JPS6360011A - Monitoring method for rolling mill - Google Patents

Monitoring method for rolling mill

Info

Publication number
JPS6360011A
JPS6360011A JP61202405A JP20240586A JPS6360011A JP S6360011 A JPS6360011 A JP S6360011A JP 61202405 A JP61202405 A JP 61202405A JP 20240586 A JP20240586 A JP 20240586A JP S6360011 A JPS6360011 A JP S6360011A
Authority
JP
Japan
Prior art keywords
rolling mill
rolling
data
variables
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61202405A
Other languages
Japanese (ja)
Other versions
JPH0527486B2 (en
Inventor
Masaki Endo
正樹 遠藤
Masanori Sato
佐藤 全紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61202405A priority Critical patent/JPS6360011A/en
Publication of JPS6360011A publication Critical patent/JPS6360011A/en
Publication of JPH0527486B2 publication Critical patent/JPH0527486B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To improve monitoring capacity by measuring the rolling load and driving torque of a rolling mill and the oscillation of a driving system, then subjecting the respective measured values to satistical processing and deciding the wear of universal joints for driving work rolls. CONSTITUTION:A multiplexer 10 to collect various kinds of data on the rolling mill 1 is provided. An A/D converter 11, a memory device 12, an arithmetic unit 13, an analyzer 15, etc., are successively disposed. The data sampled at various timing are inputted via the A/D converter 11 to the memory device 12 and the arithmetic unit 13 and are stored in the form of various analysis variables in a data memory device 14. A main component analysis is then carried out with the selected variables by the analyzer 15 and the variables are subjected to the statistical processing to decide the wear of the universal joints 8 for driving the work rolls 7. Since the deterioration of the equipment is exactly decided from various sets of the information generated by the rolling mill 1, the monitoring capacity for the rolling mill 1 is improved.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、圧延機の設備的劣化状況を総合的に監視・診
断する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for comprehensively monitoring and diagnosing the deterioration status of equipment in a rolling mill.

(ロ) 従 来  技  術 圧延機は、上下ロールまたは左右ロール等が圧延材を押
し付けつつ回転して、所要寸法の製品を得るものである
。その設備の保守には多くの経験、労力、費用(消耗品
等の資材)等を要する。
(b) Conventional technology In a rolling mill, upper and lower rolls or left and right rolls rotate while pressing the rolled material to obtain a product with the required dimensions. Maintenance of the equipment requires a lot of experience, labor, and expense (materials such as consumables).

特に、ワーク・ロール回転駆動系には、その巨大な(圧
延機内で最も大きな)動力を伝達し、ロールの位置が常
に変化するために、スリッパ・メタルやギヤー・カップ
リング等の自在継手が使われている。この自在継手は常
に一定のクリアランス(隙間)を有している。しかし、
このクリアランスは、前述の巨大な伝達力により摩耗が
進み、それが大きくなると、圧延材の品質に影響が出る
In particular, in the work/roll rotation drive system, universal joints such as slipper metals and gear couplings are used to transmit the enormous power (the largest in the rolling mill) and to constantly change the position of the rolls. It is being said. This universal joint always has a constant clearance (gap). but,
The wear of this clearance progresses due to the huge transmission force mentioned above, and when it becomes large, the quality of the rolled material is affected.

そこで、ワーク・ロール駆動用の自在継手に用いられて
いるメタル類は、定期的な取替えを行う必要がある。し
かし、従来摩耗量の測定方法は適当な方法が無く(停機
時に力を掛けて相対的動きを計る程度)、取替え時期が
早ければ、資材費が上昇し、逆に取替え時期が遅ければ
、製品品質低下に伴う損失が出、最適取替え時期の決定
が保守上の問題であった。
Therefore, it is necessary to periodically replace the metals used in the universal joints for driving work rolls. However, conventionally, there is no suitable method for measuring the amount of wear (measuring the relative movement by applying force when the machine is stopped), and if the replacement time is early, the material cost will increase, and conversely, if the replacement time is late, the product There was a loss due to quality deterioration, and determining the optimal replacement timing was a maintenance issue.

最適取替え時期を決定する従来の代表例としては次のも
のがある1、 設備劣化状況評価方法(特開和59−77514号公報
)は、特に回転力伝達系の異常を検出する手法に関する
ものである。この方法を用いて電動機系の劣化状況を評
価する方法(!特開昭59−’!7367号公報)もあ
る。さらに、ロール駆動監視装置(特開昭61−887
76号公報)は、圧延(幾ロールよ効果を数式モデル化
し、伝達系の制御に生かしている。圧延機;t制御の上
で、ロール駆動系を数式モデル化して制御を行う場合に
は継手部の摩耗が制御系に大きく影響することになり、
前述のギャップ管理は一層重蒙となる。
Typical conventional examples for determining the optimal replacement timing include the following1. The equipment deterioration status evaluation method (Japanese Patent Application Laid-Open No. 59-77514) is particularly concerned with a method for detecting abnormalities in the rotational force transmission system. be. There is also a method (Japanese Unexamined Patent Publication No. 1982-17367) that uses this method to evaluate the state of deterioration of the motor system. Furthermore, a roll drive monitoring device (Japanese Patent Laid-Open No. 61-887
No. 76), rolling (the effect of several rolls is mathematically modeled and utilized for control of the transmission system.Rolling mill; when the roll drive system is mathematically modeled and controlled on t control, joints are used. Wear on the parts will greatly affect the control system,
The aforementioned gap management will become even more important.

結局、従来の設備監視・診断方法は、設備中の特定の限
定された部位の状態を種々のセンサを用い検出し、それ
に対し何らかの処理を施し、診断(〜ている。これは、
限定された範囲での設備監視といえる。例えば、トルク
またはハウジ〉グ1−り効をパラメータどすると、これ
らの量は操業条件によっても変化するため、この量の変
化だけでは設備的劣化なのか操業の影響なのか明確;τ
判断できない。
In the end, conventional equipment monitoring and diagnosis methods use various sensors to detect the state of specific and limited parts of the equipment, perform some processing on it, and diagnose it.
This can be said to be equipment monitoring within a limited range. For example, if torque or housing torque effect is used as a parameter, these amounts also change depending on operating conditions, so it is clear from changes in this amount alone whether it is due to equipment deterioration or operational effects; τ
I can't judge.

(ハ)発明が解決しようとした問題点 本発明が解決しようとした問題点は、圧延機が発する種
々の情報に対し、統計的な処理を施し、情報ロスを最小
限に抑え、新しい劣化情報パラメータを導出し、それに
よって総合的唇圧延機の劣化状態を監視・診断する方法
な提供することにある。
(c) Problems that the invention attempts to solve The problems that the invention attempts to solve are that the various information generated by the rolling mill is subjected to statistical processing, information loss is minimized, and new deterioration information is generated. It is an object of the present invention to provide a method for deriving parameters and thereby monitoring and diagnosing the deterioration state of a comprehensive lip rolling mill.

1、暑 問題点を解決するための手段 本発明の圧延機監視方法は、圧延機の圧延荷重、駆動ト
ノセフ、および駆動系の振動を計測すること、該計測値
を主成分分析により統計処理を施しワーク・ロール嘔動
用自在継手の摩耗を判定することによって、上記間m点
を解決している。
1. Means for Solving Hot Problems The rolling mill monitoring method of the present invention involves measuring the rolling load, drive torque, and vibration of the drive system of the rolling mill, and statistically processing the measured values by principal component analysis. The above-mentioned point m is solved by determining the wear of the universal joint for moving the workpiece roll.

前記駆動系の振動として圧延機内ロール・チヨツクの振
動を計測する、二とが好ましい。
Preferably, the vibration of the roll chock in the rolling mill is measured as the vibration of the drive system.

主成分分析用データとして各計測値の最大値と平均値と
の比を用いることが好ましい。
It is preferable to use the ratio between the maximum value and the average value of each measurement value as data for principal component analysis.

(ホ)実 施 例 本発明の方法を実施する装置の概略構成を第1図)C示
す。圧延機】−から得られる情報は、通常、主モータ2
の電流、主減速機3の振動、ビニオン・スタンド4の振
動および温度、ミルハウジング5の振動、バックアップ
・ロール・チヨツク6の振動、スピンドル・スラスト、
スピンドル伝達トルク、圧延荷重等である。操業データ
としては、圧延材の材質、圧延寸法、圧延温度、圧下量
等である。
(E) Embodiment The schematic structure of an apparatus for carrying out the method of the present invention is shown in FIG. The information obtained from the rolling mill
current, vibration of main reducer 3, vibration and temperature of binion stand 4, vibration of mill housing 5, vibration of backup roll choke 6, spindle thrust,
These include spindle transmission torque, rolling load, etc. The operational data includes the material of the rolled material, rolling dimensions, rolling temperature, rolling reduction amount, etc.

通常の圧延機1はワーク・ロール7が主モータ2の動力
によって自在継手8をかいして連動される。
In a normal rolling mill 1, work rolls 7 are interlocked by the power of a main motor 2 through a universal joint 8.

本発明による解析装置9は、取り込んだデータに対して
任意に解析データを選択できる機能を有し、理想的な変
数の組合せによる解析ができるようになっている。
The analysis device 9 according to the present invention has a function of arbitrarily selecting analysis data for the imported data, and is capable of performing analysis using an ideal combination of variables.

本発明の解析装置9においては、圧延機1から得られる
種々のデータに対し、圧延荷5fiをトリガ信号として
マルチプレクサ10が動作し、設定さのデータ取込みを
行う。第2図にデータの取込みの概要を示す。第2図に
おける各記号は下記の事項をそれぞれ表す。
In the analysis device 9 of the present invention, the multiplexer 10 operates using the rolling load 5fi as a trigger signal to acquire set data for various data obtained from the rolling mill 1. Figure 2 shows an overview of data import. Each symbol in FIG. 2 represents the following items.

A:噛込み時データ B:定常圧延時データ C:灰抜は時データ D:有効データ E : ) IJガディレ時間(任意設定可)F : 
) lガディレ時間(任意設定15T)上記タイミング
でサンプリングされたデータは、A/D変換器1】をか
いして記憶装置12に格納される。格納されたデータは
、演算装稽13で順次演算されて種々の分析変数として
データ記憶装置】4に格納される。
A: Data during biting B: Data during steady rolling C: Data during ash removal D: Valid data E: ) IJ gadiring time (can be set arbitrarily) F:
) The data sampled at the above timing is stored in the storage device 12 through the A/D converter 1. The stored data is sequentially calculated by the arithmetic unit 13 and stored in the data storage device 4 as various analysis variables.

演算内容としては、噛込み値、灰抜は値、定常圧延時に
おける実効値、平均値、最大値、最小値、他に噛込み値
/平均値、灰抜は値/平均値、また振動値に関してはフ
ートシス値、スキューネス値をも演算する。
The calculation contents include the biting value, the value for ash removal, the effective value during steady rolling, the average value, the maximum value, the minimum value, the biting value/average value, the value/average value for ash removal, and the vibration value. Regarding this, footsis value and skewness value are also calculated.

し、実際に分析する変数の抽出、組合せを行う。Then, extract and combine variables for actual analysis.

分析器15を用い、これら選ばれた変数に対し、主成分
分析を施す。主成分分析の手法は公知であるから省略す
る。
Using the analyzer 15, principal component analysis is performed on these selected variables. The method of principal component analysis is well known and will therefore be omitted.

分析器15の出力は出力装置16に入力される。The output of analyzer 15 is input to output device 16 .

分析器15には予入力装置17から別の設定入力を受け
る。
Analyzer 15 receives further setting inputs from pre-input device 17 .

以下に具体的な実施例を示す。本例の場合、下記の8個
の変数を選び、主成分分析を施した。
Specific examples are shown below. In the case of this example, the following eight variables were selected and principal component analysis was performed.

Xl:噛込み時圧延荷重 X2:圧延荷重の噛込み値/平均値 X3:噛込み時スピンドル・トルク X4:トルクの噛込み値/平均値 X5:噛込み時バックアップ・ロール・チヨツク・ライ
ン方向振動 X6:バックアップ・ロール・チヨツク・ライン方向振
動の噛込み値/平均値 Xl:噛込み時バックアップ・ロール・チヨツク垂直方
向振動 X8二バツクアツプ・ロール◆チョック*直方向振動の
噛込み値/平均値 これら8個の変数を49のデータについて分析した結果
を第1表から第4表までに示す。第1表は、各変数の相
関係数を、第2表は相関行列から求めた固有値、寄与率
および累積寄与率を、第3表は相関行列から求めた因子
負荷量を、第4表は主成分分析結果をそれぞれ示す。
Xl: Rolling load at biting X2: Rolling load biting value/average value X3: Spindle torque at biting X4: Torque biting value/average value X5: Backup roll chock line direction vibration at biting X6: Bite value/average value of backup roll chock line direction vibration Xl: Backup roll chock vertical vibration during biting Tables 1 to 4 show the results of analyzing 49 data of 8 variables. Table 1 shows the correlation coefficients of each variable, Table 2 shows the eigenvalues, contribution rates and cumulative contribution rates calculated from the correlation matrix, Table 3 shows the factor loadings calculated from the correlation matrix, and Table 4 shows the factor loadings calculated from the correlation matrix. Principal component analysis results are shown.

第6図は後述する主成分2..22  のスコア計算結
果を示す。この分析結果を用いて、圧延機1の状態を評
価する。
FIG. 6 shows main component 2, which will be described later. .. 22 score calculation results are shown. Using this analysis result, the condition of the rolling mill 1 is evaluated.

本実施例の場合、主成分2..22  までの累積寄与
率は82.2%である。これは、X1〜X8の分析変数
の持つ情報量を2..22  という新しい変数2個で
82.2%表現し得るという意味である。21+22 
 の持つ特性を考える場合、2..22 に対する各分
析変数の因子負荷量に注目する。
In this example, main component 2. .. The cumulative contribution rate up to 22 is 82.2%. This reduces the amount of information held by the analysis variables X1 to X8 by 2. .. 22, which means that 82.2% can be expressed with two new variables. 21+22
When considering the characteristics of 2. .. We pay attention to the factor loading of each analysis variable for 22.

乙:各変数とも比較的高い値を示し、すべて正の値をと
る。これはどの変数が太き(なってもZ、の値は大きく
なり、噛込み時の全体的な大きさを示している。
B: Each variable shows relatively high values, and all take positive values. This means that no matter which variable is thicker, the value of Z will be larger, indicating the overall size at the time of biting.

Z2:荷重、トルクが正の値、振動値が負の値をとる。Z2: Load and torque take positive values, and vibration value takes negative values.

また、荷重、トルクとも噛込み値/平均値の因子負荷量
の値が他に比較して大きく、Z2  が0から正方向に
離れる傾向にある場合、衝撃荷重またはトルクの値が大
きい傾向にあることを意味する。振動値が大きくなると
負の値が大きくなる傾向にある。
In addition, if the factor loading of the bite value/average value for both load and torque is large compared to others, and Z2 tends to move away from 0 in the positive direction, the value of impact load or torque tends to be large. It means that. As the vibration value increases, the negative value tends to increase.

これら2..22 の特性から、第6図のスコア散布図
を用いて設備状態を評価する。本実施例の場合、正常と
考えられる設備状態時のデータとスピンドルのスリッパ
・メタル取替直前でのデータとについて分析したもので
ある。スコアの分布状態から正常時Nと、スリッパ・メ
タル摩耗進行時Aのデータ順向に明らかに差があること
がわかる。
These 2. .. Based on the characteristics of 22, the equipment condition is evaluated using the score scatter diagram shown in Figure 6. In the case of this example, data obtained when the equipment was in a state that was considered normal and data immediately before the spindle slipper metal was replaced were analyzed. From the distribution of scores, it can be seen that there is a clear difference in the data direction between normal state N and slipper metal wear progressing state A.

このことより本変数のスコア分布状態を監視することに
より、動力伝達系を含めた圧延機の総合的な監視が可能
である。
Therefore, by monitoring the score distribution state of this variable, it is possible to comprehensively monitor the rolling mill including the power transmission system.

本実施例の場合、噛込み時の衝撃度合を監視するための
変数組合せにしたが、ミル・)−ウジング本体の異常振
動を主体に監視したい場合には、別の変数組合せが任意
にできるようになっている。
In the case of this example, the combination of variables was used to monitor the degree of impact at the time of biting, but if it is desired to mainly monitor abnormal vibrations of the mill/Using body, another combination of variables can be used. It has become.

下記にその変数組合せ例を示す。Examples of variable combinations are shown below.

Xl:トルク噛込み値 X2:トルク平均値(定常圧延時) X3二バツクアツプ・ロール・チヨツク、ライン方向振
動噛込み値 X4:バックアップ・ロール・チヨツク・ライン方向振
動平均値(定常圧延時) X5:バックアップ・ロール・チヨツク垂直方向振動噛
込み値 X6:バックアップ・ロール・チヨツク垂直方向振動平
均値(定常圧延時) (へ)効 果 本発明の方法によれば、圧延機が発する諸情報から設備
的劣化情報を抽出し、設備状態を正確に判定することが
できる。
Xl: Torque bite value X2: Torque average value (during steady rolling) X3 Double backup roll chock, line direction vibration biting value X4: Backup roll chock line direction vibration average value (during steady rolling) Backup roll chock vertical vibration bite value X6: Backup roll chock vertical vibration average value (during steady rolling) It is possible to extract deterioration information and accurately determine the equipment condition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の概略構成説明図
。第2図は圧延機から得られるデータの取込み説明図。 第3図は主成分のスコア計算結果を示すグラフ。 1:圧延機      2:主モータ 3:主減速機      4:ビニオン・スタンド5:
ミルハウジング 6:バックアップ・ロール・チヨツク 7:ワーク・ロール  8:自在継手 9:解析装置 特許出願人  住友金属工業株式会社 (外5名)
FIG. 1 is a schematic structural explanatory diagram of an apparatus for carrying out the method of the present invention. FIG. 2 is an explanatory diagram of importing data obtained from a rolling mill. FIG. 3 is a graph showing the results of principal component score calculations. 1: Rolling mill 2: Main motor 3: Main reducer 4: Binion stand 5:
Mill housing 6: Backup roll chock 7: Work roll 8: Universal joint 9: Analysis device Patent applicant Sumitomo Metal Industries, Ltd. (5 others)

Claims (3)

【特許請求の範囲】[Claims] (1)圧延機の圧延荷重、駆動トルク、および駆動系の
振動を計測すること、該計測値を主成分分析により統計
処理を施しワーク・ロール駆動用自在継手の摩耗を判定
することからなる圧延機監視方法。
(1) Rolling consists of measuring the rolling load, drive torque, and vibration of the drive system of the rolling mill, and statistically processing the measured values using principal component analysis to determine the wear of the work roll drive universal joint. Machine monitoring method.
(2)圧延機内ロール・チヨツクの振動を計測すること
を特徴とした特許請求の範囲第(1)項に記載の方法。
(2) The method according to claim (1), characterized in that vibrations of a roll chock in a rolling mill are measured.
(3)主成分分析用データとして各計測値の最大値と平
均値との比を用いることを特徴とした特許請求の範囲第
(1)項に記載の方法。
(3) The method according to claim (1), characterized in that the ratio between the maximum value and the average value of each measurement value is used as data for principal component analysis.
JP61202405A 1986-08-28 1986-08-28 Monitoring method for rolling mill Granted JPS6360011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61202405A JPS6360011A (en) 1986-08-28 1986-08-28 Monitoring method for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61202405A JPS6360011A (en) 1986-08-28 1986-08-28 Monitoring method for rolling mill

Publications (2)

Publication Number Publication Date
JPS6360011A true JPS6360011A (en) 1988-03-16
JPH0527486B2 JPH0527486B2 (en) 1993-04-21

Family

ID=16456962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61202405A Granted JPS6360011A (en) 1986-08-28 1986-08-28 Monitoring method for rolling mill

Country Status (1)

Country Link
JP (1) JPS6360011A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839629A (en) * 1981-09-03 1983-03-08 Chisso Corp 4'-(trans-4"-alkylcyclohexyl)cyclohexene-1'-yl-benzene derivative
KR20010061661A (en) * 1999-12-28 2001-07-07 이구택 Diagnosis apparatus of strip breakage in cold rolling and its method
KR20020028348A (en) * 2000-10-09 2002-04-17 이구택 Diagnosis method of strip breakage in cold rolling
JP2006048102A (en) * 2004-07-30 2006-02-16 Ntn Corp Use state management method for uniform-speed universal coupling
JP2008055443A (en) * 2006-08-29 2008-03-13 Kobe Steel Ltd Method for analyzing material quality of metallic material and method for stabilizing material quality
US7979327B2 (en) 2004-07-30 2011-07-12 Ntn Corporation Constant velocity universal joint and quality control method for the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839629A (en) * 1981-09-03 1983-03-08 Chisso Corp 4'-(trans-4"-alkylcyclohexyl)cyclohexene-1'-yl-benzene derivative
JPH0150212B2 (en) * 1981-09-03 1989-10-27 Chisso Corp
KR20010061661A (en) * 1999-12-28 2001-07-07 이구택 Diagnosis apparatus of strip breakage in cold rolling and its method
KR20020028348A (en) * 2000-10-09 2002-04-17 이구택 Diagnosis method of strip breakage in cold rolling
JP2006048102A (en) * 2004-07-30 2006-02-16 Ntn Corp Use state management method for uniform-speed universal coupling
US7979327B2 (en) 2004-07-30 2011-07-12 Ntn Corporation Constant velocity universal joint and quality control method for the same
JP2008055443A (en) * 2006-08-29 2008-03-13 Kobe Steel Ltd Method for analyzing material quality of metallic material and method for stabilizing material quality

Also Published As

Publication number Publication date
JPH0527486B2 (en) 1993-04-21

Similar Documents

Publication Publication Date Title
DE102018109628B4 (en) Fault detection device for a spindle head of a machine tool, which has a plurality of sensors
DE102016009032B4 (en) Machine learning unit, spindle replacement judgment apparatus, control, machine tool, production system and machine learning method capable of judging the necessity of a spindle replacement
CN103823409B (en) Digit Control Machine Tool machining state multiparameter online actively monitoring system and its implementation
US7974822B2 (en) Method and device for determining the life expectancy of components while in operation
WO2019103091A1 (en) Deterioration diagnosis device for machine device, deterioration diagnosis method for machine device which is executed in said deterioration diagnosis device, and deterioration diagnosis method for machine device
EP2344854A1 (en) A method and a device for detecting abnormal changes in play in a transmission unit of a movable mechanical unit
JP2021103170A (en) Peeling progression analysis method and peeling progression analysis device for bearing ring of rolling bearing
CN108255131A (en) The method in the service life of lathe, production management system and prediction and/or detection instrument
JPS6360011A (en) Monitoring method for rolling mill
JP3944942B2 (en) Tool abnormality detecting device for machine tool and recording medium recording tool abnormality detecting program for machine tool
JP2755782B2 (en) Rolling line diagnostic system
AT517886A1 (en) Device for checking a state of a machine part
JP2000107987A (en) Tool abnormality detecting device
JP3122399B2 (en) INDUSTRIAL ROBOT, FAULT DETECTION METHOD, AND RECORDING MEDIUM CONTAINING INDUSTRIAL ROBOT FAULT DETECTION PROGRAM
CN112783935A (en) Analysis device
WO2022085350A1 (en) Method for building abnormality diagnosis model, abnormality diagnosis method, device for building abnormality diagnosis model, and abnormality diagnosis device
CN110597053A (en) Large mill process control system
JP3659891B2 (en) Lubrication target part diagnosis system and lubrication target part diagnosis method
KR19990052675A (en) Online roll eccentricity diagnosis method and device
JPS62136343A (en) Trouble prediction device for feeding device
JP3546803B2 (en) Slipper metal condition monitoring method and rolling method using the same
JPH1094943A (en) Automatic processing device
JP3892614B2 (en) Equipment and product process abnormality diagnosis method and apparatus
JPS62136344A (en) Trouble prediction device for main spindle device
CN114178319A (en) Control method and device of rolling equipment and computer equipment