JPS59160007A - Stationary blade for gas turbine - Google Patents

Stationary blade for gas turbine

Info

Publication number
JPS59160007A
JPS59160007A JP3270283A JP3270283A JPS59160007A JP S59160007 A JPS59160007 A JP S59160007A JP 3270283 A JP3270283 A JP 3270283A JP 3270283 A JP3270283 A JP 3270283A JP S59160007 A JPS59160007 A JP S59160007A
Authority
JP
Japan
Prior art keywords
blade
cooling air
boundary surface
wing
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3270283A
Other languages
Japanese (ja)
Other versions
JPS6360202B2 (en
Inventor
Hajime Endo
肇 遠藤
Kiyomi Tejima
手島 清美
Yukimasa Kajitani
梶谷 幸正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3270283A priority Critical patent/JPS59160007A/en
Publication of JPS59160007A publication Critical patent/JPS59160007A/en
Publication of JPS6360202B2 publication Critical patent/JPS6360202B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve a gas turbine in its operating efficiency, by arranging such that while the head portion of blade and a blade body are respectively formed with a different material each other and a cooling air blow-off port is provided along the boundary surface thereof, the width of blade is made smaller at the boundary surface than at the head portion of blade. CONSTITUTION:A plurality of stationary blades 1 are arranged in an annular configuration and comprise a blade body 2 made of heat resistant alloy and the ceramics head portion 3 of blade provided at a forward edge for preventing the flow of main stream gas. These two elements 2, 3 are formed such that their boundary surface may be convexed at the blade body 2 side. On the other hand, the interior of blade body 2 is partitioned by a partition wall 6 for defining two hollow portions 4, 5 which communicate with a cooling air source. One hollow portion 4 communicates with a cooling air blow-off port 7 and furthermore with a cooling air blow-off passage 8 defined along the boundary surface of these two elements 2, 3. The hollow portion 4 is opened at opposite sides of stationary blade 1. The width l of the blade is made smaller by the size of notched portion 10 at the blade body 2 than the width L of blade at the blade head portion 3.

Description

【発明の詳細な説明】 本発明は主として高温ガスタービン等に使用される静翼
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates primarily to stator blades used in high-temperature gas turbines and the like.

近年ガスタービンは、そのタービンの性能同上および出
力上昇のためにますます高温化する傾向にある。したが
って、このようなガスの高温下において、タービン翼の
強度を如何にして保持させるようにするかということが
大きな技術課題となっている。このような課題を解決す
るため翼を冷却する方法が採用され、また静翼において
主流ガスをせき止めるため最も高温となる翼頭部を翼本
体と分け、かつ耐熱性の高い材料で構成し、このi部を
翼本体あるいは翼の他の構成要素によシ支持するように
構成することが考えられる。しかし、この構成の静翼で
は、部材が異なることによる熱膨張率のちがいにより頭
部の支持部に間隙が発生したり、製作誤差により翼頭部
が翼本体とずれる可能性があるが、翼頭部が翼本体と僅
かでもずれ、翼本体側が外側に突出して段差を形成する
ようなことがあると、この段差によシ翼面を流れる主流
ガスが剥離して空力性能を低下させ、延いてはガスター
ビンの性能を低下させてしまうという問題を発生するこ
とになる。
In recent years, gas turbines have tended to become hotter and hotter in order to improve the performance and output of the turbines. Therefore, a major technical issue is how to maintain the strength of turbine blades under such high temperature gas conditions. In order to solve these problems, a method of cooling the blades has been adopted, and in order to dam up the mainstream gas in the stator blades, the blade head, which is the hottest part, is separated from the blade body, and it is made of a material with high heat resistance. It is conceivable that the i section be supported by the wing body or other components of the wing. However, with stator blades of this configuration, gaps may occur in the head support due to differences in thermal expansion coefficients due to different members, and the blade head may be misaligned with the blade body due to manufacturing errors. If the head is even slightly misaligned with the wing body, causing the wing body side to protrude outward and forming a step, this step will cause the mainstream gas flowing on the wing surface to separate, reducing aerodynamic performance and reducing extension. In this case, a problem arises in that the performance of the gas turbine is deteriorated.

本発明の目的は、上述のような問題を解消し、翼を別部
材の組合せによシ構5成する場合において主流ガスの剥
離現象を起すようなことがなく、翼構造として有効に使
用できそれによりガスタービンの性能を向上するように
したガスタービンの静翼を提供せんとするものである。
An object of the present invention is to solve the above-mentioned problems and to provide a blade structure that can be effectively used as a blade structure without causing separation of mainstream gas when the blade is constructed by combining different members. It is an object of the present invention to provide a stationary blade for a gas turbine that improves the performance of the gas turbine.

上記目的を達成する本発明によるガスタービンの静翼は
、互いに別部材で構成した数頭部と翼本体とにより構成
され、その境界面に沿って冷却空気の吹出通路を設ける
と共に、その境界面における翼本体側の翼幅を数頭部側
の翼幅よりも小さくしたことを特徴とするものである。
A stationary blade for a gas turbine according to the present invention that achieves the above object is composed of several heads and a blade body, which are made of separate members, and a blowout passage for cooling air is provided along the boundary surface thereof. The wing span on the wing body side is smaller than the wingspan on the wing head side.

以下、図に示す本発明の実施例により欽明する。Hereinafter, the present invention will be explained with reference to embodiments shown in the drawings.

第1″図は、本発明の実施例によるガスタービンの静翼
を示すものである。この図において、1は静翼であり、
この複数個が環状に配列されている。このように配列さ
れた静翼群に対し、高温ガスは矢印で示すように供給さ
れるように左っている。
FIG. 1'' shows a stator blade of a gas turbine according to an embodiment of the present invention. In this figure, 1 is a stator blade;
These plural pieces are arranged in a ring. High temperature gas is supplied to the left side of the stationary blade group arranged in this manner as shown by the arrow.

この静翼1は、耐熱合金からなる翼本体2と主流ガスを
せき止める前縁側のセラミックからなる数頭部6とから
構成されている。この翼本体2と数頭部6との境界面は
、翼本体2側が凸状となるようになっている。この凸面
の境界面を形成する断面の線は曲線でもよく、あるいは
」力線でもよい。さらに、両側の翼側面に延長する境界
面の延長線は、それぞれ翼側面の接線に対し鋭角α、α
′をなすようになっている。
The stationary blade 1 is composed of a blade main body 2 made of a heat-resistant alloy and several heads 6 made of ceramic on the leading edge side for damming the mainstream gas. The boundary surface between the wing body 2 and the head 6 is convex on the wing body 2 side. The lines of cross section forming the interface of this convex surface may be curved lines or may be lines of force. Furthermore, the extension lines of the boundary surfaces extending to the wing sides on both sides are at acute angles α and α, respectively, with respect to the tangent to the wing sides.
'.

一方、翼本体2の内部には、図示しない冷却空気供給源
(ガスタービンのタービン部により駆動される圧縮機)
に連通した二つの中空部4゜5が仕切壁6により区切ら
れて形成されている。
On the other hand, inside the blade body 2, a cooling air supply source (not shown) (a compressor driven by a turbine section of a gas turbine) is provided.
A partition wall 6 separates two hollow portions 4° 5 which communicate with each other.

一方の中空部4は冷却空気の吹出用孔7,7に連通し、
さらにこの吹出用孔7,7を介して、翼本体2と数頭部
6との間の境界面に沿って設けた冷却空気の吹出通路8
,8に連通し、それぞれ翼の両側面側に開口するように
なっている。
One hollow part 4 communicates with cooling air blowing holes 7, 7,
Furthermore, a cooling air blowing passage 8 provided along the boundary surface between the blade body 2 and the several heads 6 through these blowing holes 7, 7.
, 8, and open on both sides of the wing.

前記境界面において、第2図に示すように翼本体側の翼
幅lが、切欠部100分だけ数頭部側の翼幅りよりも小
さくなるように構成されている。
At the boundary surface, as shown in FIG. 2, the wing span l on the wing body side is made smaller than the wing span on the head side by a distance of 100 minutes at the notch.

この中空部4に供給された冷却空気は吹出用孔7.7を
介し、上記吹出通路8,8から翼の外側へ吹出すように
なっている。また、他方の中空部5は冷却空気の吹出用
孔9を介して翼後縁に開口するようになっている。した
がって、この中空部5に供給された冷却孕気は内部を対
流冷却し、しかる後、吹出用孔9から翼後縁側へ吹き出
されるようになっている。
The cooling air supplied to the hollow portion 4 is blown out from the blow-off passages 8, 8 to the outside of the blade through the blow-off holes 7.7. The other hollow portion 5 opens at the trailing edge of the blade through a cooling air blowout hole 9. Therefore, the cooling air supplied to the hollow portion 5 convects the inside and is then blown out from the blow-off holes 9 toward the trailing edge of the blade.

上述した静翼によると、数頭部と翼本体との境界面にお
いて、翼本体側の翼幅が数頭部の翼幅よりも小さくなる
ように形成されているため、数頭部6がずれても翼本体
2が主流ガス通路に突出し凸状の段差を形成するような
ことがなく、そのため主流ガスが剥離するようなことは
起らない。ここで、上記構成により境界面には凹状の段
差が形成されることになるが、この凹状の段差部分から
は冷却空気が吹出しているため、この段差に基つく主流
ガスの剥離現象は起らない。したがって、この静翼を装
備したガスタービンでは、主流ガスの剥離による空力性
能の低下ということはない。
According to the stationary blade described above, at the interface between the multiple heads and the blade body, the blade width on the wing body side is formed to be smaller than the wingspan of the multiple heads, so the multiple heads 6 are misaligned. Even if the blade main body 2 does not protrude into the mainstream gas passage to form a convex step, the mainstream gas will not separate. Here, a concave step is formed on the boundary surface due to the above configuration, but since the cooling air is blown out from this concave step, the separation phenomenon of the mainstream gas based on this step does not occur. do not have. Therefore, in a gas turbine equipped with this stationary blade, aerodynamic performance does not deteriorate due to separation of mainstream gas.

捷だ、上述した実施例の構成の静翼では、主流ガスをせ
き止める静翼のうちでも最も高温となる前縁部が、金属
よりも耐熱性の高いセラミックからなる頭部6によ、り
形成さ゛れているため、この前縁部には従来の静翼の前
線部のように冷却空気の吹出用孔を設はフィルム冷却す
る必要がないことになる。一方、翼本体2は前縁部はど
高温とはならずその先端はセラミック製の数頭部3によ
り、主流ガスの熱を遮断されると共に、両者の境界面に
設けた吹出通路8によって熱伝達を防止されるため、こ
の翼本体2自身の冷却のために、従来の機構の静翼はど
に多量の冷却空気を必要としなくなる。その結果、主流
ガス中に混合する冷却空気量が減少して平均ガス温度の
低下は抑制されガスタービンの効率は向上し、壕だ圧縮
機を駆動するための所要動力も少なくなるためガスター
ビンの効率を一層向上することになる。捷た、吹出通路
8は従来の静翼のように前縁部に開口するのではなく、
翼側面に開口させたものであるので、従来の静翼の場合
のように主流ガスの動圧が直接作用するようなことがな
く、逆に主流ガスの速度が増し圧力が下がっているため
、冷却空気の吹出しを可能にするために高温ガスとの圧
力差を考慮して、高温ガス圧力をわざわざ下げるという
ような処置も必要でなくなるので、この面からもガスタ
ービン効率の向上に寄与することになる。。
In the stator vane configured in the embodiment described above, the leading edge, which is the hottest part of the stator vane that holds back the mainstream gas, is formed by the head 6 made of ceramic, which has higher heat resistance than metal. Because of this, there is no need to provide cooling air blow-off holes or film cooling at this leading edge, unlike the front part of conventional stationary blades. On the other hand, the leading edge of the blade body 2 does not reach a high temperature, and its tip is shielded from the heat of the mainstream gas by the ceramic heads 3, and is heated by the blowout passage 8 provided at the interface between the two. Since the transmission is prevented, a large amount of cooling air is no longer required in the stationary blades of the conventional mechanism to cool the blade body 2 itself. As a result, the amount of cooling air mixed into the mainstream gas is reduced, suppressing the drop in average gas temperature, improving the efficiency of the gas turbine, and reducing the power required to drive the trench compressor. This will further improve efficiency. The bent blowout passage 8 does not open at the leading edge like in conventional vanes, but instead
Since the openings are made on the side of the blade, the dynamic pressure of the mainstream gas does not directly act on it, unlike in the case of conventional stationary blades.On the contrary, the speed of the mainstream gas increases and the pressure decreases. It is no longer necessary to take measures to lower the high-temperature gas pressure in consideration of the pressure difference with the high-temperature gas in order to enable the blowing of cooling air, so this also contributes to improving gas turbine efficiency. become. .

また、上記実施例では、吹出通路8の延長線が翼体面の
接線に対し鋭角となっているだめ、たとえ冷却空気の圧
力が主流ガスの圧力よりも大きくなって勢いよく吹出す
ようなことがあっても、翼1μm1面には良好な冷却空
気のフィルム層が形成されることになり、冷却性能や空
力性能が損なわれ゛るようなことはない。
Furthermore, in the above embodiment, since the extension line of the blowout passage 8 is at an acute angle with respect to the tangent to the blade surface, even if the pressure of the cooling air becomes greater than the pressure of the mainstream gas, there is no possibility that it will be blown out forcefully. Even if this happens, a good film layer of cooling air will be formed on each 1 μm surface of the blade, and the cooling performance and aerodynamic performance will not be impaired.

また、上記実施例の静翼では、主流ガスの動圧を受ける
前縁部に冷却空気の吹出用孔を設けていないため、主流
ガスの圧力分布に応じて冷却空気を吹出すだめの翼構造
を、従来の前線部から吹出すようにした静翼に比べ簡単
にすることができる。
In addition, in the stator blade of the above embodiment, since no cooling air blowing hole is provided at the leading edge that receives the dynamic pressure of the mainstream gas, the blade structure is designed to blow out the cooling air according to the pressure distribution of the mainstream gas. can be made simpler than conventional stator vanes that emit air from the front section.

さらに、セラミックは金属に比べて構造強度が劣るため
、従来はガスタービンの静翼に利用することは難しいと
されていたが、上述の実施例では、このセラミックを頭
部3のみにし、その翼の構造強度は金属の翼本体2でも
つように構成し、かつ頭部6にかかる空気力も翼本体2
で支えるようにしたことにより、セラミックの利用を可
能にしている。これに伴い、ガスタービン効率の一層の
向上を可能にする。しかも、実施例のようにセラミック
の真頭部3を翼本体2側が凸となるようにすれば、数頭
部乙に作用する主流ガスの力の方向が変化しても、この
力を本体2で支えることができる。捷だ、真頭部3と翼
本体2とが凹凸の組合せであれば、伺んらかの原因によ
りセラミックの頭部が破損したとしても、翼本体2との
接合面が凸であるため、ある程度の空力性能は維持する
ことができ、また簡単に交換ができる。
Furthermore, because ceramic has inferior structural strength compared to metal, it was previously considered difficult to use it for the stationary blades of gas turbines. However, in the above embodiment, only the head 3 is made of ceramic, and The structure is such that the structural strength of the metal wing body 2 is maintained, and the aerodynamic force applied to the head 6 is also maintained by the wing body 2.
This makes it possible to use ceramics. Accordingly, it is possible to further improve gas turbine efficiency. Moreover, if the true head part 3 of the ceramic is made convex on the wing body 2 side as in the embodiment, even if the direction of the force of the mainstream gas acting on several heads B changes, this force will be transferred to the main body 2. It can be supported by If the true head 3 and the wing body 2 are a combination of concave and convex surfaces, even if the ceramic head is damaged for some reason, the joint surface with the wing body 2 will be convex. It is possible to maintain a certain level of aerodynamic performance, and it can be easily replaced.

上述したように、本発明によるガスタービンの静翼は、
互いに別部材で真頭部と翼本体とを構成し、その境界面
に沿って冷却空気の吹出通路を設けると共に、その境界
面における翼本体側の翼幅を数頭部側の翼幅よシも小さ
くしたので、真頭部が翼本体とずれても翼面に段差がで
き主流ガスの剥離減少を起すようなことがなくなり、そ
れによりガスタービンの性−能が低下することを防止す
ることができる。
As mentioned above, the stator blade of the gas turbine according to the present invention has the following features:
The true head and the wing body are constructed from separate members, and a cooling air blowout passage is provided along the boundary surface, and the blade width on the wing body side at the boundary surface is set to be equal to the width of the wing on the several head side. Since the blade is made smaller, even if the true head is misaligned with the blade body, there will be no step on the blade surface that will cause separation and reduction of mainstream gas, thereby preventing the performance of the gas turbine from deteriorating. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例によるガスタービンの静翼を示
す縦断面図、第2図は同齢翼の要部の断面図である。 1・・・静翼、2・・・翼本体、3・・・真頭部、4,
5・・・中空部、7,9・・・吹出用孔、8・・・吹出
通路、10・・・切欠部。 出願人 工業技術院長 石板 誠− 第1図 ■ /
FIG. 1 is a longitudinal sectional view showing a stationary blade of a gas turbine according to an embodiment of the present invention, and FIG. 2 is a sectional view of a main part of the blade of the same age. 1... Stationary blade, 2... Wing body, 3... True head, 4,
5...Hollow part, 7, 9...Blowout hole, 8...Blowout passage, 10...Notch part. Applicant Makoto Ishiita, Director General of the Agency of Industrial Science and Technology - Figure 1■ /

Claims (1)

【特許請求の範囲】[Claims] 互いに別部材で翼頭部と翼本体とを構成し、その境界面
に沿って冷却空気の吹゛出通路を設けると共に、その境
界面における翼本体側の翼幅を数頭部側の翼幅よりも小
さくしたことを特徴とするガスタービンのn翼。
The wing head and the wing body are constructed from separate members, and a cooling air outlet passage is provided along the boundary surface, and the wing span on the wing body side at the boundary surface is set to the wing span on the wing head side. A gas turbine n-blade characterized by being smaller than.
JP3270283A 1983-03-01 1983-03-01 Stationary blade for gas turbine Granted JPS59160007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3270283A JPS59160007A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3270283A JPS59160007A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Publications (2)

Publication Number Publication Date
JPS59160007A true JPS59160007A (en) 1984-09-10
JPS6360202B2 JPS6360202B2 (en) 1988-11-22

Family

ID=12366177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270283A Granted JPS59160007A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Country Status (1)

Country Link
JP (1) JPS59160007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806546A1 (en) * 1996-05-02 1997-11-12 Asea Brown Boveri Ag Thermally stressed turbomachine vane with a ceramic insert in the leading edge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806546A1 (en) * 1996-05-02 1997-11-12 Asea Brown Boveri Ag Thermally stressed turbomachine vane with a ceramic insert in the leading edge
CN1097140C (en) * 1996-05-02 2002-12-25 阿尔斯通公司 Blades of fluid machine affected by hot loading

Also Published As

Publication number Publication date
JPS6360202B2 (en) 1988-11-22

Similar Documents

Publication Publication Date Title
US4515526A (en) Coolable airfoil for a rotary machine
US4604031A (en) Hollow fluid cooled turbine blades
US4775296A (en) Coolable airfoil for a rotary machine
JP4801513B2 (en) Cooling circuit for moving wing of turbomachine
JP4063938B2 (en) Turbulent structure of the cooling passage of the blade of a gas turbine engine
US6607355B2 (en) Turbine airfoil with enhanced heat transfer
EP1221538B1 (en) Cooled turbine stator blade
US6183197B1 (en) Airfoil with reduced heat load
JP4311919B2 (en) Turbine airfoils for gas turbine engines
US6629817B2 (en) System and method for airfoil film cooling
JPH0353442B2 (en)
CN1550641A (en) Method and apparatus for cooling an airfoil
JP2001214707A (en) Turbine nozzle equipped with film cooling with gradient
KR101889212B1 (en) Turbine blade
JPH11193701A (en) Turbine wing
US6544001B2 (en) Gas turbine engine system
JP2818266B2 (en) Gas turbine cooling blade
JP2938506B2 (en) Turbine vane
JPS59160007A (en) Stationary blade for gas turbine
WO2019189355A1 (en) Turbine rotor blade and gas turbine
JP3080817B2 (en) Cooling structure of hollow cooling blade
JP3615907B2 (en) Gas turbine cooling blade
JPS59160008A (en) Stationary blade for gas turbine
JPS6360204B2 (en)
JPS59160004A (en) Stationary blade for gas turbine