JPS6358863A - Manufacture of semiconductor storage device - Google Patents

Manufacture of semiconductor storage device

Info

Publication number
JPS6358863A
JPS6358863A JP61201710A JP20171086A JPS6358863A JP S6358863 A JPS6358863 A JP S6358863A JP 61201710 A JP61201710 A JP 61201710A JP 20171086 A JP20171086 A JP 20171086A JP S6358863 A JPS6358863 A JP S6358863A
Authority
JP
Japan
Prior art keywords
substrate
groove
capacitor
mask
capacitor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61201710A
Other languages
Japanese (ja)
Inventor
Ikuko Inoue
郁子 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61201710A priority Critical patent/JPS6358863A/en
Publication of JPS6358863A publication Critical patent/JPS6358863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/39DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
    • H10B12/395DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enhance integration and improve reliability by a method wherein a capacitor electrode is embedded in an element isolating groove in a substrate and isotropic etching is accomplished against the groove ridges for the formation of recesses wherein gate electrodes are embedded. CONSTITUTION:A lattice-geometry element isolating groove 3 is formed in a substrate 1 by using a mask 2. In the groove 3, a capacitor electrode 5 is embedded through the intermediary of an element isolating/insulating film 4. An oxide film 7 is formed on the surface of the capacitor electrode 5, and the ridges of the substrate 1 facing the groove 3 containing the capacitor electrode 5 are allowed to expose themselves, and the ridges are scraped off in an isotropic etching process with the oxide film 7 and mask 2 serving as a mask for the formation of recesses 6. In the recesses 6, by self-alignment, gate electrodes 8 to be word lines are embeded. The gate electrodes 8 serve as a mask in a process of implanting the substrate 1 with an impurity for the formation of an N-type layer 9 to be a drain region. The entire surface is covered by an CVD insulating film, and then a wiring 10 built is to be a bit line. This design enables a large capacitor to realize to occupy but a small area, which in turn realizes a high-reliability enhanced integration of MOS transistors.

Description

【発明の詳細な説明】 [発明の目的] 〈産業上の利用分野) 本発明は、−個のキャパシタと一個のhi o sトラ
ンジスタによりメモリセルを構成するMOS型の半導体
記憶装置<dRA〜1)に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a MOS type semiconductor memory device <dRA~1 in which a memory cell is configured by - capacitors and one HIOS transistor. ) regarding.

(従来の技術) 近年、半導体技術の進歩、特に微細加工技i(iの進歩
により、dRAMの高集積化は急速に進んでいる。高集
積化に伴って情報を記憶するMOSキャパシタの面積が
減少し、従って〜108キャパシタ蓄えられる電荷の量
が減少する。この結果、メモリ内容が誤って読み出され
たり、α線等の放射線によりメモリ内容が破壊される、
といった問題が生じている。この様な問題を解決するた
め、半導体基板に溝を掘り、その溝側壁をキャパシタ領
域として用いることにより、基板の占有面積を大きくす
ることなく実質的にキャパシタ面積を大きくする方法が
種々提案されている。
(Conventional technology) In recent years, advances in semiconductor technology, particularly in microfabrication technology (i), have led to rapid increases in the integration of dRAMs. Therefore, the amount of charge stored in the ~108 capacitor decreases.As a result, the memory contents may be read out incorrectly, or the memory contents may be destroyed by radiation such as alpha rays.
Problems such as these are occurring. To solve this problem, various methods have been proposed to substantially increase the capacitor area without increasing the occupied area of the substrate by digging a groove in the semiconductor substrate and using the sidewalls of the groove as the capacitor area. There is.

第10図はその様な従来例のdRAMの構造を示す(特
開昭59−72161号公報)。31はp型3i基板で
あり、これに格子状の溝32が形成されて、この溝32
の側壁にキャパシタ絶縁膜33を介してキャパシタ電極
34が埋め込み形成され、溝で囲まれた島領域の周囲に
キャパシタが形成されている。溝32の底部には素子分
離用のp+型層35が形成されている。MOSトランジ
スタは、溝32で囲まれた領域の基板平面部にゲート絶
縁膜36を介してゲート電極37を形成して構成されて
いる。38はドレイン領域となるn11.39は5iO
21[1Fあり、40はビット線となる配線である。
FIG. 10 shows the structure of such a conventional dRAM (Japanese Unexamined Patent Publication No. 72161/1982). 31 is a p-type 3i substrate, on which a lattice-shaped groove 32 is formed;
A capacitor electrode 34 is embedded in the side wall of the capacitor through a capacitor insulating film 33, and a capacitor is formed around the island region surrounded by the groove. A p+ type layer 35 for element isolation is formed at the bottom of the groove 32. The MOS transistor is constructed by forming a gate electrode 37 on a flat surface of the substrate in a region surrounded by a groove 32 with a gate insulating film 36 interposed therebetween. 38 is the drain region n11.39 is 5iO
21[1F is present, and 40 is a wiring that becomes a bit line.

このdRA〜1構成では、素子分離溝側壁を有効に利用
して小さい占有面積で大きい容量のキャパシタを容易に
1することができる。しかしこの構成では、MOSトラ
ンジスタは従来と変わらず基板平面部を利用しており、
小形化されていない。またこの構成では、ゲート電極3
7の一部をキャパシタ電極34に重なるようにパターン
形成しており、これによりソース領域を省略している。
In this dRA~1 configuration, by effectively utilizing the sidewalls of the element isolation trenches, a large capacitance capacitor can be easily installed in a small occupied area. However, in this configuration, the MOS transistor still uses the flat surface of the substrate,
Not miniaturized. Further, in this configuration, the gate electrode 3
7 is patterned so as to overlap with the capacitor electrode 34, thereby omitting the source region.

この(間通では、ゲート電極形成の際のマスク合わせに
ずれがあった場合、あるMOSトランジスタ部でゲート
長が長くなる方向にずれるとこれに隣接するMOSトラ
ンジスタではゲート長が短くなる方向にずれることにな
り、メモリセル領域内のゲート長のバラツキが非常に大
きいものとなる。更にキャパシタは、基板に形成された
溝の側壁から上面に渡って形成されている。この構成で
は、溝上部コーナーで酸化膜が薄くなり易く、また電界
が集中し易い等の理由で、キャパシタ絶縁膜を薄くして
大容量キャパシタを得ようとするとその信頼性も低下す
る。
In this case, if there is a misalignment in mask alignment during gate electrode formation, if the gate length of a certain MOS transistor section becomes longer, the gate length of the adjacent MOS transistor will become shorter. As a result, the variation in gate length within the memory cell region becomes extremely large.Furthermore, the capacitor is formed from the sidewall of the trench formed in the substrate to the top surface.In this configuration, the top corner of the trench Therefore, if the capacitor insulating film is made thinner to obtain a large capacity capacitor, the reliability of the capacitor decreases because the oxide film tends to become thinner and the electric field tends to concentrate.

(発明が解決しようとする問題点) 以上のように従来提案されているd RA Mでは、M
oSトランジスタ領域の面積縮小は図られておらず、ま
たゲート長のバラツキも大きいものであって、−層の高
集積化と高信頼性化が望まれている。
(Problems to be solved by the invention) As described above, in the conventionally proposed dRAM, the M
No attempt has been made to reduce the area of the oS transistor region, and there are large variations in gate length, so higher integration and higher reliability of the -layer are desired.

本発明は、この様な要求を満たすd RA N=+の製
造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing d RA N=+ that satisfies such requirements.

[発明の構成] (問題点を解決するための手段) 本発明にかかるdRAMの製造方法の要部工程を第1図
(a)〜(d)を参照して説明する。
[Structure of the Invention] (Means for Solving Problems) The main steps of the dRAM manufacturing method according to the present invention will be explained with reference to FIGS. 1(a) to 1(d).

先ず半導体基板1にマスク2を用いて格子状の素子分離
用溝3を形成する(a)。次いで一方向の溝3にそって
、その底部に素子分離絶It!14を介してキャパシタ
電極5を埋込む(b)。この後キャパシタ型理5表面に
酸化膜7を形成してキャパシタ電極5が埋め込まれた素
子分離溝に接する基板の稜線部をn出させて、この稜線
部を酸化!17とマスク2をマスクとして用いて、等方
性エツチング法によりエツチングして削り落として、曲
面をもつ凹部6を形成する(C)。そしてこの凹部に自
己整合的にワード線となるゲート電極8を埋め込み形成
し、次いでゲート電極8をマスクとして基板に不純物を
導入してドレイン領域となるn型苦9を形成した後、全
面をCVD絶縁膜で覆って、トレイン領域にコンタクト
するビット線となる配線10を形成する(d)。
First, lattice-shaped element isolation grooves 3 are formed in a semiconductor substrate 1 using a mask 2 (a). Next, along the groove 3 in one direction, the element isolation isolation It! The capacitor electrode 5 is embedded through the capacitor electrode 14 (b). After that, an oxide film 7 is formed on the surface of the capacitor mold 5, and the ridgeline portion of the substrate that is in contact with the element isolation groove in which the capacitor electrode 5 is buried is exposed, and this ridgeline portion is oxidized! Using the mask 17 and the mask 2 as a mask, etching is performed by an isotropic etching method to form a concave portion 6 having a curved surface (C). Then, a gate electrode 8 that will become a word line is embedded in this recess in a self-aligned manner, and then impurities are introduced into the substrate using the gate electrode 8 as a mask to form an n-type layer 9 that will become a drain region. A wiring 10 that is covered with an insulating film and becomes a bit line in contact with the train region is formed (d).

(作用) 本発明によれば、素子分離用溝の側壁を有効に利用して
、小さい占有面積で大きいキャパシタ容量を得ることが
できるのみならず、キャパシタ電極が埋め込まれた領域
に接する基板の稜線部を削り落としてここにゲート電極
を埋込み形成することにより、MOSトランジスタ領域
も十分に小さい面積に形成することができる。しかもゲ
ート電極は、基板の稜線部を削り落とした丸みを帯びた
凹部に側壁残しの技術を用いて自己整合的に形成するこ
とができるから、ゲート長のバラツキがなく、小さいゲ
ート長のMOSトランジスタを信頼性よく集積すること
ができる。キャパシタは、酸化膜が薄くなり易くまた電
界が集中しやすい溝の上部]−ナーを利用しないので、
この点でも信頼性が高いものとなる。
(Function) According to the present invention, not only can a large capacitor capacity be obtained with a small occupied area by effectively utilizing the side walls of the element isolation groove, but also the ridgeline of the substrate in contact with the region where the capacitor electrode is embedded can be By cutting off a portion and embedding a gate electrode there, the MOS transistor region can also be formed in a sufficiently small area. Moreover, since the gate electrode can be formed in a self-aligned manner in a rounded concave portion by cutting off the edge of the substrate using a technique that leaves the sidewalls intact, there is no variation in gate length, and MOS transistors with small gate lengths can be formed. can be integrated reliably. Capacitors do not use the upper part of the groove, where the oxide film tends to become thinner and the electric field tends to concentrate.
In this respect as well, reliability is high.

(実旅例) 以下、本発明の詳細な説明する。(Actual travel example) The present invention will be explained in detail below.

第2図〜第9図は一実施例のdRA〜1の製造工程を説
明するための図である。これら各図において、(a>は
平面図、(b)、(c)および(d)はそれぞれ(a)
のA−A’ 、B−8’ およびc−c’ 断面図であ
る。先ずp型Si基板11を用意してその表面に、マス
ク材となる[1絶縁膜、即ち熱酸化による数100人の
酸化膜12、数1000AのS i3N41113、更
ニソノ上にCVDによるシリコン酸化MM14を形成す
る。これら積層絶縁膜上に、フォトレジスト151を複
数の島状にパターン形成する(第1図)。そしてこのフ
ォトレジスト151をマスクとして積層絶縁膜上よびそ
の下の基板11を反応性イオンエツチング(RIE)法
によりエツチングして、X。
FIG. 2 to FIG. 9 are diagrams for explaining the manufacturing process of dRA-1 of one embodiment. In each of these figures, (a> is a plan view, (b), (c), and (d) are respectively (a)
FIG. First, a p-type Si substrate 11 is prepared, and on its surface, an insulating film, that is, an oxide film 12 of several hundreds of layers by thermal oxidation, an Si3N41113 of several thousand amps, and a silicon oxide MM 14 of silicon oxide by CVD are formed on the surface of the substrate. form. A photoresist 151 is patterned into a plurality of islands on these laminated insulating films (FIG. 1). Using this photoresist 151 as a mask, the substrate 11 above and below the laminated insulating film is etched by reactive ion etching (RIE).

Yの格子状に素子分離用溝16を形成する。この素子分
離用溝16には、イオン注入により反転防止用のp1型
層17を形成した後、素子分離絶縁膜としてCVDによ
る酸化misを表面が平坦になるように埋め込み形成す
る(第3図)。
Element isolation grooves 16 are formed in a Y grid pattern. In this element isolation groove 16, a p1 type layer 17 for preventing inversion is formed by ion implantation, and then oxidized mis is formed by CVD as an element isolation insulating film to fill it so that the surface is flat (Fig. 3). .

次に、キャパシタを形成するためのY方向に走る溝領域
を除く素子分離領域および素子領域を、ストライブ状に
パターン形成したフォトレジスト152でマスクし、酸
化膜18をエツチングしてこれをY方向の溝16の底部
に素子分離に必要な厚さだけ残して、キャパシタ形成領
域の溝側壁を。
Next, the element isolation region and the element region except for the groove region running in the Y direction for forming the capacitor are masked with a photoresist 152 patterned in a stripe shape, and the oxide film 18 is etched to remove the oxide film 18 in the Y direction. At the bottom of the trench 16, only the thickness necessary for element isolation is left, and the trench sidewall of the capacitor formation region is formed.

露出させる(第4図)。この後、P S G I!或い
はAs5GIIA<図示しない)を全面に形成して、固
相拡散を行って溝16の側壁にn−型層1つを形成し、
PSGI又はA s S G nQを除去して溝16側
壁に例えば熱酸化によるキャパシタ絶縁膜20を形成し
た後、この71116にリンドープの第1層多結品シリ
コン膜によるキャパシタ電極21を埋込み形成する〈第
5図)。キャパシタ電極21はX、Yの溝16の内Y方
向に沿って連続的に形成されることになる。
Expose (Figure 4). After this, PSG I! Alternatively, As5GIIA (not shown) is formed on the entire surface and solid phase diffusion is performed to form one n-type layer on the side wall of the groove 16.
After removing PSGI or As S G nQ and forming a capacitor insulating film 20 by, for example, thermal oxidation on the side wall of the trench 16, a capacitor electrode 21 made of a phosphorus-doped first layer multi-crystalline silicon film is buried in this 71116. Figure 5). The capacitor electrode 21 is formed continuously along the Y direction within the X and Y grooves 16.

この後、先の酸化膜エツチングの際のフォトレジスト1
52とほぼ同じストライブパターンでこれより僅かに幅
の狭いフォトレジスト15ヨを形成し、キャパシタ電極
21の側面に接する素子分離絶縁膜としての酸化膜18
を0.5μm稈lエツチングして、段差部22を形成す
る(第6図)。
After this, photoresist 1 used in the previous oxide film etching
A photoresist 15 with approximately the same stripe pattern as 52 and slightly narrower in width is formed, and an oxide film 18 is formed as an element isolation insulating film in contact with the side surface of the capacitor electrode 21.
A step portion 22 is formed by etching the culm by 0.5 μm (FIG. 6).

これは後に側壁残しの技術により形成されるゲート電極
がY方向に連続的に配設されるようにするためである。
This is to ensure that the gate electrode, which will be formed later by the sidewall leaving technique, is disposed continuously in the Y direction.

そしてこの後、キャパシタ電極21上に低温酸化により
酸化1124を形成し、続いてT化喚エツチングを行っ
てキャパシタ電極21上端部に隣接するSi基板領域を
選択的に露出させ、Si3N+1113とキャパシタ電
121上の酸化膜24をマスクとしてSi基板領域をエ
ツチングする。このとき等方性エツチング法例えばCD
E法を用いることにより、キャパシタ電1fA21に隣
接する基板の稜線部が曲面をもって削り取られ、凹部2
3が形成される(第7図)。
After this, oxide 1124 is formed on the capacitor electrode 21 by low-temperature oxidation, and then T chemical etching is performed to selectively expose the Si substrate region adjacent to the upper end of the capacitor electrode 21, and the Si3N+ 1113 and the capacitor electrode 121 are etched. Using the upper oxide film 24 as a mask, the Si substrate region is etched. At this time, an isotropic etching method such as CD
By using the E method, the ridgeline portion of the substrate adjacent to the capacitor electrode 1fA21 is shaved off with a curved surface, and the recessed portion 2
3 is formed (Figure 7).

次に、マスクとして用いたSi3N+1113およびそ
の下の酸化膜12を除去し、熱酸化を行って凹部23に
ゲート絶縁膜25を形成した後、リンドープの第2層多
結晶シリコン膜を堆積し、これをRIEにより全面エツ
チングして凹部23およびこれと連続する段差部22の
側壁に選択的に残すことにより、ゲート電極26を形成
する。そしてゲート電極26をマスクとしてP又はAS
のイオン注入を行ってドレイン領域となるn型層27を
形成する(第8図)。ゲート電極26は図から明らかな
ように、キャパシタ電極21と同じ方向に連続的に、し
かもキャパシタ電極21に自己整合されて配設され、こ
れがワード橡となる。
Next, the Si3N+1113 used as a mask and the oxide film 12 below it are removed, thermal oxidation is performed to form a gate insulating film 25 in the recess 23, and then a phosphorus-doped second layer polycrystalline silicon film is deposited. The gate electrode 26 is formed by etching the entire surface by RIE and selectively leaving it on the side wall of the recess 23 and the step portion 22 continuous therewith. Then, using the gate electrode 26 as a mask, P or AS
Ion implantation is performed to form an n-type layer 27 that will become a drain region (FIG. 8). As is clear from the figure, the gate electrode 26 is disposed continuously in the same direction as the capacitor electrode 21 and self-aligned with the capacitor electrode 21, and this forms a word square.

最後に全面にCV Dによるシリコン酸化膜28を堆積
し、これにコンタクト孔29を開けて、ゲート電極26
と直交するX方向の各n型層27を共通接続するAR配
線30を形成する(第9図)。
Finally, a silicon oxide film 28 is deposited on the entire surface by CVD, a contact hole 29 is opened in this, and a gate electrode 26 is formed.
An AR wiring 30 is formed which commonly connects each n-type layer 27 in the X direction perpendicular to (FIG. 9).

このA2配線30はビット線となる。This A2 wiring 30 becomes a bit line.

こうしてこの実施例によれば、キャパシタ電t1を素子
分離溝内に埋込み形成した上、キャパシタ電極に接する
基板領域の稜線部をエツチングして凹部を形成してここ
に自己整合的にゲート電(量を埋込み形成している。従
ってM OS トランジスタ領域の面積は非常に小さい
ものとなる。しかもゲート電極はマスク合わせ工程を用
いず、側壁残しの技術により形成されるために、小さい
ゲート長のMOSトランジスタがバラツキなく形成され
る。
In this way, according to this embodiment, the capacitor electrode t1 is buried in the element isolation trench, and the ridgeline portion of the substrate region in contact with the capacitor electrode is etched to form a concave portion, in which the gate electrode (quantity) is placed in a self-aligned manner. Therefore, the area of the MOS transistor region is extremely small.Furthermore, the gate electrode is formed using a technique that leaves the sidewalls intact without using a mask alignment process, making it possible to form a MOS transistor with a small gate length. are formed without any variation.

またゲート電極が埋込み形成される領域は、等方性エツ
チングにより丸みを帯びて形成されているために、平面
的に見たゲート長が短いものであっても実効チャネル長
はそれより長くなり、効果的に短チヤネル効果が防止さ
れる。更にキャパシタ省(シは、垂直側壁を有する溝の
コーナ一部を覆うように形成される。第10図に示すよ
うな従来例とは異なり、溝側壁にのみ対向するため、信
頼性を低下させることなく大容量を実現することができ
る。以上により、この実施例によればdRAMの一部の
高集積化と信頼性向上を図ることができる。
Furthermore, since the region where the gate electrode is embedded is formed into a rounded shape by isotropic etching, even if the gate length is short in plan view, the effective channel length is longer than that. The short channel effect is effectively prevented. Furthermore, the capacitor is formed so as to cover a part of the corner of the groove having vertical sidewalls.Unlike the conventional example shown in FIG. 10, it faces only the sidewall of the groove, which reduces reliability. As described above, according to this embodiment, a part of the dRAM can be highly integrated and its reliability can be improved.

本発明は上記した実施例に限られるものではない。例え
ば実施例では二層多結晶シリコン膜によりキャパシタ電
極とゲート電極を形成したが、これらの全部或いは一部
を他の材料例えば、高融点金爪やそのシリサイドなどに
置換することが可能である。また実施例では、基板上に
予めX、Y両方向の素子分離用溝を同時に形成してこれ
に完全に素子分離絶縁膜を埋め込み形成した後、一方向
の素子分離溝内の絶縁膜を途中までエツチングすること
で、キャパシタ電を埋込み領域を設けた。
The present invention is not limited to the embodiments described above. For example, in the embodiment, the capacitor electrode and the gate electrode were formed using a two-layer polycrystalline silicon film, but it is possible to replace all or part of these with other materials such as high melting point gold nail or its silicide. In addition, in this embodiment, element isolation grooves in both the X and Y directions are formed on the substrate at the same time, and the element isolation insulating film is completely buried in the grooves, and then the insulating film in the element isolation groove in one direction is removed halfway. By etching, a region for embedding the capacitor was provided.

これに対し、先ずX方向の素子分離溝をエツチング形成
し、ここに完全に素子分離絶縁膜を埋込み形成した後、
Y方向の素子分離溝をエツチング形成してここに途中ま
で素子分離絶縁膜を埋込み形成することにより、実施例
と同様の素子分離構造を得ることができる。本発明はこ
のよう工程を採用した場合も有効である。
On the other hand, first, an element isolation groove in the X direction is formed by etching, and after the element isolation insulating film is completely buried therein,
An element isolation structure similar to that of the embodiment can be obtained by etching an element isolation groove in the Y direction and burying an element isolation insulating film partway therein. The present invention is also effective when such a process is employed.

その他、本発明はその趣旨を逸脱しない範囲で種々変形
して寅施することかできる。
In addition, the present invention can be modified in various ways without departing from its spirit.

[発明の効果] 以上述べたように本発明によれば、素子分離用溝にキャ
パシタ電極を埋込み形成すると共に、素子分離用溝の稜
線部を等方性エツチングで削って凹部を形成してここに
ゲート電極を埋込み形成することにより、特性のバラツ
キを伴うことなくMOSトランジスタ領域の面積縮小を
図ることができ、dRAMの高集積化と信頼性向上を図
ることができる。
[Effects of the Invention] As described above, according to the present invention, a capacitor electrode is embedded in an element isolation groove, and a concave portion is formed by etching the ridgeline of the element isolation groove by isotropic etching. By embedding the gate electrode in the gate electrode, it is possible to reduce the area of the MOS transistor region without causing variations in characteristics, and it is possible to achieve higher integration and reliability of the dRAM.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明のdRA\1裂造工俣の
概要を説明するための図、第2図(a)(b)(C)(
d)〜第9図(a)(b)(C)(d)は、本発明の一
実施例によるdRAMの製造工程を説明するための図、
第10図は従来提案されているdRA〜1の構造を示す
図である。 1・・・半導体基板、2・・・マスク材、3・・・素子
分離用溝、4・・・素子分離絶縁膜、5・・・キャパシ
タ電極、6・・・凹部、7・・・醇化膜、8・・・ゲー
ト電極(ワード腺)、9・・・n型層、10・・・配線
(ビット線)、11・・・p型3i基板、12・・・酸
化膜、13・・・Si3N4膜、14・・・酸化膜、1
51〜153・・・フォトレジスト、16・・・素子分
離用溝、17・・・p′″型1.18・・・酸化膜(素
子分離絶縁膜)、19・・・n−型苦、20・・・キャ
パシタ絶縁膜、21・・・キャパシタ電極、22・・・
段差部、23・・・凹部、24・・・潴化膜、25・・
・ゲート絶縁膜、2G・・・ゲート電極、27・・・n
型層、28・・・酸化膜、2つ・・・コンタクト孔、 30・・・へ2配線(ビット;1)。 出願人代理人 弁理士 鈴江武彦 第1図(1〕 第1図(2) く   の 第 2 図(2) く   ω 第3図(2) く    の 第4図(2) く   の 第 5 図(2) −の 第6図(2) 第7図(2) く  の 第8図(2) く   の   −
FIGS. 1(a) to (d) are diagrams for explaining the outline of the dRA\1 Rakuzo Kumat of the present invention, and FIGS. 2(a), (b), and (C) (
d) to FIG. 9(a), (b), (C), and (d) are diagrams for explaining the manufacturing process of dRAM according to an embodiment of the present invention,
FIG. 10 is a diagram showing the structure of the conventionally proposed dRA~1. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Mask material, 3... Element isolation trench, 4... Element isolation insulating film, 5... Capacitor electrode, 6... Concave portion, 7... Melting Film, 8... Gate electrode (word gland), 9... N-type layer, 10... Wiring (bit line), 11... P-type 3i substrate, 12... Oxide film, 13...・Si3N4 film, 14... Oxide film, 1
51 to 153... Photoresist, 16... Element isolation trench, 17... P'' type 1.18... Oxide film (element isolation insulating film), 19... N- type resist, 20... Capacitor insulating film, 21... Capacitor electrode, 22...
Stepped portion, 23... Concave portion, 24... Tempered membrane, 25...
・Gate insulating film, 2G...gate electrode, 27...n
Mold layer, 28...Oxide film, 2...Contact holes, 30...2 wirings (bit; 1). Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 (1) Figure 1 (2) Figure 2 (2) Figure 3 (2) Figure 4 (2) Figure 5 ( 2) Figure 6 (2) of - Figure 7 (2) Figure 8 (2) of -

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に素子分離用溝を形成する工程と、一方向の
素子分離溝に沿ってその底部に素子分離絶縁膜を、溝側
壁にキャパシタ絶縁膜をそれぞれ設けてキャパシタ電極
を埋込む工程と、前記キャパシタ電極が埋め込まれた素
子分離溝に接する基板の稜線部を等方性エッチング法に
より削り落として曲面をもつ凹部を形成する工程と、形
成された凹部にゲート絶縁膜を介してワード線となるゲ
ート電極を埋込み形成する工程と、前記ゲート電極をマ
スクとして基板に不純物を導入してドレイン層を形成す
る工程と、前記ドレイン層にコンタクトするビット線と
なる配線を形成する工程とを備えたことを特徴とする半
導体記憶装置の製造方法。
a step of forming an element isolation trench in a semiconductor substrate; a step of embedding a capacitor electrode by providing an element isolation insulating film at the bottom of the unidirectional element isolation trench and a capacitor insulating film on the side wall of the trench; A step in which the ridgeline of the substrate in contact with the element isolation groove in which the capacitor electrode is embedded is removed using an isotropic etching method to form a concave portion with a curved surface, and a word line is formed by passing a gate insulating film into the formed concave portion. The method includes a step of embedding a gate electrode, a step of introducing impurities into a substrate using the gate electrode as a mask to form a drain layer, and a step of forming a wiring to be a bit line in contact with the drain layer. A method for manufacturing a semiconductor memory device, characterized by:
JP61201710A 1986-08-29 1986-08-29 Manufacture of semiconductor storage device Pending JPS6358863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201710A JPS6358863A (en) 1986-08-29 1986-08-29 Manufacture of semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201710A JPS6358863A (en) 1986-08-29 1986-08-29 Manufacture of semiconductor storage device

Publications (1)

Publication Number Publication Date
JPS6358863A true JPS6358863A (en) 1988-03-14

Family

ID=16445643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201710A Pending JPS6358863A (en) 1986-08-29 1986-08-29 Manufacture of semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS6358863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194458A (en) * 1988-01-29 1989-08-04 Nec Kyushu Ltd Semiconductor memory
EP1026740A2 (en) * 1999-02-01 2000-08-09 Infineon Technologies North America Corp. Formation of isolation layer over trench capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194458A (en) * 1988-01-29 1989-08-04 Nec Kyushu Ltd Semiconductor memory
EP1026740A2 (en) * 1999-02-01 2000-08-09 Infineon Technologies North America Corp. Formation of isolation layer over trench capacitor
EP1026740A3 (en) * 1999-02-01 2005-09-14 Infineon Technologies North America Corp. Formation of isolation layer over trench capacitor

Similar Documents

Publication Publication Date Title
JP2606857B2 (en) Method for manufacturing semiconductor memory device
JPH07130871A (en) Semiconductor memory device
JPH0682800B2 (en) Semiconductor memory device
JPH01125858A (en) Semiconductor device and manufacture thereof
JPS62286270A (en) Semiconductor memory
JPS61107762A (en) Manufacture of semiconductor memory device
EP0652592A2 (en) Semiconductor memory device and manufacturing method thereof
JP2671899B2 (en) Semiconductor storage device
JPH0793372B2 (en) Semiconductor memory device
JPS62200759A (en) Semiconductor memory
KR100280516B1 (en) Separation structure manufacturing method and semiconductor device manufacturing method of semiconductor device
JPS6358863A (en) Manufacture of semiconductor storage device
JPS6350056A (en) Semiconductor storage device
JPH05291528A (en) Semiconductor memory device and manufacture thereof
JPH06120446A (en) Semiconductor storage device and manufacture thereof
JP2739965B2 (en) Semiconductor memory device and method of manufacturing the same
JPS63260166A (en) Semiconductor memory device and manufacture thereof
JP2659991B2 (en) Semiconductor memory device and method of manufacturing the same
JPS6362370A (en) Manufacture of semiconductor device
JPH0286165A (en) Semiconductor storage device and its manufacture
JPH05167031A (en) Semiconductor device and manufacture thereof
JPS62156856A (en) Dynamic memory cell and manufacture thereof
JPS62193274A (en) Semiconductor memory and manufacture thereof
JP2611282B2 (en) Manufacturing method of memory device
JPH03165558A (en) Semiconductor memory device and manufacture thereof