JPS6358612A - Production of thin film magnetic head - Google Patents

Production of thin film magnetic head

Info

Publication number
JPS6358612A
JPS6358612A JP20142286A JP20142286A JPS6358612A JP S6358612 A JPS6358612 A JP S6358612A JP 20142286 A JP20142286 A JP 20142286A JP 20142286 A JP20142286 A JP 20142286A JP S6358612 A JPS6358612 A JP S6358612A
Authority
JP
Japan
Prior art keywords
substrate
heat treatment
film
thin film
lower core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20142286A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Miura
義從 三浦
Kiyoshi Ishihara
きよし 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20142286A priority Critical patent/JPS6358612A/en
Publication of JPS6358612A publication Critical patent/JPS6358612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To produce a stable lower core by forming the grooves and a magnetic film on a substrate and grinding the surface of the substrate after applying a heat treatment to the substrate in a magnetic field. CONSTITUTION:A magnetic film 2 is formed on a substrate 1 containing the lower core grooves 3 and this substrate 1 undergoes a heat treatment in a magnetic field to reduce the warp of the substrate 1 caused when a core member is formed. Then the substrate 1 is mounted to a jig and lapped. It is desirable to apply the load to the substrate 1 in the heat treatment in order to obtain a stable lower core.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜磁気ヘッドの製造方法に係わり。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of manufacturing a thin film magnetic head.

特に生産性の高い該ヘッドの製造方法に関するものであ
る。
In particular, the present invention relates to a method of manufacturing the head with high productivity.

〔従来の技術〕[Conventional technology]

従来から知られている薄膜磁気ヘッドとしては特開昭6
0−22<5008号に記載のように、下部コアが基板
に形成された溝に埋設された構造となっている。従来ヘ
ッドの下部コア形成法について第4図を用いて説明する
。同図は従来ヘッドの下部コア形成工程図であり、図中
1は基板、2は磁性膜。
A conventionally known thin-film magnetic head is the JP-A-6
As described in No. 0-22<5008, the structure is such that the lower core is embedded in a groove formed in the substrate. A method of forming the lower core of a conventional head will be explained with reference to FIG. This figure is a process diagram for forming the lower core of a conventional head, in which 1 is a substrate and 2 is a magnetic film.

3は基板に形成された溝である。3 is a groove formed in the substrate.

筐す高精度ダイブ−で基板1の表面に所望形状の溝を形
成する。(第4図α)その後コア材である磁性膜を形成
しく第4図b)2溝部以外の磁性膜分研削にて除去する
。(第4図C) 〔発明が解決しようとする問題点〕 しかし、従来の薄膜ヘッド製造方法においてはコア材形
成後にみられる基板の反り(第5図h)について考慮さ
れておらす、以下に示すような問題点があった。
A groove of a desired shape is formed on the surface of the substrate 1 using a high-precision diver. (FIG. 4α) After that, a magnetic film serving as a core material is formed, and (FIG. 4b) the portion of the magnetic film other than the two groove portions is removed by grinding. (Fig. 4 C) [Problems to be Solved by the Invention] However, in the conventional thin film head manufacturing method, the warpage of the substrate (Fig. 5 h) observed after forming the core material is not taken into account. There were problems as shown.

すなわち、基板が反った状態で平面研削を行なった場合
、ラップ後の下部コア厚が場所により変化するという問
題が生じろ。例えは第6図に示した場合を例にとると、
基板中心部の下部コア厚が端部の厚さに比べて薄くなる
。従って、基板全体にわたって−様な下部コア厚を得る
ためには、ランプ前に、基板を平担にする必要がある。
That is, if surface grinding is performed with the substrate in a warped state, a problem arises in that the thickness of the lower core after lapping varies depending on the location. For example, if we take the case shown in Figure 6,
The thickness of the lower core at the center of the board is thinner than the thickness at the edges. Therefore, in order to obtain a uniform bottom core thickness across the substrate, it is necessary to flatten the substrate before lamps.

従来、前記基板平担化法として、治具等に荷重を印加し
て貼付する方法が用いられていた。しかし、同方法には
、1)充分な基板平担性が得られない。2)荷重印加時
に基板が損傷を受ける等の問題がありた。
Conventionally, as the method for flattening the substrate, a method has been used in which a load is applied to a jig or the like to attach the substrate. However, with this method, 1) sufficient substrate flatness cannot be obtained; 2) There were problems such as the substrate being damaged when a load was applied.

本発明の目的は、上記従来技術のもつ問題点を解決し、
安定した下部コア形成法を提供することにある。
The purpose of the present invention is to solve the problems of the above-mentioned prior art,
The object of the present invention is to provide a stable lower core forming method.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的はコア材形成後に熱処理1例えば、荷重印加熱
処理を施すことにより、達成される。
The above object can be achieved by performing heat treatment 1, for example, load impression heat treatment, after forming the core material.

〔作用〕 熱処理を施すことにより、熱処理後の基板の反りを小さ
くできる。
[Function] By performing the heat treatment, the warpage of the substrate after the heat treatment can be reduced.

〔実施例〕〔Example〕

一般的に成膜後の基板反りは、膜の残留応力と密接に関
係している。残留応力は、熱応力と固有応力とに大別さ
れ、前者は膜材質と基板との熱膨張係数差に、また後者
は薄膜固有の膜成長プロセスに起因するものである。
Generally, substrate warpage after film formation is closely related to residual stress in the film. Residual stress is broadly classified into thermal stress and intrinsic stress, the former being due to the difference in thermal expansion coefficient between the film material and the substrate, and the latter being due to the film growth process specific to the thin film.

本発明者の内部応力に関する系統的検討によりパーマロ
イ、センダスト膜については、熱応力が支配的であり、
 CoNbZr膜等の非晶質磁性合金膜の場合は固有応
力が支配的であることが明らかとなった。
The inventor's systematic study on internal stress revealed that thermal stress is dominant in Permalloy and Sendust films.
It has become clear that in the case of an amorphous magnetic alloy film such as a CoNbZr film, intrinsic stress is dominant.

また、一般的に熱応力を緩和させることは困難であるが
固有応力は熱処理等によって減少することが知られてい
る。特にCoNbZr膜の場合1本発明者の検討により
、基板の反り量は第2図及び第6図に示すような変化を
することがわかった。第2図iま膜厚とAs dgpo
、時における基板の反り量との関係で、第3図は熱処理
による基板反り量の変化である。
Furthermore, although it is generally difficult to alleviate thermal stress, it is known that inherent stress can be reduced by heat treatment or the like. Particularly in the case of a CoNbZr film, the inventors have found that the amount of warpage of the substrate changes as shown in FIGS. 2 and 6. Figure 2 Film thickness and As dgpo
, FIG. 3 shows the change in the amount of substrate warpage due to heat treatment.

なお第5図において、熱処理後の反り量はAs −cL
gpo、時の反り量で規格化している。同図に示したよ
うに、基板の反り量は膜厚の増加と共に大きくなり、か
つ熱処理温度の増加と共に減少する。
In addition, in FIG. 5, the amount of warpage after heat treatment is As -cL
It is standardized by gpo, the amount of warpage over time. As shown in the figure, the amount of warpage of the substrate increases as the film thickness increases, and decreases as the heat treatment temperature increases.

特に熱処理温度依存性については、荷重を印加し基板の
反りを強制的に修整しつつ、熱処理を施した場合の方が
、無荷重の場合に比べ、熱処理後の反り量が小さくなる
In particular, regarding the heat treatment temperature dependence, when heat treatment is performed while applying a load to forcibly correct the warpage of the substrate, the amount of warpage after heat treatment is smaller than when no load is applied.

ランプ工程で要求される基板の平担性(反り量)は5μ
m以下であり、これを達成するための熱処理温度は1例
えば膜厚が60μmの場合、第2図、第3図より400
 ゛O以上(無荷重)、あるいは550’C以上(荷重
有り)となる。
The flatness (amount of warpage) of the substrate required in the lamp process is 5μ
m or less, and the heat treatment temperature to achieve this is 1. For example, when the film thickness is 60 μm, from Figures 2 and 3, the heat treatment temperature is 400 μm.
The temperature is 550'C or higher (with load) or 550'C or higher (with load).

しかし、 CtrNbZr膜等非晶質合膜薄非晶質合金
薄膜場中で熱処理を施した場合、磁壁の固着化が発生し
、磁気特性が著しく損われる。これを回避するためには
、磁壁の無い状態で熱処理をする必要があり、そのため
には熱処理時に磁界を印加する必要がある。
However, when a thin amorphous alloy thin film such as a CtrNbZr film is heat-treated in a field, the magnetic domain walls become stuck and the magnetic properties are significantly impaired. In order to avoid this, it is necessary to perform heat treatment in a state where there are no domain walls, and for this purpose it is necessary to apply a magnetic field during heat treatment.

以下、不発明の具体的実施例について説明する。Hereinafter, specific embodiments of the invention will be described.

(実施例1) 本発明により成る下部コア形成工程について。(Example 1) Regarding the lower core forming step according to the present invention.

第1図を用いて説明する。第1図は下部コア形成工程図
である。図中1はM n OとN i Oの焼結体から
成る基板、2はコア材であるCoN1rZr膜、3は。
This will be explained using FIG. FIG. 1 is a diagram showing the lower core forming process. In the figure, 1 is a substrate made of a sintered body of M n O and N i O, 2 is a CoN1rZr film as a core material, and 3 is a core material.

基板に施された下部コア用溝である。This is a groove for the lower core made on the board.

なお、基板溝形成工程、コア材形成工程及びランプ工程
は従来例とほぼ同様である。また溝3の形状は深さ30
μ7B 、φ:60μmでありCoNbZr膜2の膜厚
は30μmである。コア材2の形成後、の基板反り量は
約30μmであり2400°C以上で、5O=の磁場中
熱処理を施すことにより基板反り量は5μm以下となっ
た。本基板を治具に装着し、ラップした結果下部コア膜
厚のバラツキは±2μm以下トナリ、かつラップ時にお
ける基板損傷も皆無となった。
Note that the substrate groove forming process, core material forming process, and lamp process are almost the same as in the conventional example. Also, the shape of groove 3 has a depth of 30 mm.
μ7B, φ: 60 μm, and the thickness of the CoNbZr film 2 is 30 μm. After forming the core material 2, the amount of substrate warpage was approximately 30 μm, and by performing heat treatment in a 5O= magnetic field at 2400° C. or higher, the amount of substrate warp was reduced to 5 μm or less. As a result of mounting this substrate on a jig and lapping, the variation in the thickness of the lower core film was less than ±2 μm, and there was no damage to the substrate during lapping.

〔実施例2) 荷重を印加しながら(0,2kp/i以上) 、 35
0’0以上で60分の熱処理を施した場合も実施例1と
同様の結果が得られた。
[Example 2] While applying a load (0.2 kp/i or more), 35
The same results as in Example 1 were obtained when heat treatment was performed for 60 minutes at a temperature of 0'0 or more.

なお、従来のラップ工程では時として膜がはく離すると
いう問題がみられたが1本実施例においては、膜はく離
は皆無であった。従って本発明の波及的効果として、基
板とCoNbZr膜との付着強度の増加が認められた。
In addition, in the conventional lapping process, there was sometimes a problem that the film peeled off, but in this example, there was no film peeling at all. Therefore, as a ripple effect of the present invention, an increase in the adhesion strength between the substrate and the CoNbZr film was observed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、安定した下部コア形成方法を提供する
ことが可能となった。
According to the present invention, it has become possible to provide a stable lower core forming method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の薄膜磁気ヘッドの下部コア形成工程
図、第2図は膜厚と反り量との関係を示す図、第3図は
熱処理温度と反り量との関係を示す図、第4図は従来の
薄膜硼気ヘッドの下部コア形成工程図である。 1・・・・・・・・・・・・基板 2・・・・・・・・・・・・研性膜 6・・・・・・・・・・・・下部コア用溝代理人 弁理
士 小 川 勝 勇、1゜駕 1 コ (暴 瓢 21目白−、トヨ= 111ヒ 3 千じつ7弔鷹 嶌 2 図 腰  ユ (F−) 熱た理1崖(・0) A 4 口
FIG. 1 is a diagram showing the process of forming the lower core of the thin film magnetic head of the present invention, FIG. 2 is a diagram showing the relationship between the film thickness and the amount of warpage, and FIG. 3 is a diagram showing the relationship between the heat treatment temperature and the amount of warpage. FIG. 4 is a process diagram for forming the lower core of a conventional thin-film borium head. 1・・・・・・・・・・・・Substrate 2・・・・・・・・・Abrasive film 6・・・・・・・・・・・・Lower core groove agent Patent attorney Shi Ogawa Katsu Isamu, 1 degree gap 1 ko (violent gourd 21 Mejiro-, Toyo = 111 Hi 3 Senjitsu 7 Condolences Takashima 2 Zukoshi Yu (F-) Hot Ri 1 cliff (・0) A 4 Mouth

Claims (1)

【特許請求の範囲】 1、基板あるいは基板上に形成された絶縁層に埋設され
た下部コアを有する薄膜磁気ヘッドの製造方法において
、該下部コア形成工程が、少くとも磁性膜形成工程、磁
場中熱処理工程及び平面研削工程から構成されているこ
とを特徴とする薄膜磁気ヘッドの製造方法。 2、特許請求の範囲第1項記載の磁場中熱処理工程が、
基板に荷重を印加しながら磁場中熱処理を施す工程であ
ることを特徴とする薄膜磁気ヘッドの製造方法。 3、特許請求の範囲第1項記載の磁性膜形成工程が、形
成された磁性膜の内部応力として、固有応力が支配的と
なる工程であることを特徴とする薄膜磁気ヘッドの製造
方法。
[Claims] 1. In a method for manufacturing a thin film magnetic head having a lower core embedded in a substrate or an insulating layer formed on a substrate, the lower core forming step is performed at least in a magnetic film forming step and in a magnetic field. A method for manufacturing a thin film magnetic head, comprising a heat treatment process and a surface grinding process. 2. The magnetic field heat treatment step according to claim 1,
A method for manufacturing a thin film magnetic head, characterized in that the process includes performing heat treatment in a magnetic field while applying a load to a substrate. 3. A method for manufacturing a thin film magnetic head, characterized in that the magnetic film forming step according to claim 1 is a step in which intrinsic stress is dominant as the internal stress of the formed magnetic film.
JP20142286A 1986-08-29 1986-08-29 Production of thin film magnetic head Pending JPS6358612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20142286A JPS6358612A (en) 1986-08-29 1986-08-29 Production of thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20142286A JPS6358612A (en) 1986-08-29 1986-08-29 Production of thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS6358612A true JPS6358612A (en) 1988-03-14

Family

ID=16440814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20142286A Pending JPS6358612A (en) 1986-08-29 1986-08-29 Production of thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS6358612A (en)

Similar Documents

Publication Publication Date Title
US4659606A (en) Substrate members for recording disks and process for producing same
JPS63195815A (en) Production of thin film head
JPS6358612A (en) Production of thin film magnetic head
US5042140A (en) Process for making an apparatus utilizing a layered thin film structure
JPS60193114A (en) Production of thin film magnetic head
US5322595A (en) Manufacture of carbon substrate for magnetic disk
JPH09174394A (en) Polishing method of semiconductor wefer
JP2519138B2 (en) Method for uniformizing thickness of Si single crystal thin film
JPH0664730B2 (en) Magnetic recording body
JPS6045919A (en) Substrate for thin film magnetic head and forming method of magnetic pole
JP2519139B2 (en) Method for uniformizing thickness of Si single crystal thin film
JPS6341609Y2 (en)
JPS60195739A (en) Manufacture of aluminum material for vertically magnetized magnetic disk
JP2769072B2 (en) Method for manufacturing insulating layer separated substrate
JPS60191415A (en) Substrate for thin film head
JPS59168934A (en) Production of substrate for magnetic disc
JPS5972139A (en) Processing method for sheet material
JPH01112518A (en) Substrate for magnetic disk
JPS62154319A (en) Formation of slider floating surface for thin film magnetic head
JPH03168909A (en) Production of magnetic head
JPS61211809A (en) Thin film magnetic head
JPS61240434A (en) Production of magnetic thin film
JPS59124025A (en) Magnetic recording medium
JPS62202304A (en) Manufacture of magnetic head
JPS59110796A (en) Manufacture of magnetic disk substrate