JPS6360138B2 - - Google Patents
Info
- Publication number
- JPS6360138B2 JPS6360138B2 JP57039196A JP3919682A JPS6360138B2 JP S6360138 B2 JPS6360138 B2 JP S6360138B2 JP 57039196 A JP57039196 A JP 57039196A JP 3919682 A JP3919682 A JP 3919682A JP S6360138 B2 JPS6360138 B2 JP S6360138B2
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- twisting
- twist
- untwisted
- twisted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002131 composite material Substances 0.000 claims description 16
- 229920002994 synthetic fiber Polymers 0.000 claims description 7
- 239000012209 synthetic fiber Substances 0.000 claims description 7
- 229920001169 thermoplastic Polymers 0.000 claims description 7
- 239000004416 thermosoftening plastic Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 description 24
- 239000012530 fluid Substances 0.000 description 13
- 239000004744 fabric Substances 0.000 description 10
- 238000004804 winding Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
本発明は糸条の長手方向に沿つてS撚部とZ撚
部とを交互に有する特殊複合加工糸に係り、さら
に詳しくは捲縮波形の異なる2本以上の糸条から
なる複合糸であつて、該複合糸の長手方向に沿つ
て見掛けの嵩高性が実質的に等しいS撚部とZ撚
部を交互に有し、かつ糸条の一部がループを形成
してなる特殊複合加工糸に関するものである。
従来、仮撚加工において、未解撚加工糸を得る
方法としては、定常に回転するスピンドルを用い
て、芯糸に高オーバーフイード率で鞘糸を捲付か
せ、熱固定後解撚することにより、S・Z交互の
未解撚糸となす方法や、伸度差を有する2本の糸
条を同時に定常の仮撚加工を施すことによつて芯
糸に高伸度糸をS・Z交互撚で捲付かせる方法、
あるいは10%以上の高オーバーフイード率で定常
の仮撚加工を施すことによつて、S・Z交互の未
解撚糸を得る方法などがある。
しかしながら、これらの未解撚糸は仮撚加撚方
向の撚をもつ未解撚部が細く集束し、その逆方向
の撚をもつ過解撚部は大きくふくらんでおり、し
かも末解撚部と過解撚部の長さは数ミリ〜数セン
チメーターオーダーの長さしかなく、このため短
かい太さ斑により、布帛にした場合、細部が透け
て見え、凹凸のある珍奇な外観斑ができて布帛の
表面がきたなくなるという欠点がある。
また、仮撚加工において、仮撚スピンドルの間
歇駆動、フイードローラの変速駆動、仮撚ゾーン
糸道の変位などの積極的な非定常仮撚操作を施す
ことにより糸条の長手方向にS撚部とZ撚部とを
交互に形成せしめる技術としては、特公昭39−
12891号公報、特公昭40−14615号公報、特公昭49
−8414号公報、特開昭49−108353号公報、特開昭
51−49949号公報、特開昭53−61745号公報などに
提案されているが、これらに記載されているよう
な単に熱可塑性合成繊維マルチフイラメントに非
定常仮撚加工を施して得た糸条は仮撚加撚方向の
撚を有する未解撚部が仮撚解撚方向の撚を有する
過解撚部のように糸条に嵩高性がなく、このよう
な糸条を布帛と成した場合、嵩高性の差異により
局部的に肉厚感の欠如した欠点様の外観斑を有
し、高級な製品感が得られない。
一方、スパンライクな加工糸を得るために、フ
イラメント糸に流体を噴射してループを形成す
る、いわゆるタスラン加工を施す方法が用いられ
る。
しかしながら、タスラン加工で形成されるルー
プは、特有の涙滴形をしているため、この加工糸
からの布帛は、手触り感ががさつき、スパン調で
はあるが、いわゆる綿ライクであり、また、布帛
同士をくつつけると、涙滴形のループ同士が絡ま
り、離れにくくなる、いわゆるフアスナー現象を
引き起こすという欠点がある。
本発明者らは上記の欠点を解消するために、熱
可塑性合成繊維マルチフイラメントの嵩高加工糸
に非定常仮撚加工を施すことによつて未解撚部と
過解撚部の見掛けの嵩高性を実質的に等しくする
技術を昭和57年2月9日付の特許出願にてすでに
提案したが、前記で得られる糸条は未解撚部と過
解撚部の嵩高性は等しいものの用途によつては嵩
高性が十分ではなく、しかも単に強撚調を呈する
のみなので外観変化が乏しい糸条であつた。
本発明は上記の点に鑑みてなされたものであり
その目的とするところは未解撚部と過解撚部の嵩
高性が実質的に等しいのはもちろんのことその嵩
高性が極めて大きく、かつスパン調でウールライ
クな外観,風合を呈し、フアスナー現象を引き起
こすことがない特殊複合加工糸を提供するにあ
り、上記目的を達成するために、本発明の特殊複
合加工糸は熱可塑性合成繊維マルチフイラメント
からなる捲縮糸条Aを芯糸とし、この芯糸に前記
糸条Aとは異なる捲縮波形の糸条Bが捲回した複
合糸であつて、該複合糸の長手方向に沿つて見掛
けの嵩高性が実質的に等しいS撚部とZ撚部を交
互に有し、かつ糸条Bの一部がアーチ形のループ
を形成したという構成を有する。
以下本発明を添付図面に基づいて詳細に説明す
る。第1図は本発明の特殊複合加工糸の一例で、
熱可塑性合成繊維マルチフイラメントからなる捲
縮糸条Aを芯糸として、糸条Aとは異なる捲縮波
形の糸条Bすなわち糸条Aとは捲縮の振巾や波長
(周期)等が異なる糸条Bが長手方向に捲回密度
をランダムに変化しながら糸条Aに捲回してお
り、糸条Bの一部は捲回密度が粗い部分でアーチ
形のループ1を形成している。また糸条の長手方
向に沿つて少なくとも糸条AがS撚を有するS撚
部2とZ撚を有するZ撚部3が交互に存在し、S
撚部2からZ撚部3に至る間及びZ撚部3からS
撚部2に至る間にはS撚部2及びZ撚部3の長さ
に比べて無視できる程度の長さで無撚部4,5が
形成されている。しかもS撚部2内及びZ撚部3
内では糸条Bの捲回密度の変化によつて微細な凹
凸を呈しているが、S撚部2とZ撚部3間には見
掛けの嵩高性(太さ)に実質的な差がなく、糸条
の長手方向に沿つて一様に嵩高である。
なお、ここでいう嵩高性とは糸条の見掛けの外
径に基づく嵩高度合を意味し、実質的に同一な嵩
高性とは無緊張に近い微緊張下における糸条の見
掛けの外径差がS撚部又はZ撚部のいずれか太い
方を基準として10%以下、好ましくは5%以下で
ある状態をいう。
本発明の特殊複合加工糸は上記のように糸条の
長手方向に沿つてS撚部とZ撚部を交互に有する
ので、微細なシヤリ感、ドレープ性、重量感及び
弾力性のある風合等の強撚糸様効果を有し、しか
も複合加工糸を構成する糸条A、糸条Bの捲縮波
形が異なるため、交互撚付与による嵩高性の低下
が同一波形の捲縮糸条のみの場合に比較して格段
に少なく、したがつてS撚部とZ撚部の嵩高性が
実質的に等しいのはもちろんのことその嵩高性が
極めて大であり、糸条の長手方向のいずれの部分
においても大きな嵩高性を有しているので、この
糸条を布帛にした場合には局所的に肉厚感の欠け
た欠点様の外観斑を呈することがなく、かつ全体
的に極めてボリウム感、ソフト感に富む布帛が得
られる。
また、糸条Aを捲回する糸条Bは捲回密度が粗
な部分でアーチ形のループを形成しているから、
糸条の長手方向に捲縮糸条のループが散在し、大
なる嵩高性と散在するアーチ形のループによつ
て、手触り感が滑らかとなり、このためウール様
のヌメリ感が得られ、布帛にスパン調でウールラ
イクな外観、風合を付与することができる。ま
た、ループの存在によつても、いわゆるフアスナ
ー現象を引き起こすということがない。
次に本発明糸条の製造方法の一例を第2図によ
り説明する。まず熱可塑性合成繊維マルチフイラ
メント糸条Aをフイードローラ6で第1ヒータ7
とスピンドル8からなる仮撚ゾーンに供給すると
ともに糸条Aと同種又は異種の糸条Bをフイード
ローラ9で糸条Aと同一の仮撚ゾーンに糸条Aよ
り過供給して定常仮撚加工を行い、糸条Aと糸条
Bに異なつた波形の捲縮を付与すると同時に糸条
Aを芯糸として糸条BがS,Z交互に捲回した仮
撚捲縮糸となす。次いで第1デリベリローラ10
で仮撚ゾーンから引出された仮撚捲縮糸を第2ヒ
ータ11と仮撚ノズル(以下ノズルと称す)12
からなる非定常仮撚ゾーンに通し、ノズル12に
流体を間歇的に供給することによつて糸条の一方
向旋回、停止を繰り返し、前記糸条Aを芯糸とし
て、糸条Bが数センチメーターオーダーの短かい
交互撚で捲回した撚を、流体供給時の旋回力また
は流体停止時の伝播撚で解きほぐし、次いで糸条
に非定常仮撚による仮撚の過渡現象を利用した数
十センチメーターオーダーの長さの交互撚に変換
する。この場合、まずノズル12に流体を供給す
ると、ノズル12通過以前の加撚ゾーンで施撚さ
れた撚は第2ヒータ11によつて熱固定され、次
いで流体の供給を停止すると加撚ゾーンで熱固定
された撚はノズル12通過以降の解撚ゾーンにお
いては解撚作用を受けることなく通過し、S又は
Z方向の撚をもつ未解撚部が第2デリベリローラ
13から引出される。例えば、流体によつてS方
向に糸条を旋回させると、前記S・Zの捲回撚は
Z撚が解撚され、いつたんすべてS加撚状態とな
り、次いで、解撚ゾーンで過解撚されてZ撚部を
形成するが、Z撚が解撚された分だけが糸長差と
なつてアーチ形のループが形成される。次いで、
流体を停止させると、前記S・Z捲回撚は流体供
給時の加撚撚であるS撚の伝播によつてZ撚部が
解撚され、S撚部が形成される。Z撚が解撚され
た分だけが糸長差となつてアーチ形のループが形
成される。
非定常仮撚の場合、流体の停止によつて解撚ゾ
ーンを通過する糸条部分の加撚撚が減少してくる
が、ここで流体の供給を再開すると解撚ゾーンに
おいて急激な解撚作用を受け、Z又はS方向の撚
をもつ過解撚部が引出され、また未解撚部から過
解撚部に至る区間及び過解撚部から未解撚部に至
る区間において無撚部が引出されパツケージ14
に捲取られる。
上記のように流体の停止時には未解撚部が、流
体の供給時には過解撚部が引出されるが、非定常
仮撚ゾーンに供給される糸条は捲縮糸条Aを芯糸
として糸条Aとは異なる捲縮波形の糸条Bが捲回
した構造を有するため、構成単糸がほぼ平行な通
常の原糸を供給糸とする場合はもちろんのこと、
同一捲縮波形の捲縮糸を供給糸とする場合に比較
しても糸条A,B間の捲縮波形の違いによつて交
互撚付与時の充填状態が緩くなり、交互撚付与に
よる嵩高性の低下が少ない。
また一般にノズル通過以前に施撚された撚が熱
固定されたままの状態で引出される未解撚部はノ
ズル通過後においてノズルによる解撚作用を急激
に受け、加撚方向の撚とは逆方向にまで解撚され
て形成される過解撚部に比較して嵩高性が乏しい
が、前述したように交互撚付与時の充填状態が緩
くて未解撚部といえども最密充填構造にはなり得
ないので、過解撚部と実質的に同等の嵩高性が保
持される。
以上、本発明の特殊複合加工糸の製造方法の一
例について説明したが、本発明における供給糸条
としては糸条Aとしてポリエステル、ポリアミド
等の熱可塑性合成繊維マルチフイラメントを使用
することができ、また糸条Bとしては糸条Aと同
種又は異種の熱可塑性合成繊維マルチフイラメン
トで繊度や伸度、熱収縮率、複屈折率などの物性
が同じ糸条あるいは互いに異なつた糸条、レイヨ
ン、アセテート等の糸条を使用することができ、
さらに糸条A及び/又はBとして2本以上の糸条
を組合せてもよい。
また、糸条A,Bに異なつた捲縮波形を付与す
ると同時に糸条Aを芯糸として糸条BをS,Z状
に捲回させるためには定常仮撚加工時に糸条Bを
糸条Aより5%以上好ましくは10%以上過供給す
る必要があり、過供給が5%未満になると糸条
A,B間の捲縮波形差が少なくなつて本発明の効
果が得られない。一方、糸条Bの過供給が大きす
ぎると糸条Aの周りに糸状Bが三重構造に捲回し
たスラツプ調糸条となり、該糸条を用いた布帛の
風合が硬く、またけばけばしい外観となるので、
糸条Bの過供給は三重構造を形成しない範囲に設
定するのが好ましい。定常仮撚時に糸条Bを糸条
Aより過供給するに当つては、第2図のように糸
条A供給用のフイードローラより表面速度が大な
るフイードローラで糸条Bを過供給する、張力調
整装置で糸条Aより糸条Bの給糸張力を小さくす
る、さらには糸条Aより残留伸度が大なる糸条B
例えば高配向未延伸糸を糸条Aと引揃えて供給す
ることによつて実質的に糸条Bを過供給する等の
手段を用いることができる。
また、定常仮撚加工及び非定常仮撚加工で使用
する仮撚施撚体としては、前述したような圧縮流
体を用いた仮撚ノズルやベルト駆動によるスピン
ドル式施撚体の他に摩擦式施撚体や空気スピンド
ル式施撚体等を使用することができる。
さらに非定常仮撚加工を行う方法としては仮撚
施撚体によりS又はZ方向に間歇的に加撚する方
法、S及びZ方向交互にかつ間歇的に加撚する方
法、S及びZ方向交互にかつ連続的に加撚する方
法、さらにはフイードローラの変速駆動、仮撚ゾ
ーン糸道を変動させる方法等を採用することがで
きる。
なお、定常仮撚加工と後続する非定常仮撚加工
は連続して行つても、非連続に行つてもよく、ま
た加撚方向は同方向でも異なる方向でもよい。
以下、本発明を実施例により具体的に説明す
る。
実施例 1
糸条Aとしてポリエステルフイラメント
100d/48f,糸条Bとしてポリエステルフイラメ
ント50d/48fを用い、第2図に示す工程でスピン
ドルによる定常仮撚加工とノズルによつて一方向
間歇施撚を行う非定常仮撚加工を連続して行い、
捲縮糸条Aに捲縮糸条Bが捲回するとともに長手
方向にS撚部とZ撚部が交互に存在し、糸条Bの
一部がアーチ状のループとなつた特殊複合加工糸
を得た。
第1表に加工条件を示す。
The present invention relates to a special composite yarn having S-twist portions and Z-twist portions alternately along the longitudinal direction of the yarn, and more specifically to a composite yarn consisting of two or more yarns with different crimp waveforms. A special composite processed yarn having S twist portions and Z twist portions having substantially equal apparent bulkiness alternately along the longitudinal direction of the composite yarn, and a portion of the yarn forming a loop. It is related to. Conventionally, in the false twisting process, the method of obtaining untwisted yarn is to use a constantly rotating spindle to wind the sheath yarn around the core yarn at a high overfeed rate, heat set it, and then untwist it. , S/Z alternating twisting of high elongation yarns in the core yarn, or by applying constant false twisting to two yarns with different elongation at the same time. How to wrap it with
Alternatively, there is a method of obtaining an untwisted yarn with alternating S and Z directions by performing steady false twisting at a high overfeed rate of 10% or more. However, in these untwisted yarns, the untwisted part with twist in the direction of false twisting is narrowly converged, and the overtwisted part with twist in the opposite direction is large and bulges, and furthermore, the untwisted part with the twist in the direction of false twisting is large and the The length of the untwisted part is only on the order of a few millimeters to a few centimeters, and because of this, when it is made into a fabric, the details can be seen through due to the short thickness irregularities, resulting in unusual irregular appearance irregularities. The disadvantage is that the surface of the fabric becomes dirty. In addition, in the false twisting process, by performing active unsteady false twisting operations such as intermittent driving of the false twisting spindle, variable speed driving of the feed roller, and displacement of the false twisting zone yarn path, it is possible to create an S-twist part in the longitudinal direction of the yarn. As a technique for forming Z-twisted parts alternately,
Publication No. 12891, Special Publication No. 14615, Publication No. 14615, Special Publication No. 14615, Special Publication No. 14615
-8414 Publication, JP-A-49-108353, JP-A-Sho
51-49949, Japanese Patent Application Laid-Open No. 53-61745, etc., yarns obtained simply by subjecting a thermoplastic synthetic fiber multifilament to unsteady false twisting as described in these documents. When the untwisted part with the twist in the false-twisting direction does not have bulk like the over-untwisted part with the twist in the false-twisting/untwisting direction, and such a thread is made into a fabric. However, due to the difference in bulkiness, there are defects-like appearance irregularities due to a lack of thickness locally, and a high-quality product feeling cannot be obtained. On the other hand, in order to obtain a spun-like processed yarn, a method of applying so-called taslan processing, in which a fluid is injected to a filament yarn to form a loop, is used. However, since the loops formed by Taslan processing have a unique teardrop shape, the fabrics made from this processed yarn have a rough texture and have a spun-like feel, but are so-called cotton-like. When the fabrics are tied together, the teardrop-shaped loops become entangled with each other and become difficult to separate, causing a so-called fastener phenomenon. In order to solve the above-mentioned drawbacks, the present inventors applied an unsteady false twisting process to the bulky textured yarn of thermoplastic synthetic fiber multifilament, thereby increasing the apparent bulk of the untwisted portions and over-untwisted portions. In a patent application filed on February 9, 1981, we have already proposed a technology to make the yarns substantially equal.Although the bulkiness of the untwisted part and the overtwisted part of the yarn obtained by the above process are the same, the bulkiness may vary depending on the application. However, the yarn did not have sufficient bulkiness, and moreover, it merely exhibited a strongly twisted tone, resulting in a yarn with little change in appearance. The present invention has been made in view of the above-mentioned points, and its purpose is to have the bulkiness of the untwisted part and the overtwisted part substantially equal, and that the bulkiness is extremely large. The purpose of the present invention is to provide a special composite processed yarn that exhibits a spun-like, wool-like appearance and texture and does not cause the fastener phenomenon. It is a composite yarn in which a crimped yarn A consisting of a multifilament is used as a core yarn, and a yarn B having a crimped waveform different from that of the yarn A is wound around the core yarn, and the yarn B is wound along the longitudinal direction of the composite yarn. It has a structure in which S-twist portions and Z-twist portions are alternately formed so that the apparent bulkiness is substantially equal, and a portion of yarn B forms an arch-shaped loop. The present invention will be explained in detail below based on the accompanying drawings. Figure 1 shows an example of the special composite processed yarn of the present invention.
A crimped yarn A made of a thermoplastic synthetic fiber multifilament is used as a core yarn, and a yarn B has a crimped waveform different from that of the yarn A, that is, the crimp amplitude, wavelength (period), etc. are different from the yarn A. The yarn B is wound around the yarn A while randomly changing the winding density in the longitudinal direction, and a part of the yarn B has a coarse winding density and forms an arch-shaped loop 1. Further, along the longitudinal direction of the yarn, at least the yarn A alternately has an S-twist portion 2 having an S twist and a Z-twist portion 3 having a Z twist;
From the twisting part 2 to the Z twisting part 3 and from the Z twisting part 3 to the S
Between the twisted part 2 and the length of the S twisted part 2 and the Z twisted part 3, non-twisted parts 4 and 5 are formed with lengths that are negligible compared to the lengths of the S twisted part 2 and the Z twisted part 3. Moreover, inside the S twist part 2 and the Z twist part 3
Although there are minute irregularities due to changes in the winding density of the yarn B, there is no substantial difference in apparent bulkiness (thickness) between the S-twisted part 2 and the Z-twisted part 3. , the yarn is uniformly bulky along the longitudinal direction. In addition, bulkiness here means the degree of bulkiness based on the apparent outer diameter of the yarn, and substantially the same bulkiness means the difference in the apparent outer diameter of the yarn under slight tension close to no tension. is 10% or less, preferably 5% or less, based on either the S-twist portion or the Z-twist portion, whichever is thicker. As mentioned above, the special composite processed yarn of the present invention has S twist portions and Z twist portions alternately along the longitudinal direction of the yarn, so it has a fine silky feel, drapability, weight, and elastic texture. Moreover, since the crimped waveforms of yarn A and yarn B that make up the composite textured yarn are different, the decrease in bulkiness due to alternating twisting is lower than that of crimped yarns with the same waveform. Therefore, the bulkiness of the S-twisted part and the Z-twisted part are not only substantially equal, but also extremely large, and the bulkiness of the It also has a large bulkiness, so when this yarn is made into a fabric, it does not exhibit defects-like appearance spots where the thickness is lacking locally, and it has an extremely bulky feel as a whole. A fabric with a rich soft feel can be obtained. In addition, since the yarn B that winds the yarn A forms an arch-shaped loop in the part where the winding density is coarse,
Loops of crimped yarn are scattered in the longitudinal direction of the yarn, and the large bulkiness and scattered arch-shaped loops make it smooth to the touch, giving the fabric a wool-like slimy feel. It can give a spun-like, wool-like appearance and texture. Furthermore, even the existence of a loop does not cause the so-called Fassner phenomenon. Next, an example of the method for producing the yarn of the present invention will be explained with reference to FIG. First, the thermoplastic synthetic fiber multifilament yarn A is passed through the feed roller 6 to the first heater 7.
and a spindle 8, and a feed roller 9 overfeeds the yarn B, which is the same type or different type as the yarn A, to the same false twisting zone as the yarn A, and performs a steady false twisting process. The yarn A and the yarn B are crimped with different waveforms, and at the same time, the yarn A is used as the core yarn and the yarn B is wound alternately in the S and Z directions to form a false twisted crimped yarn. Next, the first delivery roller 10
The false-twisted crimped yarn pulled out from the false-twisting zone is passed through a second heater 11 and a false-twisting nozzle (hereinafter referred to as nozzle) 12.
By passing the yarn through an unsteady false twisting zone consisting of The strands are wound with short alternating twists on the order of a meter, are unraveled by swirling force when fluid is supplied, or by propagation twist when fluid is stopped, and then the yarn is twisted by several tens of centimeters using the transient phenomenon of false twisting due to unsteady false twisting. Convert to alternating twists with lengths on the order of meters. In this case, when the fluid is first supplied to the nozzle 12, the twists twisted in the twisting zone before passing through the nozzle 12 are thermally fixed by the second heater 11, and then when the fluid supply is stopped, the twists are heated in the twisting zone. The fixed twist passes through the untwisting zone after passing through the nozzle 12 without being subjected to an untwisting action, and the untwisted portion having a twist in the S or Z direction is pulled out from the second delivery roller 13. For example, when the yarn is turned in the S direction by a fluid, the Z twist of the S and Z winding twists is untwisted, and all of them suddenly turn into an S twisted state, and then the over-untwisted state occurs in the untwisting zone. The yarn is twisted to form a Z-twisted portion, but the untwisted Z-twist becomes a difference in yarn length and an arch-shaped loop is formed. Then,
When the fluid is stopped, the S/Z winding twist is untwisted by the propagation of the S twist, which is the twisting when the fluid is supplied, to form an S twist section. An arch-shaped loop is formed by the yarn length difference due to the untwisting of the Z twist. In the case of unsteady false twisting, when the fluid stops, the twisting of the yarn passing through the untwisting zone decreases, but when the fluid supply is restarted, a sudden untwisting action occurs in the untwisting zone. As a result, the over-twisted part with twist in the Z or S direction is pulled out, and the untwisted part is pulled out in the section from the untwisted part to the over-untwisted part and the section from the over-untwisted part to the untwisted part. Pulled out package 14
It is rolled up. As mentioned above, when the fluid stops, the untwisted part is pulled out, and when the fluid is supplied, the overtwisted part is pulled out, but the yarn supplied to the unsteady false twist zone is a yarn with crimped yarn A as the core yarn. Since the yarn B has a wound structure with a crimped waveform different from the yarn A, it is of course possible to use ordinary raw yarn whose constituent single yarns are almost parallel as the supplied yarn.
Even if a crimped yarn with the same crimped waveform is used as the supplied yarn, the difference in the crimped waveforms between yarns A and B causes the filling condition to be looser when alternate twisting is applied, resulting in increased bulk due to alternate twisting. There is little decline in sex. Additionally, in general, the untwisted part, which is pulled out while the twist applied before passing through the nozzle remains heat-fixed, is rapidly subjected to the untwisting action of the nozzle after passing through the nozzle, which is opposite to the twisting direction. Although the bulkiness is poor compared to the over-untwisted part that is formed by untwisting the untwisted part, as mentioned above, the filling condition when applying alternate twisting is loose and even the ununtwisted part has a close-packed structure. Therefore, bulkiness substantially equivalent to that of the over-twisted portion is maintained. An example of the method for manufacturing the special composite processed yarn of the present invention has been described above, but as the yarn A to be supplied in the present invention, thermoplastic synthetic fiber multifilament such as polyester or polyamide can be used. Yarn B may be a thermoplastic synthetic fiber multifilament of the same type or different type as yarn A, with the same physical properties such as fineness, elongation, heat shrinkage rate, birefringence, etc., or yarns with different physical properties such as rayon, acetate, etc. You can use yarn of
Furthermore, two or more yarns may be combined as yarns A and/or B. In addition, in order to give different crimp waveforms to yarns A and B and at the same time to wind yarn B in S and Z shapes using yarn A as a core yarn, it is necessary to It is necessary to overfeed yarn A by 5% or more, preferably by 10% or more; if the overfeed is less than 5%, the crimp waveform difference between yarns A and B will be too small and the effects of the present invention will not be obtained. On the other hand, if the oversupply of yarn B is too large, the yarn B will become a sloppy yarn in which the yarn B is wound in a triple structure around the yarn A, and the fabric using this yarn will have a hard texture and a gaudy appearance. So,
It is preferable to set the excessive supply of yarn B within a range that does not form a triple structure. In overfeeding yarn B over yarn A during steady false twisting, as shown in Figure 2, the tension is increased by overfeeding yarn B with a feed roller whose surface speed is higher than that of the feed roller for feeding yarn A. Using the adjustment device, the feeding tension of yarn B is lower than that of yarn A, and yarn B has a higher residual elongation than yarn A.
For example, it is possible to use means such as supplying a highly oriented undrawn yarn in alignment with the yarn A, thereby substantially overfeeding the yarn B. In addition, the false-twisting bodies used in steady false-twisting and unsteady false-twisting processes include the above-mentioned false-twisting nozzle using compressed fluid and spindle-type twisting bodies driven by belts, as well as friction-type twisting bodies. A twisted body, an air spindle type twisted body, etc. can be used. Furthermore, methods for performing unsteady false twisting include a method of intermittent twisting in the S or Z direction with a false twisting body, a method of intermittent twisting alternately and in the S and Z directions, and a method of intermittent twisting in the S and Z directions. A method of twisting the yarn continuously and continuously, a method of variable speed driving of a feed roller, a method of varying the yarn path in the false twisting zone, etc. can be adopted. Note that the steady false twisting process and the subsequent unsteady false twisting process may be performed continuously or discontinuously, and the twisting directions may be the same or different. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 Polyester filament as yarn A
100d/48f, polyester filament 50d/48f was used as the yarn B, and in the process shown in Figure 2, a steady false twisting process using a spindle and an unsteady false twisting process in which unidirectional intermittent twisting was performed using a nozzle were successively performed. conduct,
A special composite processed yarn in which crimped yarn B is wound around crimped yarn A, and S-twist portions and Z-twist portions alternate in the longitudinal direction, and a portion of yarn B forms an arch-shaped loop. I got it. Table 1 shows the processing conditions.
【表】【table】
【表】
得られた糸条は糸条の長手方向に未解撚部(Z
撚部)が0.7m前後、過解撚部(S撚部)が0.8m
の前後の長さで両者が交互に存在し、未解撚部か
ら過解撚部に至る間及び過解撚部から未解撚部に
至る間の無撚部は痕跡程度で無視できる程度のも
のであつた。
糸条に2mg/dの緊張を付与して未解撚部及び
過解撚部の糸外径を顕微鏡により測定した結果
を、以下の比較例とともに第2表に示す。
比較例1は、糸条A,Bをオーバーフイード率
2%で引揃えて定常仮撚した以外は実施例1と同
様な操作を施して得られた糸条である。また、比
較例2は、実施例1におけるスピンドルによる定
常仮撚加工後、直ちに捲取ローラに捲取つて得ら
れた糸条である。[Table] The obtained yarn has an untwisted part (Z
Twisted part) is around 0.7m, over-twisted part (S-twisted part) is 0.8m
Both exist alternately in the front and rear lengths, and the non-twisted parts between the untwisted part and the over-untwisted part and between the over-untwisted part and the untwisted part are only traces and can be ignored. It was hot. Table 2 shows the results of measuring the yarn outer diameters of the untwisted portion and the excessively untwisted portion using a microscope while applying a tension of 2 mg/d to the yarn, along with the comparative examples below. Comparative Example 1 is a yarn obtained by performing the same operation as in Example 1, except that yarns A and B were aligned at an overfeed rate of 2% and subjected to constant false twisting. Moreover, Comparative Example 2 is a yarn obtained by winding up the yarn on a winding roller immediately after the steady false twisting process using the spindle in Example 1.
【表】
第2表から明らかなように、実施例1の糸条は
未解撚部と過解撚部で実測外径にほとんど差がな
く一様に嵩高であり、さらに未解撚部、過解撚部
とも同一捲縮波形の糸条からなる比較例1より繊
度差を考慮して同一繊度に修正した外径において
も1.3倍以上と著しく嵩高であつた。また、比較
例2の糸条は、末解撚部と過解撚部の実測径差が
大きく、太さ斑が大きい糸条であつた。
実施例1の糸条を用いて、経密度75本/2.54
cm,緯密度68本/2.54cmの平織組織とした布帛
は、強撚糸様の風合を呈するとともに未解撚部の
糸外径の細さに起因するヒケ状の欠点様外観斑、
肉薄様欠点斑などが見られず一様なバルキー性が
あり、またスパンライクな外観風合を呈するもの
であつた。
なお、糸外径の測定は未解撚部又は過解撚部に
対応する部分の糸条を2mg/dの緊張下で顕微鏡
測定用プレパラート上に採取し、サンプル中央部
と前後20mm隔てた部分の糸外径を直接読み取り、
平均値を糸外径とした。[Table] As is clear from Table 2, the yarn of Example 1 has almost no difference in the measured outer diameter between the untwisted part and the over-twisted part, and is uniformly bulky. Even when the outer diameter was corrected to the same fineness in consideration of the difference in fineness as in Comparative Example 1, in which both the over-twisted portion and the yarn had the same crimped waveform, the bulkiness was 1.3 times or more, which was significantly higher. Further, the yarn of Comparative Example 2 had a large difference in the measured diameter between the partially untwisted part and the overly untwisted part, and had large thickness unevenness. Using the yarn of Example 1, the warp density was 75/2.54
The plain weave fabric with a weft density of 68 threads/2.54 cm has a texture similar to strongly twisted yarn, and also has sink-like defect-like appearance spots due to the thin outer diameter of the yarn in the untwisted part.
It had uniform bulkiness without any thinness or defects, and had a spun-like appearance and texture. In addition, to measure the yarn outer diameter, the yarn in the part corresponding to the untwisted part or the over-untwisted part was collected on a microscopic measurement preparation under a tension of 2 mg/d, and the part was separated from the center of the sample by 20 mm in front and back. Directly read the thread outer diameter of
The average value was taken as the thread outer diameter.
第1図は本発明になる特殊複合加工糸の一実施
例の外観図、第2図は同上の概略製造工程図であ
り、A,Bは捲縮糸条、1はループ、2はS撚
部、3はZ撚部、4と5は無撚部である。
Fig. 1 is an external view of one embodiment of the special composite processed yarn of the present invention, and Fig. 2 is a schematic manufacturing process diagram of the same, in which A and B are crimped yarns, 1 is a loop, and 2 is an S twist. Parts 3 and 3 are Z-twisted parts, and 4 and 5 are non-twisted parts.
Claims (1)
る捲縮糸条Aを芯糸とし、この芯糸に前記糸条A
とは異なる捲縮波形の糸条Bが捲回した複合糸で
あつて、該複合糸の長手方向に沿つて見掛けの嵩
高性が実質的に等しいS撚部とZ撚部を交互に有
し、かつ糸条Bの一部がアーチ形のループを形成
してなることを特徴とする特殊複合加工糸。1 A crimped yarn A made of thermoplastic synthetic fiber multifilament is used as a core yarn, and the yarn A is attached to this core yarn.
A composite yarn wound with a yarn B having a crimp waveform different from that of the composite yarn, which alternately has S-twist portions and Z-twist portions having substantially equal apparent bulkiness along the longitudinal direction of the composite yarn. , and a part of yarn B forms an arch-shaped loop.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3919682A JPS58156048A (en) | 1982-03-11 | 1982-03-11 | Special composite processed yarn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3919682A JPS58156048A (en) | 1982-03-11 | 1982-03-11 | Special composite processed yarn |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58156048A JPS58156048A (en) | 1983-09-16 |
JPS6360138B2 true JPS6360138B2 (en) | 1988-11-22 |
Family
ID=12546362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3919682A Granted JPS58156048A (en) | 1982-03-11 | 1982-03-11 | Special composite processed yarn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58156048A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62289634A (en) * | 1986-06-04 | 1987-12-16 | 東レ株式会社 | Interlaced composite processed yarn and its production |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51136949A (en) * | 1975-05-19 | 1976-11-26 | Toray Industries | Method of producing alternately twisted loop yarn |
JPS5576128A (en) * | 1978-12-05 | 1980-06-09 | Teijin Ltd | Spun yarn like composite wound yarn and production |
JPS5739237A (en) * | 1980-08-15 | 1982-03-04 | Teijin Ltd | Composite yarn |
-
1982
- 1982-03-11 JP JP3919682A patent/JPS58156048A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51136949A (en) * | 1975-05-19 | 1976-11-26 | Toray Industries | Method of producing alternately twisted loop yarn |
JPS5576128A (en) * | 1978-12-05 | 1980-06-09 | Teijin Ltd | Spun yarn like composite wound yarn and production |
JPS5739237A (en) * | 1980-08-15 | 1982-03-04 | Teijin Ltd | Composite yarn |
Also Published As
Publication number | Publication date |
---|---|
JPS58156048A (en) | 1983-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4081887A (en) | Production of bulky, continuous filament yarn | |
US4345425A (en) | Process for making bulky textured multifilament yarn | |
US4169349A (en) | Production of simulated spun-like bulked yarn | |
JP2877817B2 (en) | Method for producing bulky franc yarn | |
JPS6360138B2 (en) | ||
JPS6113013B2 (en) | ||
JP4190929B2 (en) | False twisted yarn and method for producing the same, and twisted yarn and woven / knitted fabric of the false twisted yarn | |
JP3589511B2 (en) | Polyester low crimped yarn | |
JP2813525B2 (en) | False twist composite yarn and method for producing the same | |
JPH0333806B2 (en) | ||
JPH0457931A (en) | Production of composite interlaced yarn | |
JPS61266629A (en) | Production of fancy yarn | |
JPH0333815B2 (en) | ||
JPH0325528B2 (en) | ||
JP2908597B2 (en) | Method for producing polyester spun-like yarn | |
JPS58149338A (en) | Production of hard twisted yarn-like special bulky processed yarn | |
JPH0299626A (en) | Production method for crimped yarn with a multilayer structure | |
JPH02259134A (en) | Bulky fancy yarn and production thereof | |
JP2895090B2 (en) | Method for producing polyester composite yarn | |
JPH0351335A (en) | Production of special bulked yarn | |
JPS62276036A (en) | Production of bulky processed yarn | |
JPS63165550A (en) | Production of composite interlaced yarn | |
JPH0220734B2 (en) | ||
JPH034655B2 (en) | ||
JPH10219536A (en) | False twist yarn excellent in design and its production |