JPS6242121B2 - - Google Patents

Info

Publication number
JPS6242121B2
JPS6242121B2 JP3269883A JP3269883A JPS6242121B2 JP S6242121 B2 JPS6242121 B2 JP S6242121B2 JP 3269883 A JP3269883 A JP 3269883A JP 3269883 A JP3269883 A JP 3269883A JP S6242121 B2 JPS6242121 B2 JP S6242121B2
Authority
JP
Japan
Prior art keywords
cooling air
blade
head
main body
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3269883A
Other languages
Japanese (ja)
Other versions
JPS59160003A (en
Inventor
Yukimasa Kajitani
Hajime Endo
Kyomi Tejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3269883A priority Critical patent/JPS59160003A/en
Publication of JPS59160003A publication Critical patent/JPS59160003A/en
Publication of JPS6242121B2 publication Critical patent/JPS6242121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 本発明は主として高温ガスタービン等に使用さ
れるガスタービンの静翼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stationary blade of a gas turbine mainly used in a high-temperature gas turbine or the like.

近年、ガスタービンは、性能向上および出力上
昇のためますます高温化の傾向にあり、このた
め、ガスタービンの翼は高温にさらされることに
なるが、現在このような高温下で強度を有する材
料はないため、翼を冷却する方法が採用されてい
る。
In recent years, gas turbines have become increasingly hotter in order to improve their performance and increase their output.As a result, gas turbine blades are exposed to high temperatures, and currently there are materials that have strength at such high temperatures. Since there is no airfoil, a method of cooling the wings is used.

従来のガスタービンに使用される静翼(以下本
説明では便宜上翼と略称する)は、第1−A図、
第1−B図、第1−C図及び第1−D図の例に示
すように、翼1を中空に形成し、冷却空気を導
き、内部を対流冷却した第1−A図に示したも
の、中空状の翼1内に中子4を設け、その中子4
内に冷却空気を導き、中子4先端の多数の細孔5
より翼内面に向けてその空気を吹出し、局所的に
熱伝達を高め、強制冷却した第1−B図に示した
もの、さらに中空状の翼1内に冷却空気を導き、
翼前縁部の多数の細孔6より翼外に吹出し、翼1
を冷却空気層でおおい、高温の燃焼ガスから熱を
遮断し、フイルム冷却した第1−C図に示したも
の等があり、ガスタービンが高温化するにつれ
て、これらを組合せて使用する第1−D図の翼1
に至つている。
Stator blades (hereinafter referred to as blades for convenience in this explanation) used in conventional gas turbines are shown in Fig. 1-A,
As shown in the examples of Figure 1-B, Figure 1-C, and Figure 1-D, the blade 1 is formed hollow, cooling air is guided, and the inside is cooled by convection as shown in Figure 1-A. A core 4 is provided inside the hollow wing 1, and the core 4
Many pores 5 at the tip of the core 4 lead cooling air into the core.
The air is blown out toward the inner surface of the blade, locally increasing heat transfer, and forcedly cooled as shown in Figure 1-B, and the cooling air is further guided into the hollow blade 1.
Air is blown out of the blade from a large number of pores 6 at the leading edge of the blade, and the blade 1
There are some types of gas turbines, such as the one shown in Figure 1-C, which is covered with a cooling air layer to isolate heat from the high-temperature combustion gas and cooled with a film. Wing 1 of figure D
It has reached this point.

また、第1−E図の従来例に示すごとく、プラ
ツトフオーム18及びシユラウド19の通路面に
も冷却空気吹出し孔24より冷却空気を吹出し、
フイルム冷却している翼1もある。
In addition, as shown in the conventional example shown in FIG.
There is also a wing 1 that is film cooled.

なお、上記第1−A図から第1−E図におい
て、同じ部品は同じ部品番号で示している。
In addition, in the said FIG. 1-A to FIG. 1-E, the same parts are shown by the same part number.

ここで、ガスタービンの翼1で燃焼ガスにさら
されて最も高温となるのは、主流ガスがせき止め
られる翼1の前縁部であるので、この前縁部の冷
却が最も重要であり、ガスタービンの高温化にと
もなつてフイルム冷却を併用し、また、この部分
を冷却するのに必要な冷却空気の量も多くなつて
いる。
Here, the leading edge of the gas turbine blade 1 that is exposed to the combustion gas and reaches the highest temperature is the leading edge of the blade 1 where the mainstream gas is dammed up, so cooling this leading edge is the most important. As the temperature of the turbine increases, film cooling is also used, and the amount of cooling air required to cool this part is also increasing.

しかしながら、翼1をフイルム冷却し、これに
必要な冷却空気の量が増加すれば、それだけ主流
ガスに混合する冷却空気の量が増し、平均主流ガ
ス温度が低下し、このためガスタービンのサイク
ル効率は低下することになる。
However, if the blade 1 is film-cooled and the amount of cooling air required for this increases, the amount of cooling air mixed with the mainstream gas will increase accordingly, and the average mainstream gas temperature will decrease, thereby reducing the cycle efficiency of the gas turbine. will decrease.

また、翼1を冷却する冷却空気は、通常第2図
の系統図に示すように、ガスタービンのタービン
部10で駆動される圧縮機8で圧縮された空気
を、燃焼器9前で抽気し、ケーシングあるいは、
これに接続された配管等を通つて翼1内に供給さ
れる。
Cooling air for cooling the blades 1 is usually obtained by extracting air compressed by a compressor 8 driven by a turbine section 10 of a gas turbine before a combustor 9, as shown in the system diagram in FIG. , casing or
It is supplied into the blade 1 through piping etc. connected to this.

このため、冷却空気量が増加すれば圧縮機8で
圧縮するための所要動力が多くなり、この分だけ
ガスタービン10の効率及び出力が低下すること
になる。
Therefore, if the amount of cooling air increases, the power required for compression by the compressor 8 will increase, and the efficiency and output of the gas turbine 10 will decrease by this amount.

また、フイルム冷却を完全に行なうためには、
主流ガスの圧力に対する冷却空気の圧力差が適正
である必要があり、この圧力差が小さいと局所的
に吹出しが行なわれないのみならず、主流ガスが
翼内部へ逆流することもあり、冷却性能が損なわ
れ、逆に圧力差が大きすぎると、冷却空気が勢い
よく吹出し、翼面に沿つた冷却空気層が形成され
難く、空力性能までもが損なわれる。
In addition, in order to completely cool the film,
The pressure difference between the cooling air and the pressure of the mainstream gas needs to be appropriate. If this pressure difference is small, not only will blowing not occur locally, but the mainstream gas may also flow back into the blade, resulting in poor cooling performance. On the other hand, if the pressure difference is too large, the cooling air will blow out forcefully, making it difficult to form a cooling air layer along the wing surface, and even aerodynamic performance will be impaired.

一般に、主流ガスの圧力は、冷却空気の圧力よ
りわずかに低いだけであるため、吹出しが完全に
行なわれるように、主流ガス系の圧縮機8出口か
らガスタービンのタービン部10の翼列に至るま
での間に絞り抵抗等を設け、主流ガスの圧力を下
げる場合もある。
Generally, the pressure of the mainstream gas is only slightly lower than the pressure of the cooling air, so in order to ensure complete blowing, the main stream gas is routed from the outlet of the compressor 8 in the mainstream gas system to the blade row of the turbine section 10 of the gas turbine. In some cases, a throttle resistor or the like is provided between these steps to lower the pressure of the mainstream gas.

このように、主流ガスの圧力を下げることは、
この分が仕事に関与しないため、そのままロスと
なり、出力は低下する。
In this way, lowering the pressure of the mainstream gas is
Since this amount is not involved in work, it becomes a loss and the output decreases.

また、翼1の各部より冷却空気を吹出し、フイ
ルム冷却を行なう場合には、翼面に沿つて主流ガ
スに圧力分布があり、それぞれの位置に所定量の
冷却空気を吹出すための翼構造は複雑となつてい
る。
In addition, when cooling air is blown out from each part of the blade 1 to perform film cooling, there is a pressure distribution in the mainstream gas along the blade surface, and the blade structure is required to blow out a predetermined amount of cooling air to each location. It's getting complicated.

また、冷却空気の吹出し孔を設けることは、そ
れだけ加工の手間がかかり、コスト上昇をまね
き、強度が低下し、翼寿命は短かくなる。
Further, providing cooling air blow-off holes requires a lot of processing time, increases costs, reduces strength, and shortens blade life.

以上のように、従来の冷却式の翼の構造では、
ガスタービンの高温化にともない、翼前縁部から
フイルム冷却を行ない、これに必要な冷却空気量
も多くなつているため、主流ガス冷却によるガス
タービン熱効率の低下と、圧縮機所要動力にしめ
るロスが多くなり、また主流ガス圧力を下げるた
めの出力低下等の問題があり、この対策が強く望
まれていた。
As mentioned above, in the structure of conventional cooled blades,
As the temperature of gas turbines increases, film cooling is performed from the leading edge of the blade, and the amount of cooling air required for this is also increasing, resulting in a decrease in gas turbine thermal efficiency due to mainstream gas cooling and a loss in the required power of the compressor. In addition, there were problems such as a reduction in output due to lowering the mainstream gas pressure, and countermeasures against this problem were strongly desired.

そこで、本発明は前記従来の問題点を解消し、
ガスタービンの効率向上を可能ならしめることを
目的としてなされたものである。
Therefore, the present invention solves the above-mentioned conventional problems,
This was done with the aim of making it possible to improve the efficiency of gas turbines.

即ち、本発明は、ガスタービンの静翼の頭部
を、他の静翼構造部と分け、かつ、セラミツクで
形成すると共に、該静翼のプラツトフオーム及び
シユラウドに穴あるいは溝を設け、それらの穴あ
るいは溝内に該頭部の上下両端部を装着し、更に
該プラツトフオームの主流ガス通路面の前端から
該頭部の後端までをセラミツクで形成することに
より構成される。
That is, the present invention separates the head of a stator blade of a gas turbine from other stator blade structures and forms it from ceramic, and also provides holes or grooves in the platform and shroud of the stator blade, and The upper and lower ends of the head are mounted in the holes or grooves of the platform, and the section from the front end of the mainstream gas passage surface of the platform to the rear end of the head is made of ceramic.

以下、図面を参照して本発明の実施例を説明す
るが、第3図は本発明の一実施例におけるガスタ
ービンの静翼の翼部断面図であり、第4図は第3
図の静翼のキヤンバーラインに沿つた断面図で、
第5図は第3図の翼頭部の断面図であり、第1−
Aから第1−D図に示す従来例と同じ部品は同じ
部品番号で示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a sectional view of the stator blade of a gas turbine in one embodiment of the present invention, and FIG.
A cross-sectional view along the camber line of the stationary blade shown in the figure.
FIG. 5 is a sectional view of the wing head in FIG.
The same parts as in the conventional example shown in FIGS. A to 1-D are indicated by the same part numbers.

まず、第2図の従来例で説明したと同様のガス
タービンのタービン部10に適用される本発明の
翼1において、12が頭部、13が本体部、14
が中空の先端部、15が仕切、16が冷却空気通
路、17が先端の冷却空気吹出孔、18がプラツ
トフオーム、19がシユラウド、そして20がキ
ヤツプである。
First, in the blade 1 of the present invention applied to the turbine section 10 of a gas turbine similar to that explained in the conventional example of FIG.
is a hollow tip, 15 is a partition, 16 is a cooling air passage, 17 is a cooling air outlet at the tip, 18 is a platform, 19 is a shroud, and 20 is a cap.

次に、この翼1では頭部12がセラミツクで形
成されており、本体部13およびプラツトフオー
ム18とシユラウド19とは金属、即ち、耐熱合
金で形成され、プラツトフオーム18の主流ガス
通路面の前端から頭部12後端までが第6図の側
面図に示すごとくセラミツク部材23でおおわれ
ている。
Next, in this blade 1, the head 12 is made of ceramic, the main body 13, the platform 18, and the shroud 19 are made of metal, that is, a heat-resistant alloy, and the mainstream gas passage surface of the platform 18 is made of metal. The area from the front end of the head 12 to the rear end of the head 12 is covered with a ceramic member 23 as shown in the side view of FIG.

ここで、頭部12の範囲は、主流ガスがせき止
められる範囲、あるいは熱伝達率の高い範囲まで
とする。
Here, the range of the head 12 is defined as the range where the mainstream gas is dammed up or the range where the heat transfer coefficient is high.

また、頭部12は本体部13側が凸となるよう
な曲線、あるいは折線等でその分割線が翼外面と
接する角度が大きくなるように本体部13と分け
ている。
Further, the head 12 is separated from the main body 13 by a curve such that the main body 13 side is convex or by a broken line so that the angle at which the dividing line contacts the outer surface of the wing is large.

また、本体部13およびプラツトフオーム18
とシユラウド19とは一体となつている。
In addition, the main body 13 and the platform 18
and Shroud 19 are integrated.

更に、プラツトフオーム18に、頭部12寸法
よりやや大きな穴21を設け、シユラウド19に
も頭部12の寸法よりやや大きな溝22を設け、
頭部12を穴21を通して溝22にさし込み、穴
21にキヤツプ20をし、キヤツプ20上端を全
周溶接する。
Further, the platform 18 is provided with a hole 21 that is slightly larger than the head 12, and the shroud 19 is also provided with a groove 22 that is slightly larger than the head 12.
The head 12 is inserted into the groove 22 through the hole 21, the cap 20 is placed in the hole 21, and the upper end of the cap 20 is welded all around.

本体部13には、仕切15によつて先端部14
と後縁部2とに分けた中空部を設け、その先端に
細孔の冷却空気吹出し孔17を多数穿設し、かつ
その外面、即ち、頭部12との合せ面には冷却空
気通路16を設け、後縁部2の中空部は内部対流
冷却構造とする。
The main body part 13 has a distal end part 14 by a partition 15.
A hollow section is provided, which is divided into a rear edge section 2 and a rear edge section 2. A large number of small cooling air blowing holes 17 are provided at the tip of the hollow section, and cooling air passages 16 are provided at the outer surface of the hollow section, that is, the surface where it meets the head section 12. The hollow part of the trailing edge part 2 has an internal convection cooling structure.

なお、プラツトフオーム18の通路面の冷却空
気吹出し孔24は、頭部12後端以後に設ける。
Note that the cooling air blowing holes 24 on the passage surface of the platform 18 are provided after the rear end of the head 12.

本発明は以上のように構成されており、プラツ
トフオーム18およびシユラウド19双方に冷却
空気を導き、冷却空気吹出し孔24より通路内に
吹出し、プラツトフオーム18及びシユラウド1
9の通路面をフイルム冷却し、プラツトフオーム
18側に導かれた冷却空気は本体部13の先端部
14および後縁部2の中空部に導かれ、先端部1
4の中空部に導かれた冷却空気は、本体部13の
先端の冷却空気吹出し孔17より頭部12と本体
部13との間の冷却空気通路16に吹出され、そ
の冷却空気通路16を通つて翼外に吹出され、本
体部13を冷却空気層でおおい、フイルム冷却す
る。
The present invention is constructed as described above, and the cooling air is guided to both the platform 18 and the shroud 19, and is blown into the passage from the cooling air blowing hole 24.
The cooling air guided to the platform 18 side is guided to the hollow part of the tip part 14 and the rear edge part 2 of the main body part 13, and
The cooling air guided into the hollow part of 4 is blown out from the cooling air blowing hole 17 at the tip of the main body part 13 to the cooling air passage 16 between the head part 12 and the main body part 13, and then passed through the cooling air passage 16. The air is then blown out of the blade, and the main body 13 is covered with a layer of cooling air to cool the film.

また、後縁部2の中空部に導かれた冷却空気
は、本体部13の内部を対流冷却し、後縁の冷却
空気吹出し孔3より翼外に吹出される。
Further, the cooling air guided into the hollow portion of the trailing edge portion 2 convects the inside of the main body portion 13 and is blown out of the blade from the cooling air blowing hole 3 at the trailing edge.

なお、ここで、シユラウド19に穴21を設
け、プラツトフオーム18に溝22を設けてもま
た双方に穴を設けてもよい。
Note that here, the shroud 19 may be provided with the hole 21 and the platform 18 may be provided with the groove 22, or both may be provided with holes.

以上のごとく、本発明では翼1の頭部12を、
他の翼構造部、即ち、本体部13、プラツトフオ
ーム18、シユラウド19等と分けてあり、翼1
の構造強度は後者でもち、頭部12にかかる空気
力も本体部でささえるため、頭部12は構造強度
を必要としない。
As described above, in the present invention, the head 12 of the wing 1 is
It is separated from other wing structural parts, namely, the main body part 13, the platform 18, the shroud 19, etc., and the wing 1
The structural strength of the head 12 is maintained by the latter, and the aerodynamic force applied to the head 12 is also supported by the main body, so the head 12 does not require structural strength.

また、翼1はタービンケーシングの熱伸び等の
影響を受け、あるいは自からの熱伸び等により変
形することもあるが、これらに頭部12を取付け
るためのプラツトフオーム18の穴21と、シユ
ラウド19の溝22とは頭部12より大きく、頭
部12との間に間隙があるため、翼1が変形して
もこの力が頭部12に加わることはない。
In addition, although the blade 1 is affected by the thermal expansion of the turbine casing or deforms due to its own thermal expansion, there are holes 21 in the platform 18 for attaching the head 12 to these, and holes 21 in the shroud. Since the groove 22 of No. 19 is larger than the head 12 and there is a gap between the groove 22 and the head 12, this force will not be applied to the head 12 even if the wing 1 is deformed.

即ち、翼1が変形していなければ、頭部12は
空気力によりその後面が本体部13先端、および
穴21と溝22の後面と接しており、翼1からは
何ら力を受けていないが、翼1が変形すれば穴2
1と溝22の中心がずれたり、曲がつたり、本体
部13がせり出したりし、頭部12に力が作用す
る。
That is, if the wing 1 is not deformed, the rear surface of the head 12 is in contact with the tip of the main body 13 and the rear surfaces of the holes 21 and grooves 22 due to aerodynamic force, and no force is applied from the wing 1. , if wing 1 is deformed, hole 2
1 and the groove 22 may be misaligned, the main body portion 13 may be bent, or the main body portion 13 may protrude, and force acts on the head portion 12.

ここで、穴21と溝22に間隙がなければ、翼
1が変形すれば、その力は全て頭部12にも働く
が、穴21と溝22に間隙があるので、翼1が変
形しても頭部12は穴21と溝22の中で移動し
大きな力は働かない。
Here, if there is no gap between the hole 21 and the groove 22, when the blade 1 deforms, all the force will also act on the head 12, but since there is a gap between the hole 21 and the groove 22, the blade 1 will deform. However, the head 12 moves within the hole 21 and groove 22 and no large force is applied.

従つて、穴21と溝22の間隙は翼1の変形量
より大きいことが必要で、具体的には0.1〜0.15
mmあればよい。
Therefore, the gap between the hole 21 and the groove 22 needs to be larger than the amount of deformation of the blade 1, specifically 0.1 to 0.15
mm is enough.

なお、熱伸びにより翼1全体が膨張する場合
は、穴21と溝22の中心線がずれたり、本体部
13がせり出してくることもないので、翼1の膨
張に対する穴21と溝22の間隙は考慮の必要は
ない。
Note that when the entire blade 1 expands due to thermal expansion, the center lines of the holes 21 and grooves 22 do not shift, and the main body 13 does not protrude. need not be considered.

このため頭部12に、構造強度に対する信頼性
が不十分のため従来翼1を構成できなかつたセラ
ミツクを用いることができる。
For this reason, the head 12 can be made of ceramic, which could not be used to construct the blade 1 conventionally due to insufficient reliability in terms of structural strength.

なお、キヤツプ20をプラツトフオーム18に
全周溶接したのは、主流ガスが穴21の間隙を通
つて主流ガス通路外にもれることを防止するため
である。
The reason why the cap 20 is welded to the platform 18 all the way around is to prevent the mainstream gas from leaking out of the mainstream gas passage through the gap between the holes 21.

このため、本発明では主流ガスがせき止めら
れ、翼として最も高温となるその前縁部、即ち頭
部が金属より耐熱性が高いセラミツクとなつてい
るので、金属より高い温度で使用でき、金属のよ
うにその前縁から冷却空気を吹出し、フイルム冷
却したりする必要はなくなる。
For this reason, in the present invention, the mainstream gas is dammed up, and the leading edge, or head, which is the highest temperature of the blade, is made of ceramic, which has higher heat resistance than metal, so it can be used at a higher temperature than metal. There is no need to blow out cooling air from the leading edge to cool the film.

また、金属の本体部は冷却を必要とするが、翼
として特に高温となる部分ではなく、その先端は
セラミツクでできた頭部が燃焼ガスの熱を遮断
し、また頭部と本体部との間には、冷却空気通路
を冷却空気が流れており、頭部からの熱伝達を防
止しているため、従来の翼の前縁部のように高温
とはならず、本体部先端を冷却するための冷却空
気量は少なくてすむ。
In addition, although the metal main body requires cooling, it is not a part that gets particularly hot as a wing, but the tip is a head made of ceramic that blocks the heat of the combustion gas, and the head and main body are connected. In between, cooling air flows through the cooling air passage and prevents heat transfer from the head, so it does not reach high temperatures like the leading edge of a conventional wing, and cools the tip of the main body. The amount of cooling air needed for this purpose is small.

一方、本体部側面は燃焼ガスにさらされるた
め、頭部と本体部間の冷却空気通路より冷却空気
を吹出してフイルム冷却を行う。
On the other hand, since the side surface of the main body is exposed to combustion gas, cooling air is blown out from the cooling air passage between the head and the main body to cool the film.

ここで、本体部先端より吹出した冷却空気は頭
部から本体部への熱伝達を防止するとともに、本
体部側面をフイルム冷却するという2つの作用を
行なうことになる。
Here, the cooling air blown out from the tip of the main body has two functions: it prevents heat transfer from the head to the main body, and it also cools the side surface of the main body as a film.

このように頭部の冷却が不要になり本体部を冷
却する冷却空気量も少なくなれば、翼全体として
必要な冷却空気量は少なくなる。
In this way, if the head does not need to be cooled and the amount of cooling air used to cool the main body is reduced, the amount of cooling air required for the entire wing will be reduced.

冷却空気は、翼を冷却した後、あるいはフイル
ム冷却を行なうため、主流ガス中に吹出すが、主
流ガスと混合し、これを冷却するため、冷却空気
量が少なくなればそれだけ平均主流ガス温度の低
下がおさえられ、ガスタービンの熱効率が向上す
る。
Cooling air is blown into the mainstream gas after cooling the blades or for film cooling, but it mixes with the mainstream gas and cools it, so the smaller the amount of cooling air, the lower the average mainstream gas temperature. The thermal efficiency of the gas turbine is improved.

また、冷却空気量が減れば、圧縮機で圧縮した
空気を冷却空気として抽気する量が減り、この分
を出力として取り出せるため、ガスタービン効率
および出力が向上する。
Furthermore, if the amount of cooling air is reduced, the amount of air compressed by the compressor that is extracted as cooling air is reduced, and this amount can be extracted as output, thereby improving gas turbine efficiency and output.

また、本発明では、本体部をフイルム冷却する
冷却空気を、頭部と本体部の分割面にある冷却空
気通路より吹出し、本体部側面をその前端からカ
バーするが、翼全体としてみれば、前縁吹出しは
なくなり、側面からの吹出しとなる。
In addition, in the present invention, the cooling air for film cooling the main body is blown out from the cooling air passage in the dividing plane between the head and the main body, and covers the side of the main body from its front end. There will be no edge balloons, and there will be balloons from the sides.

翼前縁からフイルム冷却を行なう場合、翼前縁
には主流ガスの動圧分が加わるため、冷却空気の
圧力はこれより高いことが必要で、この圧力差を
保つため、主流ガス系の圧力をわざと下げること
もあるが、翼後縁から吹出す場合は、主流ガスが
加速し、圧力は下つているため、主流ガスと冷却
空気の圧力差は保たれることになり、主流ガス系
の圧力を下げる必要はなくなり、この分ガスター
ビンの効率が向上する。
When performing film cooling from the leading edge of the blade, the dynamic pressure of the mainstream gas is applied to the leading edge of the blade, so the pressure of the cooling air needs to be higher than this.In order to maintain this pressure difference, the pressure of the mainstream gas system must be increased. Sometimes this is intentionally lowered, but when blowing out from the trailing edge of the blade, the mainstream gas accelerates and the pressure decreases, so the pressure difference between the mainstream gas and the cooling air is maintained, and the mainstream gas system There is no need to lower the pressure, which increases the efficiency of the gas turbine.

また、本発明では頭部と本体部の分割線が翼外
面と接する角度を大きくとつてあるので、分割面
にある冷却空気通路を通つて翼外に吹出す冷却空
気は、翼後方に小さな角度で吹出すことになる。
In addition, in the present invention, the angle at which the dividing line between the head and the main body touches the outer surface of the blade is set at a large angle, so that the cooling air blown out of the blade through the cooling air passage in the dividing surface is directed toward the rear of the blade at a small angle. It will be blown out.

このため、冷却空気の圧力が主流ガスの圧力よ
り高くなつて勢よく吹出しても、翼面に沿つて冷
却空気層が形成され、冷却性能や空力性能が損な
われることはない。
Therefore, even if the pressure of the cooling air becomes higher than the pressure of the mainstream gas and is blown out vigorously, a cooling air layer is formed along the blade surface, and the cooling performance and aerodynamic performance are not impaired.

また、本発明では、翼前縁からの冷却空気吹出
しがなくなり、翼側面および翼後縁からの吹出し
となる。冷却空気を翼外に吹出す量は、冷却空気
と主流ガスの圧力差に応じて冷却空気吹出し孔の
総断面積で規定するため、翼前縁と翼側面等から
吹出しを行なう場合、主流ガスには翼面に沿つた
圧力分布があり、それぞれの位置の冷却空気吹出
し量を所定の量にするための翼構造は複雑となつ
ているが、主流ガスの動圧分を受ける翼前縁から
の冷却空気吹出しがなくなり、主流ガスが加速
し、圧力の下がつた翼側面および翼後縁からの吹
出しとなれば、翼面に沿つた主流ガスの圧力分布
に応じて冷却空気を所定量吹出すための翼構造は
簡単となる。
Further, in the present invention, cooling air is no longer blown out from the leading edge of the blade, but instead is blown out from the side surface of the blade and the trailing edge of the blade. The amount of cooling air blown out of the blade is determined by the total cross-sectional area of the cooling air outlet, depending on the pressure difference between the cooling air and the mainstream gas. There is a pressure distribution along the blade surface, and the blade structure is complex in order to blow out a predetermined amount of cooling air at each position. When the cooling air is no longer blown out and the mainstream gas accelerates and is blown out from the lower pressure blade side and trailing edge, a predetermined amount of cooling air is blown out according to the pressure distribution of the mainstream gas along the blade surface. The wing structure for ejection is simple.

また、本発明では翼を頭部と本体部に分けると
き、本体部側が凸となるように分けてあるため、
頭部に働く空気力の方向が変化してもこの力は有
効に本体部でささえることができる。
In addition, in the present invention, when dividing the wing into the head and the main body, the wings are separated so that the main body side is convex.
Even if the direction of the aerodynamic force acting on the head changes, this force can be effectively supported by the main body.

また、頭部と本体部との組合せは、凹及び凸と
なり、頭部が本体部とずれて段差ができ、翼面を
流れる主流ガスが剥離し、空力性能が低下するこ
とも防止できる。
Further, the combination of the head and the main body is concave and convex, and it is possible to prevent the head from shifting from the main body, creating a step, causing separation of the mainstream gas flowing on the wing surface, and reducing aerodynamic performance.

また、何らかの原因でセラミツクでできた頭部
が破損しても、本体部は先端が凸形状の翼形をな
しており、ある程度の空力性能は保たれると共
に、また頭部が破損しても簡単に取替えることが
できる。
In addition, even if the ceramic head is damaged for some reason, the main body has an airfoil shape with a convex tip, so a certain level of aerodynamic performance will be maintained, and even if the head is damaged, Can be easily replaced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−A図、第1−B図、第1−C図、第1−
D図はそれぞれ異なる従来の冷却式の静翼の平断
面図、第1−E図は他の従来例の冷却式の静翼の
側断面図、第2図はガスタービンの系統図、第3
図は本発明の一実施例におけるガスタービンの静
翼の翼部断面図であり、第4図は第3図の静翼の
キヤンバーラインに沿つた断面図で、第5図は第
3図の翼頭部の断面図で、第6図は第4図の要部
側面図である。 1……翼、10……ガスタービンタービン部、
11……発電機、12……頭部、13……本体
部、18……プラツトフオーム、19……シユラ
ウド、20……キヤツプ、21……穴、22……
溝、23……セラミツク部材、24……冷却空気
吹出し孔。
Figure 1-A, Figure 1-B, Figure 1-C, Figure 1-
Figure D is a plan sectional view of different conventional cooling type stator vanes, Figures 1-E are side sectional views of other conventional cooling type stator blades, Figure 2 is a system diagram of a gas turbine, and Figure 3 is a diagram of a gas turbine.
The figure is a sectional view of the stator blade of a gas turbine according to an embodiment of the present invention, FIG. 4 is a sectional view of the stator blade along the camber line of FIG. 3, and FIG. FIG. 6 is a side view of the main part of FIG. 4. 1...Blade, 10...Gas turbine turbine section,
11... Generator, 12... Head, 13... Main body, 18... Platform, 19... Shroud, 20... Cap, 21... Hole, 22...
Groove, 23...ceramic member, 24...cooling air outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 ガスタービンの静翼の頭部を、他の静翼構造
部と分け、かつセラミツクで形成すると共に、該
静翼のプラツトフオーム及びシユラウドに穴ある
いは溝を設け、それらの穴あるいは溝内に該頭部
の上下両端部を装着し、更に該プラツトフオーム
の主流ガス通路面の前端から該頭部の後端までを
セラミツクで形成したことを特徴とするガスター
ビンの静翼。
1. Separate the head of the stator blade of a gas turbine from other stator blade structures and form it with ceramic, and provide holes or grooves in the platform and shroud of the stator blade, and insert holes or grooves into these holes or grooves. A stationary blade for a gas turbine, characterized in that both upper and lower ends of the head are attached, and further, the part from the front end of the mainstream gas passage surface of the platform to the rear end of the head is formed of ceramic.
JP3269883A 1983-03-01 1983-03-01 Stationary blade for gas turbine Granted JPS59160003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3269883A JPS59160003A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3269883A JPS59160003A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Publications (2)

Publication Number Publication Date
JPS59160003A JPS59160003A (en) 1984-09-10
JPS6242121B2 true JPS6242121B2 (en) 1987-09-07

Family

ID=12366067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3269883A Granted JPS59160003A (en) 1983-03-01 1983-03-01 Stationary blade for gas turbine

Country Status (1)

Country Link
JP (1) JPS59160003A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288001A (en) * 1992-04-06 1993-11-02 Ngk Insulators Ltd Ceramic gas turbine static blade having cooling hole and its manufacture
JP3758792B2 (en) * 1997-02-25 2006-03-22 三菱重工業株式会社 Gas turbine rotor platform cooling mechanism

Also Published As

Publication number Publication date
JPS59160003A (en) 1984-09-10

Similar Documents

Publication Publication Date Title
JP4713423B2 (en) Oblique tip hole turbine blade
US7255536B2 (en) Turbine airfoil platform cooling circuit
JP4311919B2 (en) Turbine airfoils for gas turbine engines
US5927946A (en) Turbine blade having recuperative trailing edge tip cooling
US8668453B2 (en) Cooling system having reduced mass pin fins for components in a gas turbine engine
US8562286B2 (en) Dead ended bulbed rib geometry for a gas turbine engine
US7056083B2 (en) Impingement cooling of gas turbine blades or vanes
EP2157280B1 (en) Gas turbine rotor blade
US20070128031A1 (en) Turbine airfoil with outer wall cooling system and inner mid-chord hot gas receiving cavity
US20080050223A1 (en) Turbine airfoil with endwall horseshoe cooling slot
KR20030030849A (en) Turbine airfoil with enhanced heat transfer
EP1101898B1 (en) Gas turbine blade
US20190316472A1 (en) Double wall airfoil cooling configuration for gas turbine engine
EP1288436A2 (en) Turbine airfoil for gas turbine engine
GB1580915A (en) Methods of forming a curved trailing edge cooling slot in a turbine vane or blade
JPS59200001A (en) Gas turbine blade
JPS6242122B2 (en)
JPS6242121B2 (en)
JPS6310284B2 (en)
JPS6360205B2 (en)
JPS6310285B2 (en)
JP3080817B2 (en) Cooling structure of hollow cooling blade
JPS6360204B2 (en)
JP3422611B2 (en) Gas turbine blade
JPS59173501A (en) Stationary blade of gas turbine