JPS6359860B2 - - Google Patents

Info

Publication number
JPS6359860B2
JPS6359860B2 JP55127092A JP12709280A JPS6359860B2 JP S6359860 B2 JPS6359860 B2 JP S6359860B2 JP 55127092 A JP55127092 A JP 55127092A JP 12709280 A JP12709280 A JP 12709280A JP S6359860 B2 JPS6359860 B2 JP S6359860B2
Authority
JP
Japan
Prior art keywords
conductive
vulcanized rubber
rubber
vulcanized
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55127092A
Other languages
Japanese (ja)
Other versions
JPS5751443A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP55127092A priority Critical patent/JPS5751443A/en
Publication of JPS5751443A publication Critical patent/JPS5751443A/en
Publication of JPS6359860B2 publication Critical patent/JPS6359860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、導電架橋接着方法に関する。 従来一般に行われている加硫ゴムと加硫ゴムの
架橋接着方法は、加硫ゴムと加硫ゴムの間に、熱
架橋性ゴム(未加硫ゴム組成物)の中間層を介在
させ、上下の加硫ゴム層から加熱を行ない、加硫
ゴム層を伝わつて来た熱により中間層の架橋を行
なうと同時に、中間層と加硫ゴム層との接着を行
なう方法であるが、この従来法は、熱源が外部で
あるため、プレス及びモールドを加熱する必要が
あり、又加熱する必要のない加硫ゴム層を長時間
加熱しなくてはならず、そのため無駄な熱エネル
ギーを多く必要とし、経済性の面で欠点がある。 本発明者等は先に加硫ゴムと加硫ゴムとの導電
架橋接着方法として、中間層に導電性カーボンブ
ラツクを配合した熱架橋性の導電性ゴムを使用
し、その中間層に電圧を印加することによつて中
間層を自己発熱させ、そのジユール熱によつて中
間層の加硫を行なうと同時に加硫ゴムと加硫ゴム
の接着を行なう方法を提案した(特願昭55−
59168号(特開昭56−15574号公報))。 しかしながら種々検討を行なううち、上下の加
硫ゴムが平板でない場合、加圧時に圧力分布が異
なり、ゴム流れが生じて、熱架橋性ゴム組成物の
シートゲージが変化し、発熱が不均一になること
を確かめた。本発明者らは、更にこの問題を解決
するため鋭意研究した結果、発熱体を、導電性加
硫ゴムとすることにより、上記欠点が解決され、
好首尾に2つの加硫ゴムを架橋接着させることが
できることを見出し本発明を達成するに至つた。 本発明は加硫ゴムと加硫ゴムとの間に体積固有
抵抗率が0〜200℃の温度範囲で104Ω・cm以下で
ある導電性加硫ゴムを介在させ、更に、少なくと
も一方の上記加硫ゴムと導電性加硫ゴムとの間に
熱架橋性ゴム組成物(未加硫ゴム組成物)の中間
層を介在させ、導電性加硫ゴムに電圧を印加し、
導電性加硫ゴムの自己発熱により、中間層の架硫
を行なうと同時に、上下の加硫ゴムを接着せしめ
ることを特徴とする導電架橋接着方法に係る。 以下に本発明を詳細に説明する。 本発明における導電性加硫ゴムに配合されるカ
ーボンブラツクとしては、通常ゴムに配合され
る、SAF、ISAF、HAF等のフアーネスブラツ
ク、TT、MT等のサーマルブラツク、EPC、
MPC等のチヤンネルブラツク、及び導電性カー
ボンブラツクとして、ケツチエンブラツクEC(オ
ランダアクゾ社製品)、Vulcan XC−72、Vulan
SC、Vulcan C(いずれも米国CABOT社製品)
及び旭HS−500(旭カーボン社製品)等の導電性
フアーネスブラツク及びデンカブラツク(電気化
学工業社製品)等の導電性アセチレンブラツク等
が例示される。この中でも導電性フアーネスブラ
ツク、とりわけケツチエンブラツクECが好適に
使用される。 カーボンブラツクは、導電性加硫ゴムの体積固
有抵抗率、0〜200℃の温度範囲で、104Ω・cm以
下になるような量を配合しなければならない。体
積固有抵抗率が104Ω・cmを越える場合は、架橋
に必要な温度にまで昇温させるのに高電圧を必要
とするか、あるいは長時間を必要とするので不適
当である。体積固有抵抗率を104Ω・cm以下にす
るためには、カーボンブラツクの種類によつて多
少の変化はあるが、導電性カーボンブラツクを用
いた場合、通常、ゴム成分100重量部に対して少
くとも7重量部を配合すればよい。又通常のゴム
配合に用いられるカーボンブラツク(HAF等)
を用いた場合、少くとも45重量部を配合すればよ
い。体積固有抵抗率は低い程発熱には有利である
が、一方においてカーボンブラツクの配合量が多
すぎると、物性の低下が著しくなるのでゴム成分
100重量部に対し80重量部以下におさえることが
好ましい。もちろん、SAF、ISAF、HAF等のフ
アーネスブラツク、EPC、MPC等のチヤンネル
ブラツク、FT、TT等のサーマルブラツクを1
種以上導電性カーボンブラツクとブレンドして使
用することも可能である。 導電性加硫ゴムのゴム成分としては、天然ゴ
ム、ブタジエンゴム、イソプレンゴム、クロロプ
レンゴム等のジエン系ゴム、スチレン−ブタジエ
ンゴム、アクリロニトリル−ブタジエンゴム等の
ジエン系共重合ゴム、ブチルゴム、ハロゲン化ブ
チルゴム、エチレン−プロピレン系ゴム等のオレ
フイン系ゴムが好適に用いられ、他にアルキルシ
ロキサン縮合物である有機ケイ素系ゴム、フツ化
ビニリデン−六フツ化プロピレン共重合物等のフ
ツ素系ゴム、アルキレン・スルフイド重合物等の
多硫化系ゴム、アクリル酸エステル重合物等のビ
ニル系ゴム、ウレタンゴムが用いられる。これら
のゴムは単独あるいは2種以上を組み合わせて用
いることができる。 接着すべき加硫ゴム及び熱架橋性ゴム組成物の
ゴム成分も、導電性加硫ゴムのゴム成分として例
示したものが同様に用いられる。 中間層に用いられる熱架橋性ゴム組成物は、
種々の架橋方法を採用することができる。最も好
適に用いられるのは硫黄(必要に応じて加硫促進
剤を加える)加硫である。硫黄加硫以外の架橋剤
としては、p−キノンジオキシム、p,p′−ジベ
ンゾイルキノンジオキシム、4,4′−ジチオジモ
ルホリン、ポリ−p−ジニトロベンゼン、安息香
酸アンモニウム等の通常の加硫に用いられる有機
加硫剤、ジクミルパーオキサイド、1,1−ビス
(t−ブチルパーオキシ)3,3,5−トリメチ
ルシクロヘキサン、α,α′−ビス(t−ブチルパ
ーオキシイソプロピル)ベンゼンなどの有機過酸
化物、メチロール化あるいは臭素化アルキルフエ
ノール樹脂などの樹脂架橋剤、トリエチレンテト
ラミン、ヘキサメチレンジアミンカルバメート等
の有機多価アミン、及び酸化マグネシウム、酸化
鉛、ならびに酸化亜鉛等の金属酸化物などが好適
に使用される。もちろんこれ以外の公知の架橋剤
を使用することも可能である。 中間層の熱架橋性ゴム組成物には、加硫促進剤
及び促進助剤、老化防止剤、補強剤、軟化剤、粘
着付与剤、等通常のゴム配合剤を使用目的に応じ
て任意に添加することができる。 次に本発明の導電架橋接着の手順を例示する。 図示する例は、加硫ゴムAと導電性加硫ゴムB
を、また加硫ゴムA′と導電性加硫ゴムBを同時
に接着する方法を示すもので、第1図に示す様
に、加硫ゴムA,A′と導電性加硫ゴムBとの間
にそれぞれ熱架橋性ゴム組成物の中間層C,C′を
介在させせ、加硫ゴム間を圧着させながら、導電
性加硫ゴムBの両端に取り付けられた電極Dに、
交流あるいは直流電源Pから電圧を印加する。 導電架橋接着の際の印加電圧は、導電架橋ゴム
の体積固有抵抗率、導電架橋ゴムの断面積、電極
間の長さ及び架橋に必要な温度等によつて定めら
れるが、実用的には1〜400Vの範囲が好ましい。
架橋に必要な温度は、通常80〜200℃の範囲にあ
るが、電圧印加後短時間で所望の温度に到達す
る。また印加電圧を変えることにより架橋中の温
度を任意に変化させることが可能であり、中間層
の架橋剤の性質に応じた種々の反応制御が容易に
行なえる。 加硫ゴムはモールド面をそのまま接着面として
もよいが、接着力の向上を目的として、有機酸、
無機酸等による化学処理あるいは、機械的な処理
であるバフがけを行ないセメントを塗布すること
が好ましい。 上述のように本発明によれば加硫ゴムと加硫ゴ
ムを接着するに際し、熱架橋性ゴム組成物の中間
層を介在させ導電性加硫ゴムに電圧を印加し該導
電性加硫ゴムの自己発熱で架橋接着できるため、
外部の熱源を必要とせず、そのためプレス及びモ
ールドを加熱する必要がなく、発生した熱を効率
良く利用できるためエネルギーコスト的に大きな
利益がある。 本発明の導電架橋接着方法は、特に厚物加硫
で、均一な温度分布が要求される防舷材や建設車
輛用タイヤに、又加硫ゴムが平板でないタイヤの
リトレツド等に応用可能である。 本発明を次の実施例および比較例により更に説
明する。 実施例 1〜3 第1表に示す様に、カーボンブラツク配合量の
異なる、厚さ2〜6mmの導電性加硫ゴムシートを
通常のプレス加硫により得た。これらの体積固有
抵抗率は、3Ω・cm〜8×103Ω・cmの範囲であ
つた。接着すべき加硫ゴムは、比較例に用いた厚
さ2mmの加硫ゴムシートを用いた。接着面の処理
としては、導電加硫ゴム、加硫ゴム共にバフがけ
後、n−ヘキサンで洗浄して用いた。 中間未加硫ゴムシートは、天然ゴム100重量部
に対し、カーボンブラツク(HAF)40重量部配
合し、硫黄配合系で、厚さ1mmの未加硫ゴムシー
トを用いた。 導電性加硫ゴムの体積固有抵抗率の測定は、
ASTMD991−60に従つて実施した。 接着強度の評価は、JIS K6854に準拠したT形
はく離試験で、試料幅25mm、引張り速度50mm/
minの条件で実施した。 はく離試験片は、第2図に示す様に加硫ゴム
A,A′と導電加硫ゴムBの間に中間未加硫ゴム
層C,C′を介在させ、5層構造とし、上下からら
5Kg/cm2の圧力をかけ、中間層の温度が150℃と
なる様に両端の電極Dに電圧を印加し、所定の時
間加硫接着を行なつた。結果を第1表に示す。そ
の結果第1表より明らかな様に、加硫ゴムA,
A′とBは、それぞれこの条件で充分に加硫接着
していた。 比較例 1 第1表に示す様にカーボンブラツク(HAF)
の配合量が、ゴム100重量部に対して40重量部の
加硫ゴムの体積固有抵抗率は5×104Ω・cmであ
つた。 実施例1〜3と同様の手順で導電性加硫ゴムの
厚さ6mm、電極間距離50mm、電極の長さ100mmで、
400Vの電圧を30分印加した時の中間未加硫ゴム
の温度は50℃であり加硫しなかつた。
The present invention relates to a conductive crosslinking bonding method. The conventional cross-linking bonding method of vulcanized rubber and vulcanized rubber involves interposing an intermediate layer of thermally crosslinkable rubber (unvulcanized rubber composition) between the vulcanized rubber and the upper and lower layers. In this method, heat is applied from the vulcanized rubber layer of the vulcanized rubber layer, and the heat transmitted through the vulcanized rubber layer crosslinks the intermediate layer and at the same time bonds the intermediate layer and the vulcanized rubber layer. Since the heat source is external, it is necessary to heat the press and mold, and the vulcanized rubber layer, which does not need to be heated, must be heated for a long time, which requires a lot of wasted thermal energy. There are disadvantages in terms of economy. The present inventors previously used a thermally crosslinkable conductive rubber containing conductive carbon black in the intermediate layer as a conductive crosslinking bonding method between vulcanized rubber and applied a voltage to the intermediate layer. He proposed a method in which the intermediate layer was heated by itself, and the intermediate layer was vulcanized by the generated heat, and at the same time, the vulcanized rubber was bonded together.
No. 59168 (Japanese Unexamined Patent Publication No. 56-15574)). However, after conducting various studies, we found that if the upper and lower vulcanized rubbers are not flat plates, the pressure distribution will be different during pressurization, rubber flow will occur, the sheet gauge of the thermally crosslinkable rubber composition will change, and heat generation will be uneven. I made sure of that. As a result of intensive research to further solve this problem, the inventors of the present invention solved the above drawback by using conductive vulcanized rubber as the heating element.
The present invention was accomplished by discovering that two vulcanized rubbers can be crosslinked and bonded successfully. In the present invention, a conductive vulcanized rubber having a volume specific resistivity of 10 4 Ω·cm or less in a temperature range of 0 to 200°C is interposed between the vulcanized rubber, and at least one of the above-mentioned An intermediate layer of a thermally crosslinkable rubber composition (unvulcanized rubber composition) is interposed between the vulcanized rubber and the conductive vulcanized rubber, and a voltage is applied to the conductive vulcanized rubber.
The present invention relates to a conductive crosslinking bonding method characterized by cross-curing an intermediate layer and simultaneously bonding upper and lower vulcanized rubbers by self-heating of the conductive vulcanized rubber. The present invention will be explained in detail below. Carbon blacks to be blended into the conductive vulcanized rubber in the present invention include furnace blacks such as SAF, ISAF, and HAF, thermal blacks such as TT and MT, which are commonly blended into rubber, EPC,
Channel blacks for MPC, etc., and conductive carbon blacks such as Ketschen Black EC (product of Akzo in the Netherlands), Vulcan XC-72, Vulan
SC, Vulcan C (both products from CABOT, USA)
Examples include conductive furnace black such as Asahi HS-500 (product of Asahi Carbon Co., Ltd.) and conductive acetylene black such as Denka Black (product of Denki Kagaku Kogyo Co., Ltd.). Among these, conductive furnace blacks, especially buttress blacks EC, are preferably used. Carbon black must be blended in an amount such that the specific volume resistivity of the conductive vulcanized rubber is 10 4 Ω·cm or less in the temperature range of 0 to 200°C. If the specific volume resistivity exceeds 10 4 Ω·cm, it is unsuitable because a high voltage or a long time is required to raise the temperature to the temperature required for crosslinking. In order to reduce the specific volume resistivity to 10 4 Ω・cm or less, it varies slightly depending on the type of carbon black, but when using conductive carbon black, it is usually necessary to At least 7 parts by weight may be added. Also, carbon black (HAF, etc.) used in ordinary rubber compounding.
When using, at least 45 parts by weight may be added. The lower the specific volume resistivity, the more advantageous it is for heat generation, but on the other hand, if too much carbon black is blended, the physical properties will drop significantly, so the rubber component
It is preferable to limit the amount to 80 parts by weight or less per 100 parts by weight. Of course, furnace blacks such as SAF, ISAF, HAF, channel blacks such as EPC, MPC, thermal blacks such as FT, TT, etc.
It is also possible to use it by blending it with more than one kind of conductive carbon black. Rubber components of conductive vulcanized rubber include natural rubber, diene rubbers such as butadiene rubber, isoprene rubber, and chloroprene rubber, diene copolymer rubbers such as styrene-butadiene rubber and acrylonitrile-butadiene rubber, butyl rubber, and halogenated butyl rubber. Olefin-based rubbers such as , ethylene-propylene-based rubbers are preferably used; in addition, organosilicon-based rubbers that are alkylsiloxane condensates, fluorine-based rubbers such as vinylidene fluoride-propylene hexafluoride copolymers, alkylene rubbers, etc. Polysulfide rubbers such as sulfide polymers, vinyl rubbers such as acrylic acid ester polymers, and urethane rubbers are used. These rubbers can be used alone or in combination of two or more. As for the rubber components of the vulcanized rubber and thermally crosslinkable rubber composition to be bonded, those exemplified as the rubber components of the conductive vulcanized rubber can be similarly used. The thermally crosslinkable rubber composition used for the intermediate layer is
Various crosslinking methods can be employed. Most preferably used is sulfur vulcanization (adding a vulcanization accelerator if necessary). Examples of crosslinking agents other than sulfur vulcanization include p-quinonedioxime, p,p'-dibenzoylquinonedioxime, 4,4'-dithiodimorpholine, poly-p-dinitrobenzene, and ammonium benzoate. Organic vulcanizing agents used for vulcanization: dicumyl peroxide, 1,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane, α,α'-bis(t-butylperoxyisopropyl) Organic peroxides such as benzene, resin crosslinking agents such as methylolated or brominated alkylphenol resins, organic polyvalent amines such as triethylenetetramine, hexamethylene diamine carbamate, and metals such as magnesium oxide, lead oxide, and zinc oxide. Oxides and the like are preferably used. Of course, it is also possible to use other known crosslinking agents. To the thermally crosslinkable rubber composition of the intermediate layer, ordinary rubber compounding agents such as vulcanization accelerators, accelerators, anti-aging agents, reinforcing agents, softeners, tackifiers, etc. can be optionally added depending on the purpose of use. can do. Next, the procedure of conductive cross-linking adhesion of the present invention will be illustrated. The illustrated example is vulcanized rubber A and conductive vulcanized rubber B.
This also shows a method of bonding vulcanized rubber A' and conductive vulcanized rubber B at the same time.As shown in Figure 1, between vulcanized rubber A, A' and conductive vulcanized rubber B Intermediate layers C and C' of a thermally crosslinkable rubber composition are interposed between the electrodes D attached to both ends of the conductive vulcanized rubber B while the vulcanized rubber is pressed together.
A voltage is applied from an AC or DC power source P. The voltage applied during conductive cross-linking adhesion is determined by the specific volume resistivity of the conductive cross-linked rubber, the cross-sectional area of the conductive cross-linked rubber, the length between the electrodes, the temperature required for cross-linking, etc. A range of ~400V is preferred.
The temperature required for crosslinking is usually in the range of 80 to 200°C, but the desired temperature is reached within a short time after voltage application. Further, by changing the applied voltage, the temperature during crosslinking can be arbitrarily changed, and various reactions can be easily controlled depending on the properties of the crosslinking agent in the intermediate layer. The mold surface of vulcanized rubber may be used as the adhesive surface, but in order to improve the adhesive strength, organic acids,
It is preferable to apply cement by chemical treatment using an inorganic acid or by mechanical buffing. As described above, according to the present invention, when adhering vulcanized rubber to vulcanized rubber, an intermediate layer of a thermally crosslinkable rubber composition is interposed, and a voltage is applied to the conductive vulcanized rubber. Because cross-linking can be achieved by self-heating,
There is no need for an external heat source, so there is no need to heat the press or mold, and the generated heat can be used efficiently, resulting in significant benefits in terms of energy costs. The conductive cross-linking bonding method of the present invention can be applied to fenders and tires for construction vehicles, which require uniform temperature distribution, especially when vulcanizing thick materials, and to retreading tires where the vulcanized rubber is not a flat plate. . The invention will be further illustrated by the following examples and comparative examples. Examples 1 to 3 As shown in Table 1, conductive vulcanized rubber sheets having a thickness of 2 to 6 mm and containing different amounts of carbon black were obtained by ordinary press vulcanization. The specific volume resistivities of these were in the range of 3 Ω·cm to 8×10 3 Ω·cm. As the vulcanized rubber to be bonded, the 2 mm thick vulcanized rubber sheet used in the comparative example was used. As for the treatment of the adhesive surface, both the conductive vulcanized rubber and the vulcanized rubber were buffed and then washed with n-hexane before use. The intermediate unvulcanized rubber sheet was a 1 mm thick unvulcanized rubber sheet containing 100 parts by weight of natural rubber, 40 parts by weight of carbon black (HAF), and a sulfur compound. Measurement of specific volume resistivity of conductive vulcanized rubber is
It was carried out according to ASTMD991-60. The adhesive strength was evaluated using a T-peel test in accordance with JIS K6854, using a sample width of 25 mm and a tensile speed of 50 mm/
It was carried out under conditions of min. As shown in Figure 2, the peel test piece had a five-layer structure with intermediate unvulcanized rubber layers C and C' interposed between vulcanized rubber A and A' and conductive vulcanized rubber B. A pressure of 5 kg/cm 2 was applied, a voltage was applied to electrodes D at both ends so that the temperature of the intermediate layer was 150° C., and vulcanization bonding was performed for a predetermined time. The results are shown in Table 1. As is clear from the results in Table 1, vulcanized rubber A,
A' and B were sufficiently vulcanized and bonded under these conditions. Comparative example 1 Carbon black (HAF) as shown in Table 1
The volume resistivity of the vulcanized rubber containing 40 parts by weight per 100 parts by weight of rubber was 5×10 4 Ω·cm. Using the same procedure as in Examples 1 to 3, the thickness of the conductive vulcanized rubber was 6 mm, the distance between the electrodes was 50 mm, and the length of the electrodes was 100 mm.
When a voltage of 400V was applied for 30 minutes, the temperature of the intermediate unvulcanized rubber was 50°C and was not vulcanized.

【表】【table】

【表】 実施例 4 第3図に示す様に、導電性加硫ゴムBと加硫ゴ
ムAの一体物及びスチールコードを埋め込んだ加
硫ゴムA′をモールドを用い通常のプレス加硫に
より作成した。 電極Dを加硫接着させた導電性加硫ゴムBの形
状は、厚さ1.5mm、電極間距離25cm、電極長さ33
cmとした。電極として直径1.15mmのプラスメツキ
スチールコードを用いた。電極は加硫ゴムAの外
側3cmの所に入れた。加硫ゴムA′は、接着面よ
り深さ1〜1.5mmに直径1.15mmのスチールコード
を106本/19cm、電極と平行となる様に埋め込ん
だ。導電性加硫ゴムBの配合は、第1表の実施例
2の配合を用いた。加硫ゴムA,A′の配合は第
1表の比較例1に用いた配合を用いた。 導電架橋接着の方法は、第4図に示す様に導電
性加硫ゴムBと加硫ゴムAの一体物と、加硫ゴム
A′との間に厚さ1mmの非導電性未加硫ゴムシー
トCを介在させ、プレスあるいはエアバツグで2
Kg/cm2の圧力をかけ、導電性加硫ゴムBを通電発
熱させ加硫接着を行なつた。接着面の処理として
は、導電性加硫ゴムB、加硫ゴムA′共にバフ掛
け後n−ヘキサンで洗浄して用いた。非導電性未
加硫ゴムの配合は、天然ゴム100重量部に対して
カーボンブラツク(HAF)40重量部配合した、
硫黄配合系のゴムを用いた。通電条件は、印加電
圧70Vで10分で150℃まで昇温した。昇温後30分
加硫接着を行なつた。接着力の評価はJIS K6854
に準拠したT形剥離試験で、試料幅25mmに切り出
し、引張り速度50mm/minの条件で実施した。接
着力は65Kg/25mmで中間層ゴム破壊であり、充分
に加硫接着していた。
[Table] Example 4 As shown in Figure 3, an integrated body of conductive vulcanized rubber B and vulcanized rubber A and vulcanized rubber A' with embedded steel cords were created by normal press vulcanization using a mold. did. The shape of conductive vulcanized rubber B to which electrode D is vulcanized and bonded is 1.5 mm thick, 25 cm distance between electrodes, and 33 cm long.
cm. A plus plated steel cord with a diameter of 1.15 mm was used as an electrode. The electrode was placed 3 cm outside of vulcanized rubber A. For the vulcanized rubber A', 106 steel cords/19 cm with a diameter of 1.15 mm were embedded at a depth of 1 to 1.5 mm from the adhesive surface parallel to the electrodes. For the formulation of conductive vulcanized rubber B, the formulation of Example 2 in Table 1 was used. The formulations of vulcanized rubbers A and A' were the same as those used in Comparative Example 1 in Table 1. The method of conductive cross-linking adhesion is as shown in Fig. 4, where conductive vulcanized rubber B and vulcanized rubber A are integrated,
A non-conductive unvulcanized rubber sheet C with a thickness of 1 mm is interposed between A' and 2.
A pressure of Kg/cm 2 was applied, and the conductive vulcanized rubber B was energized and heated to effect vulcanization and adhesion. To treat the adhesive surface, both conductive vulcanized rubber B and vulcanized rubber A' were buffed and then washed with n-hexane. The composition of the non-conductive unvulcanized rubber is 40 parts by weight of carbon black (HAF) per 100 parts by weight of natural rubber.
A sulfur-containing rubber was used. Current conditions were an applied voltage of 70 V and a temperature increase of 150° C. in 10 minutes. After raising the temperature, vulcanization bonding was performed for 30 minutes. Adhesive strength evaluation is JIS K6854
A T-peel test was conducted in accordance with the above, with a sample width of 25 mm cut out and a tensile speed of 50 mm/min. The adhesive force was 65 kg/25 mm, and the intermediate layer rubber was destroyed, indicating sufficient vulcanization adhesion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の架橋接着方法を示す断面模式
図、第2図はT形はく離試験片の作製方法を示す
見取図、第3図は被接着加硫ゴムの見取り図、第
4図は実施例4の架橋接着方法を示す見取り図で
ある。 A,A′……加硫ゴム、B……導電加硫ゴム、
C,C′……熱架橋性ゴム組成物、D……電極、E
……スチールコード、P……電源。
Fig. 1 is a cross-sectional schematic diagram showing the cross-linking bonding method of the present invention, Fig. 2 is a sketch showing the method for producing a T-shaped peel test piece, Fig. 3 is a sketch of the vulcanized rubber to be bonded, and Fig. 4 is an example. FIG. 4 is a sketch showing the cross-linking bonding method of No. 4. A, A'... Vulcanized rubber, B... Conductive vulcanized rubber,
C, C'...thermally crosslinkable rubber composition, D...electrode, E
...Steel cord, P...Power supply.

Claims (1)

【特許請求の範囲】 1 加硫ゴムと加硫ゴムとの間に体積固有抵抗率
が0〜200℃の温度範囲で104Ω・cm以下である導
電性加硫ゴムを介在させ、更に、少なくとも一方
の上記加硫ゴムと導電性加硫ゴムとの間に熱架橋
性ゴム組成物の中間層を介在させ、導電性加硫ゴ
ムに電圧を印加し、該導電性加硫ゴムの自己発熱
により、中間層の架橋を行なうと同時に、上下の
加硫ゴム同志を接着せしめることを特徴とする加
硫ゴムと加硫ゴムの導電架橋接着方法。 2 導電性を付与した加硫ゴムがカーボンブラツ
クを配合して成る特許請求の範囲第1項記載の導
電架橋接着方法。 3 導電性加硫ゴムに配合されたカーボンブラツ
クが導電性フアーネスブラツクである特許請求の
範囲第1項記載の導電架橋接着方法。 4 導電性加硫ゴムの導電性フアーネスブラツク
配合量が、ゴム100重量部に対して7〜80重量部
である特許請求の範囲第1項記載の導電架橋接着
方法。
[Claims] 1. A conductive vulcanized rubber having a volume specific resistivity of 10 4 Ω·cm or less in the temperature range of 0 to 200°C is interposed between the vulcanized rubber, and further, An intermediate layer of a thermally crosslinkable rubber composition is interposed between at least one of the vulcanized rubber and the conductive vulcanized rubber, a voltage is applied to the conductive vulcanized rubber, and the conductive vulcanized rubber self-generates heat. A conductive cross-linking bonding method for vulcanized rubber and vulcanized rubber, characterized in that the intermediate layer is cross-linked and the upper and lower vulcanized rubbers are bonded to each other at the same time. 2. The conductive crosslinking bonding method according to claim 1, wherein the vulcanized rubber imparted with conductivity is blended with carbon black. 3. The conductive crosslinking bonding method according to claim 1, wherein the carbon black blended into the conductive vulcanized rubber is a conductive furnace black. 4. The conductive crosslinking bonding method according to claim 1, wherein the amount of conductive furnace black in the conductive vulcanized rubber is 7 to 80 parts by weight per 100 parts by weight of rubber.
JP55127092A 1980-09-16 1980-09-16 Method of electrically crosslinking bonding vulcanized rubber materials Granted JPS5751443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55127092A JPS5751443A (en) 1980-09-16 1980-09-16 Method of electrically crosslinking bonding vulcanized rubber materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55127092A JPS5751443A (en) 1980-09-16 1980-09-16 Method of electrically crosslinking bonding vulcanized rubber materials

Publications (2)

Publication Number Publication Date
JPS5751443A JPS5751443A (en) 1982-03-26
JPS6359860B2 true JPS6359860B2 (en) 1988-11-21

Family

ID=14951376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55127092A Granted JPS5751443A (en) 1980-09-16 1980-09-16 Method of electrically crosslinking bonding vulcanized rubber materials

Country Status (1)

Country Link
JP (1) JPS5751443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121243U (en) * 1991-04-12 1992-10-29 朋和産業株式会社 easy-open bag

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2656888B2 (en) * 1992-06-04 1997-09-24 住友ゴム工業株式会社 Conductive rubber material used for electrophotographic copying machine
JP5259332B2 (en) * 2007-10-25 2013-08-07 東洋ゴム工業株式会社 Pneumatic tire
JP5259337B2 (en) * 2007-11-19 2013-08-07 東洋ゴム工業株式会社 Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121243U (en) * 1991-04-12 1992-10-29 朋和産業株式会社 easy-open bag

Also Published As

Publication number Publication date
JPS5751443A (en) 1982-03-26

Similar Documents

Publication Publication Date Title
US3574024A (en) Method of bonding a window to the window opening in a vehicle
US6837287B2 (en) Self-sealing pneumatic tire and preparation thereof
KR100900157B1 (en) Pneumatic tire having tacky sealant layer, and process for producing the same
EP2993217B1 (en) Devulcanization of rubber and other elastomers
US20130259762A1 (en) Devulcanization of Rubber and Other Elastomers
JPS6359860B2 (en)
JPS6031663B2 (en) Vehicle tire retreading method using microwave heating
EP0713896A1 (en) Methods for achieving improved bond strength between unvulcanized and vulcanized rubbers
US3483062A (en) Method of reducing adhesion
JP5108201B2 (en) Adhesive composition, method for producing joined body, and rubber cement
JPS6330137B2 (en)
US2984281A (en) Bonding of elastomers
US4051090A (en) Adhesive bonding
US2147620A (en) Composite product
JPH0233486B2 (en)
US5824383A (en) Methods of securing splices in curable rubber articles
US3219091A (en) Recapping butyl tire with non-butyl tread, using bis-maleimide cured tie gum
JPH09207241A (en) Regenerated tire and its manufacture
EP1109664B1 (en) Induction curable tire components and methods of selectively curing such components
JP2676380B2 (en) Adhesive composition for glass tensile member for belt
US6660122B1 (en) Induction curable tire components and methods of selectively curing such components
GB1592661A (en) Method of making tyres
JP2003286318A (en) Latex, bonding liquid, fiber member, and composite material comprising fiber member and vulcanized rubber member
EP4335631A1 (en) Composite structure assembly and non-pneumatic tire production
EP0204531B1 (en) Production of molded vulcanised rubber articles