抗等を設けて主流ガス圧力を低下する場合もある。しか
しこの場合は、このように圧力を下げた分だけガスター
ビンの仕事に関与しないことになるので、結局この場合
もガスタービンの出力低下を招くことは避けられないこ
とになる0 本発明の目的は、上述のような問題を解消し、ガスター
ビンの効率向上を可能とするガスタービン□の静翼を提
供せんとするものである。
Furthermore, as mentioned above, the supply amount of cooling air increases, and the amount of cooling air mixed with the mainstream gas increases, which lowers the average gas temperature of the mainstream gas, which reduces the gas turbine cycle. This will result in a decrease in efficiency. In addition, since the leading edge of the stationary blade dams up the mainstream gas, its dynamic pressure is applied, but in order to blow out the cooling air completely, the pressure of the cooling air must be greater than the pressure including the dynamic pressure of the mainstream gas. Therefore, a restriction resistor or the like is sometimes provided in the flow path on the mainstream gas side to lower the mainstream gas pressure. However, in this case, since the reduced pressure does not contribute to the work of the gas turbine, a reduction in the output of the gas turbine is inevitable in this case as well.Objective of the Invention The object of the present invention is to provide a stationary blade for a gas turbine □ that solves the above-mentioned problems and makes it possible to improve the efficiency of the gas turbine.

上記目的を達成する本発明によるガスタービンの静翼は
、翼頭部の熱伝達率の高い範囲を翼本体と分けると共に
セラミックで構成し、この翼頭部と翼本体の境界面を翼
本体側が凸面となるようにするか、又はキャンバ−ライ
ンに垂直な面とし、前記翼本体は中空に形成して冷却空
気により冷却するようにしたことを特徴とするものであ
る。
The stator vane for a gas turbine according to the present invention that achieves the above object is configured to separate the high heat transfer coefficient range of the blade head from the blade body, and to make the boundary between the blade head and the blade body with the blade body side facing away from the blade body. The wing body is characterized in that it has a convex surface or a surface perpendicular to the camber line, and the wing body is formed hollow so that it is cooled by cooling air.

以下、図に示す本発明の実施例により説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below with reference to embodiments shown in the drawings.

第1図は、本発明の実施例によるガスタービンの静翼を
示すものである。この図において、1は静翼であり、こ
の複数個が環状に配列されている。
FIG. 1 shows a stator blade of a gas turbine according to an embodiment of the present invention. In this figure, reference numeral 1 indicates stationary blades, and a plurality of these vanes are arranged in a ring shape.

このように配列された静翼群に対し、高温ガスは矢印で
示すように供給されるようになっている。
High-temperature gas is supplied to the stator vanes arranged in this manner as shown by the arrows.

この静翼1は、耐熱合金からなる翼本体2と主流ガスを
せき止める前縁側のセラミックからなる翼頭部6とから
構成されている。この翼本体2と翼頭部6は、翼本体2
側が凸状となるような形状で境界面を形成している。こ
の凸面の境界面を形成する断面の線は曲線でもよく、あ
るいは折線でもよい。このセラミ°7り製の翼頭部2の
長さは、熱伝達率の高い範囲となるようにし、具体的に
はキャンノく一ライン長さの約30%以内とするのが適
当である。
The stationary blade 1 is composed of a blade body 2 made of a heat-resistant alloy and a blade head 6 made of ceramic on the leading edge side that dams up mainstream gas. The wing body 2 and the wing head 6 are
The boundary surface is formed in such a shape that the sides are convex. The cross-sectional line forming the boundary surface of this convex surface may be a curved line or a broken line. The length of the ceramic blade head 2 is set within a range that provides a high heat transfer coefficient, and specifically, it is appropriate to set the length to within about 30% of the cantilever line length.

一方、翼本体2の内部は中空部4となるように形成され
、この中空部4は、図示しない冷却空気供M#i(ガス
タービンのタービン部により駆動される圧縮機)に連通
している。この中空部4の後部は吹出用孔5により静翼
1の後縁に開口するようになっている。したがって、中
空部4に供給された冷却空気は翼本体2を内部で対流冷
却した後、後部の吹出用孔5から高温ガス中に吹き出さ
れるようになっている。
On the other hand, the inside of the blade body 2 is formed to be a hollow part 4, and this hollow part 4 communicates with a cooling air supply M#i (a compressor driven by a turbine part of a gas turbine) (not shown). . The rear portion of the hollow portion 4 opens to the trailing edge of the stationary blade 1 through a blowout hole 5 . Therefore, the cooling air supplied to the hollow portion 4 convectively cools the blade body 2 inside, and then is blown out into the high-temperature gas from the blow-off holes 5 at the rear.

なお翼本体2と翼頭部3の境界面は第1図の実施例では
翼本体2側が凸状となるような形状で形成しているが、
第2図に示すようにキャンバ−ラインLに垂直な形状で
形成してもよい。
Note that the boundary surface between the wing body 2 and the wing head 3 is formed in such a shape that the wing body 2 side is convex in the embodiment shown in FIG.
As shown in FIG. 2, it may be formed in a shape perpendicular to the camber line L.

第3図は、本発明の他め実施例を示すものである。この
実施例では、翼本体2の中空部4の中に中子6が設けら
れ、その中子6の先端に多数の吹出用孔7が設けられた
構成となっており、この吹出用孔7は中空部4の内面に
向けて、冷却空気を局所的に噴出するようになっている
FIG. 3 shows another embodiment of the invention. In this embodiment, a core 6 is provided in the hollow portion 4 of the blade body 2, and a large number of blowout holes 7 are provided at the tip of the core 6. The cooling air is locally blown out toward the inner surface of the hollow portion 4.

したがって、中子6に供給された冷却空気は先端の吹出
用孔7から中空部4の内面に向けて吹き出し、局所的に
熱伝達を高め強制冷却し、次いで中子6の外壁と中空部
4の内壁との間の間隙8を通りながら翼本体2の側面を
冷却し、後縁の吹出用孔5から高温ガス中に吹き出され
る。
Therefore, the cooling air supplied to the core 6 is blown out from the blow-off hole 7 at the tip toward the inner surface of the hollow part 4, locally increasing heat transfer and being forcedly cooled, and then between the outer wall of the core 6 and the hollow part 4. The side surface of the blade body 2 is cooled while passing through the gap 8 between the blade body 2 and the inner wall of the blade body 2, and is blown out into the hot gas from the blowout hole 5 at the trailing edge.

第4図は本発明のさらに他の実施例からなる静翼を示す
ものである。
FIG. 4 shows a stationary blade according to still another embodiment of the present invention.

この実施例では、中子6の後端が中空部4の内壁に接合
されて吹出用孔5と連通する構成となっており、一方中
空部4の後部に翼本体2の外側面に抜ける吹出用孔9が
設けられる構成となっている。したがって、この静翼で
は、中子6に供給された冷却空気の一部は後部の吹出用
孔5から本体2の後端に吹き出し、また他の一部は先端
の吹出用孔7から中空部4の内面を局剛的な強制冷却を
した後、後部の吹出用孔9から吹き出して翼側面に冷却
空気のフィルム層を形成して冷却を行うようになってい
る。また、第5図のように翼頭部6と翼本体2との境界
面に沿って翼の両側面に開口する吹出通路11 、11
を設け、この吹出通路11.11をそれぞれ吹出用孔1
2.12により中空部4と連通ずるようにすると、吹出
通路11 、11より吹き出した冷却空気により翼本体
2の側面をフィルム冷却することができる。
In this embodiment, the rear end of the core 6 is joined to the inner wall of the hollow part 4 and communicates with the blowout hole 5, while the rear end of the hollow part 4 is provided with a blowout which exits to the outer surface of the blade body 2. It has a configuration in which a use hole 9 is provided. Therefore, in this stationary blade, a part of the cooling air supplied to the core 6 is blown out from the rear blowing hole 5 to the rear end of the main body 2, and the other part is blown out from the blowing hole 7 at the tip to the hollow part. After the inner surface of the wing 4 is forcedly cooled, it is blown out from the blow-off hole 9 at the rear to form a film layer of cooling air on the side surface of the wing. In addition, as shown in FIG. 5, blowout passages 11, 11 are opened on both sides of the blade along the interface between the blade head 6 and the blade body 2.
are provided, and the blow-off passages 11 and 11 are respectively connected to the blow-off holes 1.
By communicating with the hollow portion 4 through 2.12, the side surface of the blade body 2 can be film-cooled by the cooling air blown out from the blow-off passages 11, 11.

上述した各実施例の静翼は、静翼のうちでも最も高温と
なる前縁部の熱伝達率の高い範囲が、金属よりも耐熱性
の高いセラミックからなる頭部6により形成されている
ため、この前縁部には、従来の静翼の前縁部のように冷
却空気の吹出用孔を設はフィルム冷却する必要がないこ
とになる。一方、翼本体2は前縁部はと高温とはならず
、その先端の熱伝達率の高い範囲がセラミック製の翼頭
部6により、主流ガスの熱を遮断されると共に、翼頭部
6がらの熱伝達も少ないため、この翼本体2自身の一冷
却のために、従来の機構の静翼はとに多量の冷却空気を
必要としなくなり、中空内部の対流冷却程度で十分に冷
却可能となる。その結果、主流ガス中に混合する冷却空
気量が減少して平均ガス温度の低下は抑制されガスター
ビンの効率は向上し、また圧縮機を駆動するための所要
動力も少なくなるためガスタービンの効率を一層向上す
ることになる。また、従来の静翼のように主流ガスの動
圧が直接作用する前縁部に吹出用孔を設ける必要がない
ため、冷却空気の吹出しを可能にするために主流ガスと
の圧力差を考慮して主流ガスの圧力をわざわざ下げると
いうような処置も必要でなくなるので、この面からもガ
スタービン・効率の向上に寄与することとなる。
In the stator vanes of each of the above-described embodiments, the leading edge portion, which is the highest temperature among the stator vanes, has a high heat transfer coefficient, and is formed by the head 6 made of ceramic, which has higher heat resistance than metal. Unlike the leading edge of conventional stator vanes, there is no need to provide cooling air blow-off holes or film cooling on this leading edge. On the other hand, the leading edge of the blade main body 2 does not reach a high temperature, and the area with a high heat transfer coefficient at the tip is blocked from the heat of the mainstream gas by the ceramic blade head 6. Since there is little heat transfer between the airfoils, conventional stationary blades no longer require a large amount of cooling air to cool the blade body 2 itself, and convection cooling inside the hollow space is sufficient for cooling. Become. As a result, the amount of cooling air mixed into the mainstream gas is reduced, suppressing the drop in average gas temperature, and improving the efficiency of the gas turbine.In addition, the power required to drive the compressor is also reduced, making the gas turbine more efficient. This will further improve the results. In addition, unlike conventional stationary vanes, there is no need to provide a blowout hole on the leading edge where the dynamic pressure of the mainstream gas directly acts, so the pressure difference with the mainstream gas is taken into account to enable blowing out of cooling air. Since there is no need to take measures such as taking the trouble to lower the pressure of the mainstream gas, this also contributes to improving the efficiency of the gas turbine.

また、上述の静翼では、主流ガスの動圧を受ける前縁部
に冷却空気の吹出用孔を設けてぃな1/)ため、主流ガ
スの圧力分布に応じて冷却空気、を吹き出すための翼構
造を、従来の前縁部がら1吹出すようにした静翼に比べ
簡単にすることができる。
In addition, in the above-mentioned stationary blade, the cooling air blowout hole is not provided at the leading edge that receives the dynamic pressure of the mainstream gas. The blade structure can be simpler than the conventional stationary blade in which one blow is ejected from the leading edge.

さらに、セラミックは金属に比べて構造強度が劣るため
、従来はガスタービンの静翼に利用することは難しいと
されていたが、上述のようにこのセラミックを頭部6の
みにし、その翼の構造強度は金属の翼本体2でもつよう
に構成し、かつ頭部6にかかる空気力も翼本体2で支え
るようにしたことにより、セラミックの利用を可能にし
ている。ここで翼頭部6を熱伝達率の高い範囲とすれば
必然的に翼全体の1/3程度の大きさとなり剛性が上が
りこわれにくくなる。また逆に翼本体2は剛性が下がる
が、翼1の複数枚を1組とするセグメント翼構造にすれ
ばよい。
Furthermore, ceramic has inferior structural strength compared to metal, so it was previously considered difficult to use it for the stationary blades of gas turbines. The blade body 2 is made of metal and has strength, and the aerodynamic force applied to the head 6 is also supported by the blade body 2, making it possible to use ceramics. If the wing head 6 is set in a range where the heat transfer coefficient is high, it will inevitably be about 1/3 the size of the entire wing, increasing its rigidity and making it less likely to break. Conversely, although the rigidity of the blade body 2 decreases, it is sufficient to use a segmented blade structure in which a plurality of blades 1 are combined into one set.

しかも、セラミックの翼頭部6と翼本体2を第1図等に
示すように翼本体2側が凸となるような形状で境界面を
形成しであるため、翼頭部6に作用する主流ガスのカの
方向が変化しても、力を本体2で支えることができ、ま
た、R頭部6と翼本体2とは四面の組合せとなるので、
両者の間のずれ(より段差ができガス流れが翼面から剥
離して空力性能を低下するようなことも防止することが
できる。
Moreover, since the ceramic blade head 6 and the blade body 2 form an interface with a convex shape on the blade body 2 side as shown in FIG. 1, the mainstream gas acting on the blade head 6 is Even if the direction of the force changes, the force can be supported by the main body 2, and since the R head 6 and the wing main body 2 form a four-sided combination,
It is also possible to prevent misalignment between the two (such as a step forming, causing the gas flow to separate from the blade surface and deteriorating aerodynamic performance).

上述したように、本発明によるガスタービンiの静翼は
、翼頭部の熱伝達率の高い範囲を翼本1体と分けると共
にセラミックで構成し、この翼頭部と翼本体の境界面を
翼本体側が凸面となるようにするか、又はキャンバ−ラ
インに垂直な面とし、前記翼本体は中空に形成して冷却
空気により冷却するようにした構成としたので、冷却空
気量を低減でき、冷却空気の吹出路を翼前縁部に設けな
い構成にしたので主流ガスの圧力を下げる必要がなくな
り、ガスタービンの効率向上を行うことができる。
As described above, the stationary blade of the gas turbine i according to the present invention separates the high heat transfer coefficient range of the blade head from the blade main body and is made of ceramic, and the interface between the blade head and the blade main body is Since the wing body side is made to have a convex surface or a surface perpendicular to the camber line, and the wing body is formed hollow and cooled by cooling air, the amount of cooling air can be reduced. Since the cooling air outlet is not provided at the leading edge of the blade, there is no need to lower the pressure of the mainstream gas, and the efficiency of the gas turbine can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例によるガスタービンの静翼を示
す縦断面図、第2図、第3図及び第4図はそれぞれ本発
明の他の実施例による静翼の縦断面図、第5図はさらに
他の実施例にょる静翼の要部断面図である。 1・・・静翼、2・・・翼本体、6・・・翼頭部、4・
・・中空部、5・・・吹出用孔、6・・中子。 出願人 工業技術院長 石板 誠− 第 1 図 第3図
FIG. 1 is a longitudinal sectional view showing a stator vane of a gas turbine according to an embodiment of the present invention, and FIGS. 2, 3, and 4 are longitudinal sectional views of stator vanes according to other embodiments of the present invention, FIG. 5 is a sectional view of a main part of a stationary blade according to still another embodiment. 1... Stationary blade, 2... Wing body, 6... Wing head, 4...
... Hollow part, 5 ... Blowout hole, 6 ... Core. Applicant Makoto Ishiita, Director General of the Agency of Industrial Science and Technology - Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 翼頭部の熱伝達率の高い範囲を翼本体と分けると共にセ
ラミックで構成し、この翼頭部と翼本体の境界面を翼本
体側が凸面となるようにするか、又はキャンバ−ライン
に垂直な面とし、前記翼本体は中空に形成して冷却空気
により冷却rるようにしたことを特徴とするガスタービ
ンの静翼。
The area where the heat transfer coefficient is high in the wing head is separated from the wing body and is made of ceramic, and the boundary surface between the wing head and the wing body is made convex on the wing body side or perpendicular to the camber line. A stationary blade for a gas turbine, characterized in that the blade main body is formed hollow and is cooled by cooling air.
JP3269983A 1983-03-01 1983-03-01 Stationary blade for gas turbine Pending JPS59160004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3269983A JPS59160004A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3269983A JPS59160004A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Publications (1)

Publication Number Publication Date
JPS59160004A true JPS59160004A (en) 1984-09-10

Family

ID=12366095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3269983A Pending JPS59160004A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Country Status (1)

Country Link
JP (1) JPS59160004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175502U (en) * 1985-04-22 1986-11-01

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215511A (en) * 1962-03-30 1965-11-02 Union Carbide Corp Gas turbine nozzle vane and like articles
US3619077A (en) * 1966-09-30 1971-11-09 Gen Electric High-temperature airfoil
US4314442A (en) * 1978-10-26 1982-02-09 Rice Ivan G Steam-cooled blading with steam thermal barrier for reheat gas turbine combined with steam turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215511A (en) * 1962-03-30 1965-11-02 Union Carbide Corp Gas turbine nozzle vane and like articles
US3619077A (en) * 1966-09-30 1971-11-09 Gen Electric High-temperature airfoil
US4314442A (en) * 1978-10-26 1982-02-09 Rice Ivan G Steam-cooled blading with steam thermal barrier for reheat gas turbine combined with steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175502U (en) * 1985-04-22 1986-11-01

Similar Documents

Publication Publication Date Title
JP4486216B2 (en) Airfoil isolation leading edge cooling
EP1221538B1 (en) Cooled turbine stator blade
JP4052380B2 (en) Tangential flow baffle and turbine nozzle with the baffle
JP4801513B2 (en) Cooling circuit for moving wing of turbomachine
US4604031A (en) Hollow fluid cooled turbine blades
US7824150B1 (en) Multiple piece turbine airfoil
US7828515B1 (en) Multiple piece turbine airfoil
JP4184323B2 (en) Hollow rotor blades for gas turbine engine turbines
JPH0370084B2 (en)
JP2000213304A (en) Rear flowing and meandering aerofoil cooling circuit equipped with side wall impingement cooling chamber
JP2953842B2 (en) Turbine vane
JP5232084B2 (en) Turbine blade
US6544001B2 (en) Gas turbine engine system
JPH08200002A (en) Moving vane of gas turbine
JP2004137958A (en) Gas turbine rotor blade
JPS59160004A (en) Stationary blade for gas turbine
JP2938506B2 (en) Turbine vane
JPS59160006A (en) Stationary blade for gas turbine
JP3080817B2 (en) Cooling structure of hollow cooling blade
JPS59173502A (en) Stationary blade of gas turbine
JPS59173501A (en) Stationary blade of gas turbine
CN212202140U (en) Tail edge inclined-splitting seam structure based on gas turbine blade
JPS59160007A (en) Stationary blade for gas turbine
JPS59196902A (en) Stator blade of gas turbine
JPS6359003B2 (en)