JPS6357714A - Manufacture of extra low p steel by refining - Google Patents

Manufacture of extra low p steel by refining

Info

Publication number
JPS6357714A
JPS6357714A JP61200094A JP20009486A JPS6357714A JP S6357714 A JPS6357714 A JP S6357714A JP 61200094 A JP61200094 A JP 61200094A JP 20009486 A JP20009486 A JP 20009486A JP S6357714 A JPS6357714 A JP S6357714A
Authority
JP
Japan
Prior art keywords
slag
steel
ladle
dephosphorization
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61200094A
Other languages
Japanese (ja)
Inventor
Shohei Korogi
興梠 昌平
Yoshiyasu Shirota
城田 良康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61200094A priority Critical patent/JPS6357714A/en
Publication of JPS6357714A publication Critical patent/JPS6357714A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To safely and surely manufacture an extra low P steel in large quantities by discharging a molten steel satisfying prescribed conditions into a ladle whose slag line is made of a basic refractory and by carrying out slag removal and dephosphorization in the ladle. CONSTITUTION:A ladle whose slag line is made of a basic refractory so as to prevent Al2O3 from entering slag by leaching is prepd. as a ladle for dephosphorization. A molten steel contg. <=0.15wt% C is discharged into the ladle from a steel making furnace in an undeoxidized state and slag is removed by >=80%. A CaO-base flux is then added to the ladle to restrict the amount of Al2O3 to <=5% and the molten steel is dephosphorized. Slag produced by the dephosphorization is removed by >=80%.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、鋼中P含有量([P]量)が略10ppm
程度の超低P鋼を実操業規模で安定して溶製する方法に
関するものである。
[Detailed Description of the Invention] <Industrial Application Field> This invention is applicable to steel in which the P content ([P] amount) is approximately 10 ppm.
The present invention relates to a method for stably producing ultra-low P steel on an actual operational scale.

〈従来技術とその問題点〉 近年、鋼中P含有量の極力低い鋼材に対する要望が一段
と高まってきているが、従来、超低Pliと呼ばれる程
に[P]量を低減した綱の溶製には、なる製造プロセス
が採用されており、このうちの出鋼脱P工程や溶鋼膜P
工程では、反応容器として一般にAlto、を主成分と
する耐火物で構成された取鍋が使用されてきた。そして
、脱P剤としては“CaOCaF z  FeOFez
O3系フラツクスが普通に用いられていた。
<Prior art and its problems> In recent years, the demand for steel materials with as low a P content as possible has been increasing, but conventionally, it has been difficult to melt steel with a reduced amount of [P] to the extent that it is called ultra-low Pli. The following manufacturing processes are adopted, including the steel tapping process and the molten steel film P process.
In the process, a ladle made of a refractory material mainly composed of Alto has generally been used as a reaction vessel. As a dephosphorizing agent, “CaOCaF z FeOFez
O3-based fluxes were commonly used.

しかしながら、このような従来の方法で安定溶製出来る
超低P鋼は[P]量が精々50ppmを下回る程度のも
のでしかなく、該方法ではそれ以上の脱Pの進行が殆ど
見られないので[P]量:IQppm程度の鋼を実操業
規模で安定して溶製するのは極めて困難なことであった
However, the ultra-low P steel that can be stably produced by such conventional methods has a [P] content of less than 50 ppm at most, and with this method, there is almost no progress in removing P beyond that level. [P] amount: It is extremely difficult to stably melt steel with an amount of about IQ ppm on an actual operational scale.

〈問題点を解決するための手段〉 そこで本発明者等は、このところ頓に高まっている超低
Plに対する要望に応えるべく[Plffiを10pp
m前後にまで低減した鋼を実操業規模で安定して溶製し
得る方法の開発を目指し、まず従来法にて上記超低Pw
4が安定に得られない原因を究明すべく研究を行ったと
ころ、以下(al〜(glに示す如き知見が得られたの
である。即ち、(al  これまで溶鋼脱硫等の際のフ
ラックス融点調整剤として一般的に用いられてきたA/
203が溶泪脱P時の脱P反応を阻害する大きな要因と
なっていること。
<Means for solving the problem> Therefore, in order to meet the demand for ultra-low Pl, which has recently been increasing rapidly, the present inventors developed [Plffi 10pp]
Aiming to develop a method that can stably produce steel with a reduced Pw of around
When we conducted research to find out the reason why 4 was not stably obtained, we obtained the following findings (al~(gl). In other words, (al) A/ which has been commonly used as an agent
203 is a major factor that inhibits the dephosphorization reaction during dephosphorization.

第1図は、最も脱P率の良好な45Ca O−15Ca
 F t40FezOz系フラックスに八β20.を混
入させ、フラックスとメタル間のP分配((P)/ [
Pl )の変化を調査したものである。なお、上記フラ
ックスが脱r〕に優れていることは、CaFz=15%
と一定にしてCaOとFe2O3を置換した場合のフラ
ックスについてフラックス組成とスラグ−メタル間のP
分配を調査した結果(第2図)から判明したもので、好
適範囲であるCaO: 30〜50重量%、 CaFz
  : 15重量%、残り:FezO3の組成から最適
値を選んだものである。
Figure 1 shows 45Ca O-15Ca, which has the best P removal rate.
F t40FezOz flux with 8β20. P distribution between flux and metal ((P)/[
This study investigated changes in Pl). Furthermore, the fact that the above flux is excellent in removing r is that CaFz=15%
The flux composition and P between slag and metal regarding the flux when CaO and Fe2O3 are replaced with
It was found from the results of the distribution investigation (Figure 2) that the preferred range is CaO: 30 to 50% by weight, CaFz
: 15% by weight, remainder: The optimum value was selected from the composition of FezO3.

この第1図からも明らかなように、A i2 z O、
Jが20重量%混入するとP分配は約1/3まで減少す
るものであり、溶鋼脱P工程において脱Pを十分に行う
にはスラグ中のAl2O2を極力抑えなければならない
ことが分かる。
As is clear from this Figure 1, A i2 z O,
When 20% by weight of J is mixed, the P distribution decreases to about 1/3, which shows that Al2O2 in the slag must be suppressed as much as possible in order to sufficiently remove P in the molten steel dephosphorization process.

(b)  なお、スラグ中のA7!203源としては高
炉スラグ、脱Pフラックス及び精錬容器の耐火物の3通
りが考えられるが、高炉スラグからのものは、高炉鋳床
上、溶銑脱P後並びに転炉出鋼時に除滓を行っているの
で侵入量は無視できる程度であり、脱Pフラックスから
のものは、NazO3iOz系フラックスを使用する場
合には特開昭58−221218号にも見られるような
制限を設ける必要があるかも知れないが、CaO系フラ
ックスの場合には無視出来る程度の量でしかないことか
ら見て、スラグ中へのAA!03侵入源と侵入量も厄介
なのは精錬容器の耐火物であり、スラグ中へAβZOX
が混入するのを十分に防止するには精錬容器耐火物の材
質変更かを欠かせないこと。
(b) There are three possible sources of A7!203 in slag: blast furnace slag, dephosphorization flux, and refractories in refining vessels. Since the slag is removed at the time of tapping the converter, the amount of intrusion is negligible, and the amount of intrusion from the P-free flux is as seen in JP-A-58-221218 when NazO3iOz-based flux is used. Although it may be necessary to set some restrictions, in the case of CaO-based fluxes, the amount is negligible, so AA! 03 The source and amount of intrusion is also troublesome because of the refractories in the smelting container, and AβZOX enters the slag.
In order to sufficiently prevent the contamination of the refining vessel, it is essential to change the material of the refractory material of the refining vessel.

即ち、八1203はCaO−CaF Z−FeO−Fe
zOi系融体に対して大きな溶解度を有しており、この
ためスラグ−メタル間の反応促進を図って脱P剤のイン
ジェクションやガスバブリングを行うと、従来の精錬容
器耐火物ではその中のAl2O2がスラグ中へどうして
も溶出してしまうのである。
That is, 81203 is CaO-CaF Z-FeO-Fe
It has a high solubility in zOi-based melts, and therefore, when injection of a dephosphorizing agent or gas bubbling is performed to promote the reaction between slag and metal, the Al2O2 in the refractory of the conventional refining vessel is is inevitably leached into the slag.

tc+  また、溶鋼の脱Pには脱P処理前の鋼中C量
、即ち[C]量も影響を与えており、[Pl量が10p
pm前後の超低Plを安定して製造するためには[C]
量を低(しておくことが必要であること。
tc+ In addition, the amount of C in the steel before dephosphorization treatment, that is, the amount of [C], also affects the dephosphorization of molten steel.
In order to stably produce ultra-low Pl around pm [C]
It is necessary to keep the quantity low.

第3図は、脱P処理前の溶鋼の[C]量と脱P率との関
係を示すグラフであるが、溶鋼脱Pのような1600〜
1650℃の高温下では[C]量が高いと [Cコ + (Fed)  =  [Fel  →−C
O↑   。
Figure 3 is a graph showing the relationship between the amount of [C] in molten steel before dephosphorization treatment and the dephosphorization rate.
At a high temperature of 1650℃, if the amount of [C] is high, [C + (Fed) = [Fel → -C]
O↑.

2 [P ] ” 5 (Fed) ”’ (PzOs
) + 5 [Felで表される脱炭と脱Pとが競合し
、第3図で示されるように脱P率が低下する。
2 [P] ” 5 (Fed) ”' (PzOs
) + 5 [Decarburization represented by Fel and dephosphorization compete with each other, and the dephosphorization rate decreases as shown in FIG.

(d)  更に、製鋼炉からの出鋼に際して)岩崎を脱
酸すると該出鋼時に復P現象が顕著に現れるので、[P
l量が10ppmi後の超低Plを安定して製造するた
めには未脱酸のままの溶鋼に脱P処理を施す必要がある
こと。
(d) Furthermore, when Iwasaki is deoxidized (when tapping steel from a steelmaking furnace), the re-P phenomenon appears markedly at the time of tapping, so [P
In order to stably produce ultra-low Pl after the l content reaches 10 ppmi, it is necessary to perform a dephosphorization treatment on undeoxidized molten steel.

第4図は、製鋼炉から出鋼する溶鋼の[0]量と出鋼中
の復P率との関係を調査した結果を示すものであるが、
通常は[01量70.03〜0.10重量%程度である
製鋼炉からの溶鋼を脱酸して[0]量: 0.03重量
%未満にすると出鋼中の復P量が顕著に上昇すくことが
明らかである。
Figure 4 shows the results of investigating the relationship between the [0] amount of molten steel tapped from a steelmaking furnace and the return P rate during tapping.
Normally, the amount of [0] is about 70.03 to 0.10% by weight.If the molten steel from the steelmaking furnace is deoxidized to reduce the amount of [0] to less than 0.03% by weight, the amount of regenerated P during tapping will be significant. It is clear that it will rise.

(e)シかも、[Pl量が10ppm前後の超低Plを
溶製する際のPのマスバランスを調査して明らかになっ
たことであるが、鋼中に入り込むPの大半は由来の不明
なものであり、[Pl fflを上記レベルまで下げる
ためには上記した各手段の他に脱P処理容器(取鍋)で
の徹底した除滓処理を施す必要があること。
(e) [This was revealed by investigating the mass balance of P when melting ultra-low Pl with a P content of around 10 ppm, but the origin of most of the P that enters the steel is unknown. [In order to lower Pl ffl to the above level, it is necessary to perform thorough sludge removal treatment in a P removal treatment container (ladle) in addition to the above-mentioned measures.

(f)  この時の除滓手段としては、処理容器(取鍋
)は1つだけを使用し、スラグドラッガーによって脱P
前及び脱P後にスラグの殆どを除滓する方法を採用する
のが有利であること。
(f) At this time, only one processing container (ladle) is used as a means for removing slag, and a slag dragger is used to remove phosphorus.
It is advantageous to adopt a method that removes most of the slag before and after dephosphorization.

第5図は、転炉出鋼脱P後の除滓方法別にPのインプッ
トバランスを調査した結果を示しているが、この第5図
からも、2つの取鍋(この場合には250tと80t)
を使用すると前チャージの付着スラグからのPの混入が
2倍になって系に導入されるため由来の分からないPの
インプットが各々67%及び49%と多く、低P化する
ための障害となることが明らかであるのに対して、取鍋
は250tの物のみを使用し、スラグドラッガーにて脱
P前及び脱P後にスラグの殆ど(80%以上)除滓する
方法を採用するとPのインプ7)中の不明分が19%に
まで減少したことが分かる。
Figure 5 shows the results of investigating the input balance of P depending on the slag removal method after P removal from the converter. )
When P is used, the amount of P mixed in from the adhering slag of the previous charge is doubled and introduced into the system, resulting in a large input of P of unknown origin at 67% and 49%, respectively, which is an obstacle to lowering the P content. On the other hand, if only a 250-ton ladle is used and most of the slag (more than 80%) is removed before and after P removal with a slag dragger, the P It can be seen that the unknown content in Imp 7) has decreased to 19%.

なお、この調査において採用した転炉出港脱P後の除滓
方法と全体の超低P鋼溶製工程を第6図に示した。
Figure 6 shows the sludge removal method after the converter departs from port and the entire ultra-low P steel melting process adopted in this study.

(g)  加うるに、[P]量が10ppm前後の超低
PMを溶製するためには、スラグ−メタル間の物質収支
の点から予め溶鋼の[P] レベルを低減しておくこと
が望ましく、出来れば最終脱P工程へ供給される溶鋼の
[P] レベルは40ppm以下程度としておくのが好
ましいこと。
(g) In addition, in order to produce ultra-low PM with a [P] amount of around 10 ppm, it is necessary to reduce the [P] level in molten steel in advance from the viewpoint of material balance between slag and metal. Preferably, the [P] level of the molten steel supplied to the final deP step is preferably about 40 ppm or less.

第7図は、P分配、フラックス量、インプット[P]並
びに到達[P]の関係を示したグラフである。なお、イ
ンプット[P]は40ppmと20ppmについて、そ
してP分配はAl2O3が混入した場合+(P)/ [
P] =40) とスラグ中へIt z Oxが5%未
満の場合((P)/ [P] = 100)についてそ
れぞれ示した。ここで、到達[P]<10pp+nを安
定的に実現するためには[P]=5〜6ppPa程度を
目標とする必要があるが、上記の場合には(P)/ [
P] =100であればフラックス量が40Kg/Tの
場合でも到達[P]が9ppmとなるので、インプット
[P]は十分に低いこと、つまり[P] < 10pp
mの鋼を得るためには最終脱P工程へ供給される溶鋼の
[P] レベルが40ppm以下であることが望ましい
ことは容易に理解出来よう。
FIG. 7 is a graph showing the relationship among P distribution, flux amount, input [P], and arrival [P]. In addition, the input [P] is 40 ppm and 20 ppm, and the P distribution is + (P) / [ when Al2O3 is mixed.
P] = 40) and the case where It z Ox in the slag is less than 5% ((P)/[P] = 100), respectively. Here, in order to stably achieve the attainment [P] < 10pp+n, it is necessary to aim for [P] = about 5 to 6 ppPa, but in the above case, (P) / [
If P] = 100, the reached [P] will be 9 ppm even if the flux amount is 40 Kg/T, so the input [P] is sufficiently low, that is, [P] < 10 ppm.
It is easy to understand that in order to obtain a steel of m, it is desirable that the [P] level of the molten steel supplied to the final deP step be 40 ppm or less.

この発明は、上記知見に基づいてなされたものであり、 製鋼炉より、溶鋼中C含有量: 0.15重量%未満の
溶鋼を少なくともスラグラインが塩基性耐火物にて構成
された取鍋に未脱酸状態で出鋼した後スラグの80重量
%以上を除滓し、次いで生石灰系フラックスを添加して
スラグ中J/l、o、を5.0重量%以下に抑制した状
態で脱Pを行ってから、生成した脱Pスラグの80重量
%以上を除滓する操作を同一取鍋にて実施することによ
り、[P] レベルが10ppm前後の超低P鋼を安定
に溶製し得るようにした点、 に特徴を有するものである。
This invention was made based on the above findings, and includes the following steps: From a steelmaking furnace, molten steel with a C content of less than 0.15% by weight is transferred to a ladle having at least a slag line made of a basic refractory. After tapping the steel in an undeoxidized state, 80% by weight or more of the slag is removed, and then quicklime-based flux is added to suppress J/l, o in the slag to 5.0% by weight or less, and P is removed. After that, by carrying out the operation of removing 80% by weight or more of the generated dephosphorized slag in the same ladle, it is possible to stably produce ultra-low P steel with a [P] level of around 10 ppm. It is characterized by the following points.

なお、この発明の方法において、処理対象である溶鋼中
のC含有量を0.15重量%未満としたのは、溶鋼中の
C含有量が0.15重量%以上であると脱P率が低下し
て所望の超低P鋼を安定に溶製することが出来ないから
であり、未脱酸溶鋼を使用するのも、前述のように出鋼
時の復Pを抑えて超低P鋼の安定溶製を確実ならしめる
ためである。
In addition, in the method of this invention, the C content in the molten steel to be treated is set to be less than 0.15% by weight because if the C content in the molten steel is 0.15% by weight or more, the dephosphorization rate will decrease. This is because the desired ultra-low P steel cannot be stably produced due to the low P steel, and the reason why undeoxidized molten steel is used is to suppress the re-P during tapping and produce ultra-low P steel as mentioned above. This is to ensure stable melting of.

また、脱P処理用取鍋を少なくともスラグラインが塩基
性耐火物にて構成されたものと定めたのは、取鍋の耐火
物からAl2O3がスラグ中へ溶出して脱P率を下げる
のを防止するためで、取鍋のスラグラインがMgO,M
g0−C,MgO・CrzO,、。
In addition, the reason why the ladle for dephosphorization treatment is specified to have at least the slag line made of basic refractory material is to prevent Al2O3 from leaching into the slag from the refractory material of the ladle and lowering the dephosphorization rate. In order to prevent this, the slag line of the ladle is
g0-C, MgO・CrzO,.

CaO等を主体とする塩基性耐火物であれば溶出しても
脱Pへの影響が少ないためである。そして、前チャージ
の付着スラグからのP混入を極力防止して所望の超低p
mの安定製造を達成するため、使用取鍋を1つに制限し
た。
This is because basic refractories mainly composed of CaO or the like have little effect on dephosphorization even if they elute. It also prevents as much as possible P mixing from the adhering slag of the previous charge to achieve the desired ultra-low p.
In order to achieve stable production of m, the number of ladle used was limited to one.

製鋼炉より出鋼された溶鋼上のスラグの除滓量を80重
量%以上としたのは、除滓量をこれより少なくすると系
へのインプットPJJが多くなって所望の超低P鋼を得
られないからである。
The reason why the amount of slag removed from the molten steel tapped from the steelmaking furnace is set to 80% by weight or more is because if the amount of slag removed is less than this, the input PJJ to the system will increase, resulting in the desired ultra-low P steel. This is because it cannot be done.

いま、スラグ中のP2O5(即ち(P2O3))割合と
スラグ量とによって持ち込みPi ([P] 1を算出
すると第1表のようになる。この第1表に示されるよう
に、脱P前スラグが50Kg/Tで80重量%除滓する
(20重量%残)とすると10Kg/Tが残り、系への
インプットPはスラグのみを考えても(pzos)が1
.0及び0.5%の場合にそれぞれ44及び22ppm
となって超低[P] mの溶製では限界に近くなる。従
って、これ以下の除滓率では所望の超低PEを得られな
いことは明らかであろう。なお、現実を離れれば100
%の除滓が好ましいことは言うまでもない。
Now, if we calculate the P2O5 (i.e. (P2O3)) ratio in the slag and the amount of slag, we will get the result as shown in Table 1.As shown in Table 1, the slag before P removal If 80% by weight is removed at 50Kg/T (20% by weight remaining), 10Kg/T remains, and the input P to the system is 1 even considering only the slag (pzos).
.. 44 and 22 ppm for 0 and 0.5% respectively
As a result, ultra-low [P]m melting approaches the limit. Therefore, it is clear that the desired ultra-low PE cannot be obtained with a slag removal rate lower than this. Furthermore, if you leave reality, it will be 100%
It goes without saying that sludge removal of % is preferable.

第  1  表 スラグ中A7!203を特に5.0重量%以下に抑制す
る理由は、該値が5.0重量%を越えると脱P率が低下
してやはり所望の超低[P′Imを安定して達成出来な
いからである。
The reason why A7!203 in the slag in Table 1 is particularly suppressed to 5.0% by weight or less is that if the value exceeds 5.0% by weight, the dephosphorization rate decreases and the desired ultra-low [P'Im] is still achieved. This is because it cannot be achieved stably.

先に示した第1図のように、(P)/[Piの低下はス
ラグ中のAβ203含有割合の上昇と共に直線的に低下
していることから見て、理想的にはAl2O3をゼロと
するのが望ましい。しかしながら、(AI!zOx)を
5.0重量%以下とすることでも鋼中P含有量が10p
pm前後の超低〔■〕]鋼を安定製造できることから、
スラグ中のA7!203iは5.0重量%以下と定めた
As shown in Figure 1 above, the decrease in (P)/[Pi decreases linearly with the increase in the Aβ203 content in the slag, so ideally Al2O3 should be zero. is desirable. However, even if (AI!zOx) is set to 5.0% by weight or less, the P content in steel is reduced to 10p.
Because we can stably produce ultra-low [■]] steel around pm,
A7!203i in the slag was determined to be 5.0% by weight or less.

そして、脱P工程によって生成した脱Pスラグを80重
量%以上の割合で除滓する理由は、鋼の精錬では合金元
素の添加及び脱酸のため最後に還元精錬を行うので、上
記スラグ除滓率が80重量%未満では[P]量が増加し
て所望の超低[p]鋼達成の大きな障害となるからであ
る。
The reason why the dephosphorization slag generated in the dephosphorization process is removed at a ratio of 80% by weight or more is that in steel refining, reduction refining is performed at the end to add alloying elements and deoxidize. This is because if the ratio is less than 80% by weight, the amount of [P] increases, which becomes a major hindrance to achieving the desired ultra-low [p] steel.

第8図は、脱Pスラグの除滓率と還元精錬後の[P] 
fflとの関係を示したグラフであり、脱P前[P]が
20ppm、脱P4u[P]が5ppm、そして(P)
/ [P]が50又は100で、スラグ量が60Kg/
Tのものについてのデータであるが、この第8図からも
、スラグ除去率=80重量%の場合に(P)/ [Pコ
ー50で10.8ppm、(P)/’P1=100で9
.3ppmとなり、10ppmすれすれであることが分
かる。従って、この場合も80重量%以上の除滓率とす
ることが必要なのである。
Figure 8 shows the slag removal rate of P-free slag and [P] after reduction refining.
This is a graph showing the relationship with ffl, where the pre-depletion [P] is 20 ppm, the de-P4u [P] is 5 ppm, and (P)
/ [P] is 50 or 100 and the slag amount is 60Kg/
The data for T is also shown in Figure 8, when the slag removal rate = 80% by weight, (P)/[10.8 ppm for Pco50, (P)/'9 for P1 = 100.
.. It turns out that it is 3 ppm, which is just under 10 ppm. Therefore, in this case as well, it is necessary to have a slag removal rate of 80% by weight or more.

次いで、この発明を実施例により比較例と対比しながら
説明する。
Next, the present invention will be explained by examples and in comparison with comparative examples.

〈実施例〉 溶銑脱Pによって遍P] =0.015〜0.025重
量%まで、& P シた後、250トン転炉に生石灰を
35〜50h/T装入して[P] =0.06〜0.0
9重量%まで脱Pし、続イア [C] =0.03〜0
.07重量%、[0]=0.04〜0.08重量%の溶
鋼を取鍋に出鋼した。なお、出鋼の際にCaO:6Kg
/T、  スケール:4Kg/T及びCaFz : 4
Kg/Tで出鋼脱Pを行った。
〈Example〉 After depurating the hot metal to P = 0.015 to 0.025% by weight, quicklime was charged to a 250 ton converter at 35 to 50 h/T and [P] = 0. .06~0.0
Dephosphorized to 9% by weight and continued [C] = 0.03 to 0
.. 07% by weight, [0] = 0.04 to 0.08% by weight, was tapped into a ladle. In addition, CaO: 6Kg during tapping
/T, Scale: 4Kg/T and CaFz: 4
Steel tapping was performed at Kg/T.

次に、組成が45CaO15CaFz  40Fez○
3のフラックス40Kg/Tを用いて取鍋中に収容した
溶鋼にLF炉で脱P処理を施し、更に還元脱酸を行った
Next, the composition is 45CaO15CaFz 40Fez○
The molten steel contained in a ladle was subjected to deP treatment in an LF furnace using a flux of 40 kg/T of No. 3, and further reductive deoxidation was performed.

この時の脱P条件は第2表に示す通りであった。The dephosphorization conditions at this time were as shown in Table 2.

なお、LF炉では静ガス0.005N r&/m1n−
Tで溶鋼をpRnして脱Pの促進を図った。
In addition, in the LF furnace, the static gas is 0.005N r&/m1n-
The molten steel was subjected to pRn using T to promote dephosphorization.

上記のような処理工程を通じて転炉出鋼後の溶鋼の[P
]推移を調査し、その結果を第9図に示した。
Through the above treatment process, [P] of molten steel after being tapped from a converter
] The trends were investigated and the results are shown in Figure 9.

第9図に示される結果からも、本発明例1では出鋼膜P
後に[Pl = 49ppmであったものが、LF脱P
で(Al1203)を0゜7]量%に制御出来たことか
ら、LF脱P後に[Pl = 12ppmを、そして製
品の[Pl = 14ppmをそれぞれ達成出来たこと
が分かる。
The results shown in FIG. 9 also show that in Inventive Example 1, the exposed steel film P
Later, [Pl = 49ppm was changed to LF deP
Since we were able to control (Al1203) to 0°7% by mass, it can be seen that we were able to achieve [Pl = 12 ppm after LF dephosphorization and [Pl = 14 ppm in the product].

また、°本発明例2では最終脱P工程であるLF炉簡に
[Pl = 20ppmを得ていたので、LF炉中では
[Pコニ5ppmを、そして製品の[P]=61]I)
Il+をそれぞれ達成している。
In addition, in Example 2 of the present invention, [Pl = 20 ppm was obtained in the LF furnace strip in the final deP step, so in the LF furnace, [Pl = 5 ppm], and [P] = 61]I)
Each achieved Il+.

一方、耐火物にAl1203を82%含む比較例1、脱
P前の除滓率が60%である比較例2、取鍋を2つ使用
した比較例3では、何れも実施例1よりも出鋼膜P後の
[Pl レヘルが低いにも関わらずLF炉溶鋼脱P後の
[Pl量は0.002重量%以上であり、超低P鋼を溶
製することが出来なかった・ 以上に説明した如く、この発明によれば、鋼中P含有量
が10ppm前後の超低Pf!lを安定・確実に量産す
ることが可能となり、各方面から巨立つようになった超
低P鋼に対する要望に十分応えることが出来るなど、産
業上極めて有用な効果がもたらされるのである。
On the other hand, in Comparative Example 1 in which the refractory contained 82% Al1203, Comparative Example 2 in which the slag removal rate before dephosphorization was 60%, and Comparative Example 3 in which two ladles were used, the output was higher than in Example 1. Despite the low Pl level of the steel film, the Pl amount after dephosphorizing the molten steel in the LF furnace was more than 0.002% by weight, making it impossible to melt ultra-low P steel. As explained, according to this invention, the P content in the steel is extremely low, around 10 ppm! It has become possible to stably and reliably mass-produce l, and it has brought extremely useful effects industrially, such as being able to fully meet the growing demand for ultra-low P steel from various quarters.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、脱Pスラグ中へのA1t03混入量によるP
分配、即ち(P)/ [Plの変化状況を示したグラフ
、 第2図は、脱Pフラックス中のCaO含有量とP分配と
の関係を示すグラフ、 第3図は、脱P処理前[C] Iと脱P率との関係を示
すグラフ、 第4図は、溶鋼中の〔0]量と製鋼炉出鋼時の復P量と
の関係を示すグラフ、 第5図は、脱P手段別のPのインプットバランスを示し
たグラフ、 第6図は、超系P鋼の溶製工程と除滓方法を説明した概
略工程図、 第7図は、P分配及びフラックス量と到達[P]量との
関係を示すグラフ、 第8図は、スラグ除去率と還元精錬後の[P]量との関
係を示すグラフ、 第9図は、実施例における転炉出鋼後の溶加[P]の推
移を示したグラフである。
Figure 1 shows the amount of P mixed into the dephosphorized slag.
Figure 2 is a graph showing the relationship between the CaO content in the P removal flux and P distribution; C] A graph showing the relationship between I and the P removal rate. Figure 4 is a graph showing the relationship between the amount of [0] in molten steel and the amount of returned P at the time of steel tapping in a steelmaking furnace. Figure 5 is a graph showing the relationship between I and the P removal rate. A graph showing the input balance of P by method. Figure 6 is a schematic process diagram explaining the melting process and slag removal method for super-type P steel. Figure 7 is a diagram showing the P distribution, flux amount, and reached [P ] Figure 8 is a graph showing the relationship between slag removal rate and [P] amount after reduction refining; Figure 9 is a graph showing the relationship between slag removal rate and [P] amount after reduction refining; It is a graph showing the transition of [P].

Claims (2)

【特許請求の範囲】[Claims] (1)製鋼炉より、溶鋼中C含有量:0.15重量%未
満の溶鋼を少なくともスラグラインが塩基性耐火物にて
構成された取鍋に未脱酸状態で出鋼した後スラグの80
重量%以上を除滓し、次いで生石灰系フラックスを添加
してスラグ中Al_2O_3を5.0重量%以下に抑制
した状態で脱Pを行ってから、生成した脱Pスラグの8
0重量%以上を除滓する操作を同一取鍋にて実施するこ
とを特徴とする、超低P鋼の溶製方法。
(1) From a steelmaking furnace, molten steel with a C content of less than 0.15% by weight is tapped into a ladle in which at least the slag line is made of a basic refractory in an undeoxidized state.
After removing slag of more than 5% by weight and then adding quicklime-based flux to suppress Al_2O_3 in the slag to 5.0% by weight or less, dephosphorization is performed, and then 8% of the generated dephosphorized slag is
A method for producing ultra-low P steel, characterized in that an operation for removing 0% by weight or more of slag is carried out in the same ladle.
(2)最終脱P工程へ供給する溶鋼の溶鋼中Pレベルを
40ppm以下とした、特許請求の範囲第1項に記載の
超低P鋼の溶製方法。
(2) The method for producing ultra-low P steel according to claim 1, wherein the P level in the molten steel supplied to the final deP step is 40 ppm or less.
JP61200094A 1986-08-28 1986-08-28 Manufacture of extra low p steel by refining Pending JPS6357714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200094A JPS6357714A (en) 1986-08-28 1986-08-28 Manufacture of extra low p steel by refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200094A JPS6357714A (en) 1986-08-28 1986-08-28 Manufacture of extra low p steel by refining

Publications (1)

Publication Number Publication Date
JPS6357714A true JPS6357714A (en) 1988-03-12

Family

ID=16418751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200094A Pending JPS6357714A (en) 1986-08-28 1986-08-28 Manufacture of extra low p steel by refining

Country Status (1)

Country Link
JP (1) JPS6357714A (en)

Similar Documents

Publication Publication Date Title
US3754892A (en) Continuous method of steel making
JP3428628B2 (en) Stainless steel desulfurization refining method
JP7151494B2 (en) Method for recycling converter slag
US4214898A (en) Process for preventing the rephosphorization of electric steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP6405876B2 (en) Hot metal refining method
JPS6357714A (en) Manufacture of extra low p steel by refining
JP2896839B2 (en) Molten steel manufacturing method
JPH08157921A (en) Dephosphorization of molten iron
JP2002105526A (en) Method for dephosphorizing molten iron generating little non-slagging lime
JP3194212B2 (en) Converter steelmaking method
JP7469716B2 (en) Converter refining method
JPS6362562B2 (en)
JP2607329B2 (en) Hot metal dephosphorization method
JP2607328B2 (en) Hot metal dephosphorization method
JP7477797B2 (en) Converter refining method
JPH01147011A (en) Steelmaking method
JPS6121285B2 (en)
JPH09256020A (en) Method for dehosphorize-refining of molten iron in converter type refining vessel.
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JPS61217515A (en) Production of extra-low phosphorus steel
JP3684445B2 (en) Manufacturing method of high purity high Ni steel
SU1713936A1 (en) Method of treating phosphorus hot metal in converter
JP2842248B2 (en) Hot metal desulfurization method
JPH07109507A (en) Method for pretreating molten iron