JPS6358875A - Thin film transistor element - Google Patents

Thin film transistor element

Info

Publication number
JPS6358875A
JPS6358875A JP20145886A JP20145886A JPS6358875A JP S6358875 A JPS6358875 A JP S6358875A JP 20145886 A JP20145886 A JP 20145886A JP 20145886 A JP20145886 A JP 20145886A JP S6358875 A JPS6358875 A JP S6358875A
Authority
JP
Japan
Prior art keywords
polysilicon
deposited
thin film
film transistor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20145886A
Other languages
Japanese (ja)
Inventor
Masaru Takahata
勝 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20145886A priority Critical patent/JPS6358875A/en
Publication of JPS6358875A publication Critical patent/JPS6358875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a thin transistor of high quality where electric leakages rarely develop by depositing an ultrathin film semiconductor at a comparatively low temperature of a substrate and depositing the above semiconductor up to the desired thickness at a comparatively high temperature of the substrate after annealing it. CONSTITUTION:Polysilicon 2' on the order of 100 Angstrom is deposited on a glass substrate 1 at a substrate temperature of 400 deg.C with a process of plasma CVD. Then it is annealed at a temperature of 600 deg.C in an atmosphere of hydrogen for an hour and after that a polysilicon film 2'' on the order of 3,000 Angstrom is deposited at the substrate temperature of 600 deg.C with the process of CVD under reduced pressure. And then the polysilicon film is separated into island-like portions and films of silicon oxide and polysilicon are deposited in sequence. Subsequently, the films of a silicon oxide and polysilicon other than those of a gate part are removed and an ion implantation of phophorus is carried out and as a result, the number of level in the grain boundary within a semiconductor film can be so drastically reduced that this approach helps 7 lessen leakages of electricity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜トランジスタに係り、特にリーク電流を抑
制するのに好適な薄膜トランジスタ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor, and particularly to a thin film transistor element suitable for suppressing leakage current.

〔従来の技術〕[Conventional technology]

ホウケイ酸ガラス等の絶縁基板上に形成された薄膜トラ
ンジスタはホウケイ酸ガラス等の歪点が600度付近で
あるため、600度以下の低温プロセスを用いて製作し
なければならない。このような制約を受けた薄膜トラン
ジスタのVo−ID特性は1985年秋季第46回応用
物理学会学術講演会予稿集4a−W−1(P、451)
のようにVa”=OV付近を境にしてほぼ対称にInが
増加する。(第3図)これはリーク電流が大きい事を示
しており、この点は同じようなデバイス構造である単結
晶MOS電界効果トランジスタと大きく異なる点である
。このリーク電流を抑える為に現在、世の中ではチャネ
ル層の超薄膜化、水素処理などを試みてはいるが充分に
リーク電流を抑えているとは言い難い。
A thin film transistor formed on an insulating substrate such as borosilicate glass must be manufactured using a low temperature process of 600 degrees or less because the strain point of borosilicate glass or the like is around 600 degrees. The Vo-ID characteristics of thin film transistors subject to such constraints were discussed in Proceedings of the 46th Japan Society of Applied Physics Academic Conference, Autumn 1985, 4a-W-1 (P, 451).
As shown in Figure 3, In increases almost symmetrically around Va'' = OV. (Figure 3) This shows that the leakage current is large, and this point is different from that of single crystal MOS, which has a similar device structure. This is very different from a field effect transistor.Currently, in order to suppress this leakage current, attempts are being made to make the channel layer ultra-thin, hydrogen treatment, etc., but it is difficult to say that the leakage current has been suppressed sufficiently.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第2図は絶縁基板上に形成された薄膜トランジスタの断
面構造である。半導体膜2がi層、オーミック層3がn
 層の場合の薄膜トランジスタのOFF状態、すなわち
、ゲート電極5に負の電圧を加えた場合のリーク電流に
ついて考察する。ゲート電極5に負の電圧を加えた場合
、i層の表面にはホールが蓄積され、見かけ上P にな
り、オミツク層3+ 1層2.オーミック層3はnpn
接合に見える。周知のように単結晶シリコンの場合、n
pn接合の両端に電圧を加えても、二つある接合のうち
、どちらか一方が必ず逆バイアス状態になるので、その
接合により電流はほとんど流れない、ところがポリシリ
コン薄膜トランジスタは図1のデバイス構造でゲート電
極5に正の電圧を加えた場合(n p n接合)、ドレ
イン電極6とソース電極7間に電圧を加えると、リーク
電流としては無視できない程度の電流が流れてしまう。
FIG. 2 shows a cross-sectional structure of a thin film transistor formed on an insulating substrate. The semiconductor film 2 is an i layer, and the ohmic layer 3 is an n layer.
The leakage current when a negative voltage is applied to the gate electrode 5 will be considered in the OFF state of the thin film transistor in the case of a layer. When a negative voltage is applied to the gate electrode 5, holes are accumulated on the surface of the i-layer, which becomes an apparent P, and the omic layer 3+1 layer 2. Ohmic layer 3 is npn
Looks like a joint. As is well known, in the case of single crystal silicon, n
Even if a voltage is applied across a pn junction, one of the two junctions will always be in a reverse bias state, so almost no current will flow through that junction.However, a polysilicon thin film transistor has the device structure shown in Figure 1. When a positive voltage is applied to the gate electrode 5 (n p n junction) and a voltage is applied between the drain electrode 6 and the source electrode 7, a current that cannot be ignored as a leakage current flows.

これはポリシリコン薄膜トランジスタの接合が不充分で
ある事を示している。それでは、なぜ、単結晶MOSト
ランジスタには充分な接合ができて、ポリシリコン薄膜
トランジスタには充分な接合ができないのであろうか。
This indicates that the junction of the polysilicon thin film transistor is insufficient. Then, why can a sufficient junction be formed in a single crystal MOS transistor, but not in a polysilicon thin film transistor?

主な原因はポリシリコン膜がグレインバウンダリー(G
rain−boundary )を持っているからであ
る。グレインバウンダリーは膜の欠陥であるから、そこ
には膜内を自由に動き回れるキャリアを捕獲する準位が
他の場所に比べて多数あると思えばよい。ここで、pn
接合を作って逆バイアス電圧を加えた場合、加えた電圧
のほとんどが接合部に加わり、その付近には高電界によ
って、グレインバウンダリー内に捕獲されていた多数の
エレクトロンやホールが引き抜かれ、その結果としてリ
ーク電流が増大する。そこで、結論としては、薄膜トラ
ンジスタのリーク電流を抑えるにはグレインバウンダリ
ー内の準位を減らさなければならない事がわかる。グレ
インバウンダリー内の準位を減らす手段としては現在、
水素、処理などが一般的に試みられているがグレインの
サイズを大きくする事も準位を減らす一手段である。J
ournal of ApPlied Physics
 Vol、55 No、6Partl 15 Marc
h 1984 P1590−1595  松井、白井。
The main reason is that the polysilicon film has grain boundaries (G
This is because it has a rain-boundary. Since the grain boundary is a defect in the film, it can be assumed that there are more levels there than in other locations that capture carriers that can move freely within the film. Here, pn
When a junction is made and a reverse bias voltage is applied, most of the applied voltage is applied to the junction, and the high electric field in the vicinity pulls out many electrons and holes that were trapped within the grain boundary. As a result, leakage current increases. Therefore, the conclusion is that in order to suppress the leakage current of a thin film transistor, it is necessary to reduce the levels within the grain boundary. Currently, as a means to reduce the level within the grain boundary,
Hydrogen treatment, etc. are commonly attempted, but increasing the grain size is also one way to reduce the levels. J
our own of Applied Physics
Vol, 55 No, 6 Partl 15 Marc
h 1984 P1590-1595 Matsui, Shirai.

先山らによれば、絶縁基板上にポリシリコンが堆積する
場合は初期過程がアモルファスとポリシリコンの混合状
態から始まり徐々にポリシリコンのグレインから成長し
ていく、との事である。つまりポリシリコンの模膜が厚
い程、グレインのサイズが大きくなる、という事である
。もちろん、この効果はある程度の膜厚以上になるとな
くなると思われる。ところが、実際、薄膜トランジスタ
を動作さす場合は、あまり膜厚が厚いとリーク電流が増
加するので、ある膜厚以下に実用上は抑えられてしまう
。結局、現段階ではグレインのサイズが比較的小さい領
域、言い換えれば、リーク電流が多くなる領域で薄膜ト
ランジスタを製作している事になる。本発明の目的は、
薄膜トランジスタのリーク電流を抑える事が可能な薄膜
トランジスタ素子、言い換えれば、グレインバウンダリ
ー内の準位が少ない薄膜トランジスタ素子を提供する事
にある。
According to Sakiyama et al., when polysilicon is deposited on an insulating substrate, the initial process starts from a mixed state of amorphous and polysilicon and gradually grows from polysilicon grains. In other words, the thicker the polysilicon film, the larger the grain size. Of course, this effect seems to disappear when the film thickness exceeds a certain level. However, when actually operating a thin film transistor, if the film thickness is too thick, leakage current increases, so the film thickness is practically limited to a certain value or less. After all, at this stage, thin film transistors are manufactured in a region where the grain size is relatively small, in other words, in a region where leakage current is large. The purpose of the present invention is to
It is an object of the present invention to provide a thin film transistor element capable of suppressing leakage current of a thin film transistor, in other words, a thin film transistor element with few levels within the grain boundary.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために新しい半導体膜製作プロセ
スを持つ薄膜トランジスタ素子を発明した。
In order to solve the above problems, we have invented a thin film transistor device using a new semiconductor film manufacturing process.

まず、基板温度が比較的低い温度で超薄膜の半導体を堆
積しアニールする。次に基板温度が比較的高い温度で所
望の厚さまで堆積する。以下、この半導体膜を元に従来
のプロセスで薄膜トランジスタを製作する事により、リ
ーク電流の少ない良質の薄膜トランジスタが提供される
First, an ultra-thin semiconductor film is deposited and annealed at a relatively low substrate temperature. The substrate is then deposited to a desired thickness at a relatively high temperature. Thereafter, by manufacturing a thin film transistor using a conventional process based on this semiconductor film, a high quality thin film transistor with low leakage current can be provided.

〔作用〕[Effect]

上記の半導体膜の新製法は以下の根拠に基づいて提案さ
れたものである。即ち、前記の説明より、ポリシリコン
のグレインのサイズはその直前に堆積されたポリシリコ
ンのグレインサイズ基にして成長する。そこで超薄膜の
ポリシリコンを一旦、堆積した後アニールし、ポリシリ
コンのグレインをある程度大きくする。そして、その大
きくなったポリシリコンのグレイン上にポリシリコンを
所望の薄厚まで堆積させ、さらに大きなグレインサイズ
を持つポリシリコンを得ようとした。ここで我々は以前
、プラズマCVD法によりポリシリコン膜を絶縁基板上
に堆積し、600℃でアニールする際に堆積時の基板温
度が比較的低い温度の時、実験では400℃の時が最も
アニール後のポリシリコンのグレインサイズが大きくな
る事を発見した。そこで、絶縁基板上への第1回目の堆
積は基板温度が比較的低い温度でも堆積しアニールする
The above-mentioned new method for manufacturing a semiconductor film was proposed based on the following grounds. That is, from the above explanation, the size of the polysilicon grains grows based on the grain size of the polysilicon deposited immediately before. Therefore, after an ultra-thin film of polysilicon is deposited, it is annealed to increase the grain size of the polysilicon to some extent. Then, polysilicon was deposited on the enlarged polysilicon grains to a desired thin thickness in an attempt to obtain polysilicon with even larger grain sizes. Here, we previously deposited a polysilicon film on an insulating substrate using the plasma CVD method and annealed it at 600°C. When the substrate temperature during deposition was relatively low, in experiments we found that the best annealing occurred at 400°C. It was discovered that the grain size of later polysilicon becomes larger. Therefore, the first deposition on the insulating substrate is performed by depositing and annealing even when the substrate temperature is relatively low.

この事により、比鮫的グレインサイズが大きいポリシリ
コンが形成される。次に、その大きくなったポリシリコ
ンのグレインを基にして、比較的高い基板温度でポリシ
リコンを堆積して、アニール時のグレインサイズよりも
、さらに大きなグレインサイズが得られる。
This results in the formation of polysilicon with a comparatively large grain size. Next, based on the enlarged polysilicon grains, polysilicon is deposited at a relatively high substrate temperature to obtain a grain size even larger than that during annealing.

〔実施例〕〔Example〕

本発明の薄膜トランジスタ素子の製造工程を第2図によ
り説明する。
The manufacturing process of the thin film transistor element of the present invention will be explained with reference to FIG.

(a)ガラス基板1上にプラズマCVD法により基板温
度400℃、チャンバ内圧力100 mtorrでポリ
シリコン2′を100オングストローム程度堆積する。
(a) Polysilicon 2' is deposited to a thickness of about 100 angstroms on a glass substrate 1 by plasma CVD at a substrate temperature of 400° C. and a chamber pressure of 100 mtorr.

その後、水素雰囲気中で600℃で1時間アニールする
Thereafter, annealing is performed at 600° C. for 1 hour in a hydrogen atmosphere.

(b)アニール後、減圧CVD法により基板温度600
℃、チャンバ内圧力100mtorrでポリシリコンI
I!22”を3000オングストー−ム程度堆積する。
(b) After annealing, the substrate temperature is 600% by low pressure CVD method.
℃, chamber pressure 100 mtorr polysilicon I
I! 22" to a thickness of about 3000 angstroms.

(a)ポリシリコン膜2を堆積後、まずポリシリコン膜
を島状に分割し、酸化シリコン膜、ポリシリコン膜を順
次堆積する。次にゲート部以外の酸化シリコン膜、ポリ
シリコン膜を除去し、P(りん)のイオン打ち込みを行
う。その後酸化シリコン膜を堆積し、ソース、ドレイン
窓を開け、金属を蒸着し、不要な金属部分を除去する事
により、本発明の薄膜トランジスタが完成する。
(a) After depositing the polysilicon film 2, the polysilicon film is first divided into islands, and a silicon oxide film and a polysilicon film are sequentially deposited. Next, the silicon oxide film and polysilicon film other than the gate portion are removed, and P (phosphorus) ions are implanted. Thereafter, a silicon oxide film is deposited, source and drain windows are opened, metal is deposited, and unnecessary metal parts are removed to complete the thin film transistor of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体膜内のグレインバウンダリー内
の準位の数が大幅に減らせるのでリーク電流が減らせる
、しきい値電圧Vt)+が下がる、電界効果移動度μf
eが高くなる等の効果がある。
According to the present invention, the number of levels within the grain boundaries in the semiconductor film can be significantly reduced, so that leakage current can be reduced, the threshold voltage Vt)+ can be lowered, and the field effect mobility μf can be reduced.
This has the effect of increasing e.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は薄膜トランジスタの説明図、第2図は本発明の
薄膜トランジスタ素子に用いられる半導体膜堆積の製造
工程図、第3図は従来の薄膜トランジスタのIn  V
a特性図である。 1・・・絶縁基板、2・・・半導体膜、3・・・オーミ
ック層、4・・・絶縁膜、5・・・ゲート電極、6・・
・ドレイン電極、7・・・ソース電極、2′・・・半導
体膜(第1堆積)、2″・・・半導体膜(第2堆積)。
Fig. 1 is an explanatory diagram of a thin film transistor, Fig. 2 is a manufacturing process diagram of semiconductor film deposition used in the thin film transistor element of the present invention, and Fig. 3 is an illustration of a conventional thin film transistor.
It is a characteristic diagram. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Semiconductor film, 3... Ohmic layer, 4... Insulating film, 5... Gate electrode, 6...
- Drain electrode, 7... Source electrode, 2'... Semiconductor film (first deposition), 2''... Semiconductor film (second deposition).

Claims (1)

【特許請求の範囲】 1、絶縁基板上に形成された薄膜トランジスタ素子にお
いて、絶縁基板上に堆積する半導体膜は最初に基板温度
を比較的低温で堆積し、アニールし、次に比較的高温で
所望の厚さだけ堆積する事を特徴とする薄膜トランジス
タ素子。 2、上記の比較的低温の上限は400℃、比較的高温の
上限は600℃とする事を特徴とする特許請求の範囲第
1項記載の薄膜トランジスタ素子。 3、上記の半導体膜は多結晶シリコン膜である事を特徴
とする特許請求の範囲第1項記載の薄膜トランジスタ素
子。 4、上記の絶縁基板はガラス基板である事を特徴とする
特許請求の範囲第1項記載の薄膜トランジスタ素子。
[Claims] 1. In a thin film transistor element formed on an insulating substrate, a semiconductor film deposited on the insulating substrate is first deposited at a relatively low substrate temperature, annealed, and then deposited at a relatively high temperature to a desired level. A thin film transistor element characterized by being deposited to a thickness of . 2. The thin film transistor element according to claim 1, wherein the upper limit of the relatively low temperature is 400°C, and the upper limit of the relatively high temperature is 600°C. 3. The thin film transistor element according to claim 1, wherein the semiconductor film is a polycrystalline silicon film. 4. The thin film transistor element according to claim 1, wherein the insulating substrate is a glass substrate.
JP20145886A 1986-08-29 1986-08-29 Thin film transistor element Pending JPS6358875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20145886A JPS6358875A (en) 1986-08-29 1986-08-29 Thin film transistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20145886A JPS6358875A (en) 1986-08-29 1986-08-29 Thin film transistor element

Publications (1)

Publication Number Publication Date
JPS6358875A true JPS6358875A (en) 1988-03-14

Family

ID=16441425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20145886A Pending JPS6358875A (en) 1986-08-29 1986-08-29 Thin film transistor element

Country Status (1)

Country Link
JP (1) JPS6358875A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372958A (en) * 1990-11-16 1994-12-13 Seiko Epson Corporation Process for fabricating a thin film semiconductor device
US6010924A (en) * 1993-08-20 2000-01-04 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating a thin film transistor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372958A (en) * 1990-11-16 1994-12-13 Seiko Epson Corporation Process for fabricating a thin film semiconductor device
US5504019A (en) * 1990-11-16 1996-04-02 Seiko Epson Corporation Method for fabricating a thin film semiconductor
US5591989A (en) * 1990-11-16 1997-01-07 Seiko Epson Corporation Semiconductor device having first and second gate insulating films
US5637512A (en) * 1990-11-16 1997-06-10 Seiko Epson Corporation Method for fabricating a thin film semiconductor device
US5811323A (en) * 1990-11-16 1998-09-22 Seiko Epson Corporation Process for fabricating a thin film transistor
US6010924A (en) * 1993-08-20 2000-01-04 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating a thin film transistor
US6841432B1 (en) 1993-08-20 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US7354811B2 (en) 1993-08-20 2008-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same
US7585715B2 (en) 1993-08-20 2009-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for fabricating the same

Similar Documents

Publication Publication Date Title
US5946598A (en) Process of fabricating metal gate electrode
US6753229B1 (en) Multiple-thickness gate oxide formed by oxygen implantation
JPH03116875A (en) Thin film field effect transistor and method of manufacturing the same
JPH03280435A (en) Manufacture of thin film semiconductor device
JP2001237418A (en) Method of manufacturing mos transistor
JPS6358875A (en) Thin film transistor element
JPH06260644A (en) Manufacture of semiconductor device
JP2944103B2 (en) MOS transistor
JPH03132078A (en) Semiconductor device and its manufacture
JPH03165066A (en) Polycrystalline silicon thin film transistor and manufacture thereof
JPH0656856B2 (en) Method for manufacturing semiconductor device
JPH04186634A (en) Manufacture of thin film semiconductor device
JPH0613607A (en) Polycrystalline silicon thin-film transistor
JP3183256B2 (en) Method for manufacturing thin film transistor
JP2635086B2 (en) Method for manufacturing semiconductor device
JP2007048882A (en) Semiconductor device and its manufacturing method
JP2814962B2 (en) Method for manufacturing semiconductor device
JP2556850B2 (en) Method for manufacturing thin film transistor
KR100196521B1 (en) Method of manufacturing thin film transistor
JP3139835B2 (en) Method for manufacturing semiconductor device
JP2983963B2 (en) Semiconductor device
JPH11176959A (en) Manufacture of semiconductor device
JPH04150036A (en) Manufacture of semiconductor device
JPH05291294A (en) Manufacture of thin film transistor
JPH04100238A (en) Manufacture of semiconductor device